You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1223 regels
38 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com).
  108. *
  109. */
  110. /* ====================================================================
  111. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  112. *
  113. * Portions of the attached software ("Contribution") are developed by
  114. * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
  115. *
  116. * The Contribution is licensed pursuant to the OpenSSL open source
  117. * license provided above.
  118. *
  119. * ECC cipher suite support in OpenSSL originally written by
  120. * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
  121. *
  122. */
  123. /* ====================================================================
  124. * Copyright 2005 Nokia. All rights reserved.
  125. *
  126. * The portions of the attached software ("Contribution") is developed by
  127. * Nokia Corporation and is licensed pursuant to the OpenSSL open source
  128. * license.
  129. *
  130. * The Contribution, originally written by Mika Kousa and Pasi Eronen of
  131. * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
  132. * support (see RFC 4279) to OpenSSL.
  133. *
  134. * No patent licenses or other rights except those expressly stated in
  135. * the OpenSSL open source license shall be deemed granted or received
  136. * expressly, by implication, estoppel, or otherwise.
  137. *
  138. * No assurances are provided by Nokia that the Contribution does not
  139. * infringe the patent or other intellectual property rights of any third
  140. * party or that the license provides you with all the necessary rights
  141. * to make use of the Contribution.
  142. *
  143. * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
  144. * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
  145. * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
  146. * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
  147. * OTHERWISE. */
  148. #include <assert.h>
  149. #include <stdio.h>
  150. #include <string.h>
  151. #include <openssl/buf.h>
  152. #include <openssl/dh.h>
  153. #include <openssl/err.h>
  154. #include <openssl/md5.h>
  155. #include <openssl/mem.h>
  156. #include <openssl/obj.h>
  157. #include "internal.h"
  158. #define SSL3_NUM_CIPHERS (sizeof(ssl3_ciphers) / sizeof(SSL_CIPHER))
  159. /* list of available SSLv3 ciphers (sorted by id) */
  160. const SSL_CIPHER ssl3_ciphers[] = {
  161. /* The RSA ciphers */
  162. /* Cipher 04 */
  163. {
  164. SSL3_TXT_RSA_RC4_128_MD5, SSL3_CK_RSA_RC4_128_MD5, SSL_kRSA, SSL_aRSA,
  165. SSL_RC4, SSL_MD5, SSL_SSLV3, SSL_MEDIUM,
  166. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
  167. },
  168. /* Cipher 05 */
  169. {
  170. SSL3_TXT_RSA_RC4_128_SHA, SSL3_CK_RSA_RC4_128_SHA, SSL_kRSA, SSL_aRSA,
  171. SSL_RC4, SSL_SHA1, SSL_SSLV3, SSL_MEDIUM,
  172. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
  173. },
  174. /* Cipher 0A */
  175. {
  176. SSL3_TXT_RSA_DES_192_CBC3_SHA, SSL3_CK_RSA_DES_192_CBC3_SHA, SSL_kRSA,
  177. SSL_aRSA, SSL_3DES, SSL_SHA1, SSL_SSLV3, SSL_HIGH | SSL_FIPS,
  178. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 112, 168,
  179. },
  180. /* New AES ciphersuites */
  181. /* Cipher 2F */
  182. {
  183. TLS1_TXT_RSA_WITH_AES_128_SHA, TLS1_CK_RSA_WITH_AES_128_SHA, SSL_kRSA,
  184. SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  185. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
  186. },
  187. /* Cipher 33 */
  188. {
  189. TLS1_TXT_DHE_RSA_WITH_AES_128_SHA, TLS1_CK_DHE_RSA_WITH_AES_128_SHA,
  190. SSL_kDHE, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  191. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
  192. },
  193. /* Cipher 35 */
  194. {
  195. TLS1_TXT_RSA_WITH_AES_256_SHA, TLS1_CK_RSA_WITH_AES_256_SHA, SSL_kRSA,
  196. SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  197. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
  198. },
  199. /* Cipher 39 */
  200. {
  201. TLS1_TXT_DHE_RSA_WITH_AES_256_SHA, TLS1_CK_DHE_RSA_WITH_AES_256_SHA,
  202. SSL_kDHE, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  203. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
  204. },
  205. /* TLS v1.2 ciphersuites */
  206. /* Cipher 3C */
  207. {
  208. TLS1_TXT_RSA_WITH_AES_128_SHA256, TLS1_CK_RSA_WITH_AES_128_SHA256,
  209. SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA256, SSL_TLSV1_2,
  210. SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
  211. },
  212. /* Cipher 3D */
  213. {
  214. TLS1_TXT_RSA_WITH_AES_256_SHA256, TLS1_CK_RSA_WITH_AES_256_SHA256,
  215. SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA256, SSL_TLSV1_2,
  216. SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256,
  217. },
  218. /* Cipher 67 */
  219. {
  220. TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256,
  221. TLS1_CK_DHE_RSA_WITH_AES_128_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES128,
  222. SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  223. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
  224. },
  225. /* Cipher 6B */
  226. {
  227. TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256,
  228. TLS1_CK_DHE_RSA_WITH_AES_256_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES256,
  229. SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  230. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 256, 256,
  231. },
  232. /* Cipher 8A */
  233. {
  234. TLS1_TXT_PSK_WITH_RC4_128_SHA, TLS1_CK_PSK_WITH_RC4_128_SHA, SSL_kPSK,
  235. SSL_aPSK, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM,
  236. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
  237. },
  238. /* Cipher 8C */
  239. {
  240. TLS1_TXT_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
  241. SSL_kPSK, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  242. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
  243. },
  244. /* Cipher 8D */
  245. {
  246. TLS1_TXT_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
  247. SSL_kPSK, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  248. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
  249. },
  250. /* GCM ciphersuites from RFC5288 */
  251. /* Cipher 9C */
  252. {
  253. TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
  254. TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128GCM,
  255. SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  256. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
  257. SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
  258. 128, 128,
  259. },
  260. /* Cipher 9D */
  261. {
  262. TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
  263. TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, SSL_kRSA, SSL_aRSA, SSL_AES256GCM,
  264. SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  265. SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
  266. SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
  267. 256, 256,
  268. },
  269. /* Cipher 9E */
  270. {
  271. TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256,
  272. TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES128GCM,
  273. SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  274. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
  275. SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
  276. 128, 128,
  277. },
  278. /* Cipher 9F */
  279. {
  280. TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384,
  281. TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kDHE, SSL_aRSA, SSL_AES256GCM,
  282. SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  283. SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
  284. SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
  285. 256, 256,
  286. },
  287. /* Cipher C007 */
  288. {
  289. TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA,
  290. TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA, SSL_kECDHE, SSL_aECDSA, SSL_RC4,
  291. SSL_SHA1, SSL_TLSV1, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128,
  292. 128,
  293. },
  294. /* Cipher C009 */
  295. {
  296. TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
  297. TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aECDSA,
  298. SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  299. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
  300. },
  301. /* Cipher C00A */
  302. {
  303. TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
  304. TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aECDSA,
  305. SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  306. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
  307. },
  308. /* Cipher C011 */
  309. {
  310. TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA, TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA,
  311. SSL_kECDHE, SSL_aRSA, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM,
  312. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
  313. },
  314. /* Cipher C013 */
  315. {
  316. TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
  317. TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES128,
  318. SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  319. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 128, 128,
  320. },
  321. /* Cipher C014 */
  322. {
  323. TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
  324. TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES256,
  325. SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  326. SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF, 256, 256,
  327. },
  328. /* HMAC based TLS v1.2 ciphersuites from RFC5289 */
  329. /* Cipher C023 */
  330. {
  331. TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256,
  332. TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256, SSL_kECDHE, SSL_aECDSA,
  333. SSL_AES128, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  334. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
  335. },
  336. /* Cipher C024 */
  337. {
  338. TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384,
  339. TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384, SSL_kECDHE, SSL_aECDSA,
  340. SSL_AES256, SSL_SHA384, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  341. SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256,
  342. },
  343. /* Cipher C027 */
  344. {
  345. TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256,
  346. TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256, SSL_kECDHE, SSL_aRSA, SSL_AES128,
  347. SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  348. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256, 128, 128,
  349. },
  350. /* Cipher C028 */
  351. {
  352. TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384,
  353. TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384, SSL_kECDHE, SSL_aRSA, SSL_AES256,
  354. SSL_SHA384, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  355. SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384, 256, 256,
  356. },
  357. /* GCM based TLS v1.2 ciphersuites from RFC5289 */
  358. /* Cipher C02B */
  359. {
  360. TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  361. TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aECDSA,
  362. SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  363. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
  364. SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
  365. 128, 128,
  366. },
  367. /* Cipher C02C */
  368. {
  369. TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  370. TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aECDSA,
  371. SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  372. SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
  373. SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
  374. 256, 256,
  375. },
  376. /* Cipher C02F */
  377. {
  378. TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  379. TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aRSA,
  380. SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  381. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
  382. SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
  383. 128, 128,
  384. },
  385. /* Cipher C030 */
  386. {
  387. TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
  388. TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aRSA,
  389. SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  390. SSL_HANDSHAKE_MAC_SHA384 | TLS1_PRF_SHA384 | SSL_CIPHER_ALGORITHM2_AEAD |
  391. SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
  392. 256, 256,
  393. },
  394. /* ECDH PSK ciphersuites */
  395. /* Cipher CAFE */
  396. {
  397. TLS1_TXT_ECDHE_PSK_WITH_AES_128_GCM_SHA256,
  398. TLS1_CK_ECDHE_PSK_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aPSK,
  399. SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
  400. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD |
  401. SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD,
  402. 128, 128,
  403. },
  404. {
  405. TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305,
  406. TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305, SSL_kECDHE, SSL_aRSA,
  407. SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
  408. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD,
  409. 256, 0,
  410. },
  411. {
  412. TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
  413. TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305, SSL_kECDHE, SSL_aECDSA,
  414. SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
  415. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD,
  416. 256, 0,
  417. },
  418. {
  419. TLS1_TXT_DHE_RSA_WITH_CHACHA20_POLY1305,
  420. TLS1_CK_DHE_RSA_CHACHA20_POLY1305, SSL_kDHE, SSL_aRSA,
  421. SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
  422. SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256 | SSL_CIPHER_ALGORITHM2_AEAD,
  423. 256, 0,
  424. },
  425. };
  426. const SSL3_ENC_METHOD SSLv3_enc_data = {
  427. ssl3_prf,
  428. tls1_setup_key_block,
  429. tls1_generate_master_secret,
  430. tls1_change_cipher_state,
  431. ssl3_final_finish_mac,
  432. ssl3_cert_verify_mac,
  433. SSL3_MD_CLIENT_FINISHED_CONST, 4,
  434. SSL3_MD_SERVER_FINISHED_CONST, 4,
  435. ssl3_alert_code,
  436. tls1_export_keying_material,
  437. 0,
  438. };
  439. size_t ssl3_num_ciphers(void) { return SSL3_NUM_CIPHERS; }
  440. const SSL_CIPHER *ssl3_get_cipher(size_t i) {
  441. if (i >= SSL3_NUM_CIPHERS) {
  442. return NULL;
  443. }
  444. return &ssl3_ciphers[SSL3_NUM_CIPHERS - 1 - i];
  445. }
  446. int ssl3_pending(const SSL *s) {
  447. if (s->rstate == SSL_ST_READ_BODY) {
  448. return 0;
  449. }
  450. return (s->s3->rrec.type == SSL3_RT_APPLICATION_DATA) ? s->s3->rrec.length
  451. : 0;
  452. }
  453. int ssl3_set_handshake_header(SSL *s, int htype, unsigned long len) {
  454. uint8_t *p = (uint8_t *)s->init_buf->data;
  455. *(p++) = htype;
  456. l2n3(len, p);
  457. s->init_num = (int)len + SSL3_HM_HEADER_LENGTH;
  458. s->init_off = 0;
  459. /* Add the message to the handshake hash. */
  460. return ssl3_finish_mac(s, (uint8_t *)s->init_buf->data, s->init_num);
  461. }
  462. int ssl3_handshake_write(SSL *s) { return ssl3_do_write(s, SSL3_RT_HANDSHAKE); }
  463. int ssl3_new(SSL *s) {
  464. SSL3_STATE *s3;
  465. s3 = OPENSSL_malloc(sizeof *s3);
  466. if (s3 == NULL) {
  467. goto err;
  468. }
  469. memset(s3, 0, sizeof *s3);
  470. memset(s3->rrec.seq_num, 0, sizeof(s3->rrec.seq_num));
  471. s->s3 = s3;
  472. /* Set the version to the highest supported version for TLS. This controls the
  473. * initial state of |s->enc_method| and what the API reports as the version
  474. * prior to negotiation.
  475. *
  476. * TODO(davidben): This is fragile and confusing. */
  477. s->version = TLS1_2_VERSION;
  478. return 1;
  479. err:
  480. return 0;
  481. }
  482. void ssl3_free(SSL *s) {
  483. if (s == NULL || s->s3 == NULL) {
  484. return;
  485. }
  486. BUF_MEM_free(s->s3->sniff_buffer);
  487. ssl3_cleanup_key_block(s);
  488. ssl3_release_read_buffer(s);
  489. ssl3_release_write_buffer(s);
  490. DH_free(s->s3->tmp.dh);
  491. EC_KEY_free(s->s3->tmp.ecdh);
  492. sk_X509_NAME_pop_free(s->s3->tmp.ca_names, X509_NAME_free);
  493. OPENSSL_free(s->s3->tmp.certificate_types);
  494. OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
  495. OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
  496. OPENSSL_free(s->s3->tmp.peer_psk_identity_hint);
  497. BIO_free(s->s3->handshake_buffer);
  498. ssl3_free_digest_list(s);
  499. OPENSSL_free(s->s3->alpn_selected);
  500. OPENSSL_cleanse(s->s3, sizeof *s->s3);
  501. OPENSSL_free(s->s3);
  502. s->s3 = NULL;
  503. }
  504. static int ssl3_set_req_cert_type(CERT *c, const uint8_t *p, size_t len);
  505. int SSL_session_reused(const SSL *ssl) {
  506. return ssl->hit;
  507. }
  508. int SSL_total_renegotiations(const SSL *ssl) {
  509. return ssl->s3->total_renegotiations;
  510. }
  511. int SSL_num_renegotiations(const SSL *ssl) {
  512. return SSL_total_renegotiations(ssl);
  513. }
  514. int SSL_CTX_need_tmp_RSA(const SSL_CTX *ctx) {
  515. return 0;
  516. }
  517. int SSL_need_rsa(const SSL *ssl) {
  518. return 0;
  519. }
  520. int SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, const RSA *rsa) {
  521. return 1;
  522. }
  523. int SSL_set_tmp_rsa(SSL *ssl, const RSA *rsa) {
  524. return 1;
  525. }
  526. int SSL_CTX_set_tmp_dh(SSL_CTX *ctx, const DH *dh) {
  527. DH_free(ctx->cert->dh_tmp);
  528. ctx->cert->dh_tmp = DHparams_dup(dh);
  529. if (ctx->cert->dh_tmp == NULL) {
  530. OPENSSL_PUT_ERROR(SSL, SSL_CTX_set_tmp_dh, ERR_R_DH_LIB);
  531. return 0;
  532. }
  533. return 1;
  534. }
  535. int SSL_set_tmp_dh(SSL *ssl, const DH *dh) {
  536. DH_free(ssl->cert->dh_tmp);
  537. ssl->cert->dh_tmp = DHparams_dup(dh);
  538. if (ssl->cert->dh_tmp == NULL) {
  539. OPENSSL_PUT_ERROR(SSL, SSL_set_tmp_dh, ERR_R_DH_LIB);
  540. return 0;
  541. }
  542. return 1;
  543. }
  544. int SSL_CTX_set_tmp_ecdh(SSL_CTX *ctx, const EC_KEY *ec_key) {
  545. if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) {
  546. OPENSSL_PUT_ERROR(SSL, SSL_CTX_set_tmp_ecdh, ERR_R_PASSED_NULL_PARAMETER);
  547. return 0;
  548. }
  549. ctx->cert->ecdh_nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key));
  550. return 1;
  551. }
  552. int SSL_set_tmp_ecdh(SSL *ssl, const EC_KEY *ec_key) {
  553. if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) {
  554. OPENSSL_PUT_ERROR(SSL, SSL_set_tmp_ecdh, ERR_R_PASSED_NULL_PARAMETER);
  555. return 0;
  556. }
  557. ssl->cert->ecdh_nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key));
  558. return 1;
  559. }
  560. int SSL_CTX_enable_tls_channel_id(SSL_CTX *ctx) {
  561. ctx->tlsext_channel_id_enabled = 1;
  562. return 1;
  563. }
  564. int SSL_enable_tls_channel_id(SSL *ssl) {
  565. ssl->tlsext_channel_id_enabled = 1;
  566. return 1;
  567. }
  568. int SSL_CTX_set1_tls_channel_id(SSL_CTX *ctx, EVP_PKEY *private_key) {
  569. ctx->tlsext_channel_id_enabled = 1;
  570. if (EVP_PKEY_id(private_key) != EVP_PKEY_EC ||
  571. EVP_PKEY_bits(private_key) != 256) {
  572. OPENSSL_PUT_ERROR(SSL, SSL_CTX_set1_tls_channel_id,
  573. SSL_R_CHANNEL_ID_NOT_P256);
  574. return 0;
  575. }
  576. EVP_PKEY_free(ctx->tlsext_channel_id_private);
  577. ctx->tlsext_channel_id_private = EVP_PKEY_up_ref(private_key);
  578. return 1;
  579. }
  580. int SSL_set1_tls_channel_id(SSL *ssl, EVP_PKEY *private_key) {
  581. ssl->tlsext_channel_id_enabled = 1;
  582. if (EVP_PKEY_id(private_key) != EVP_PKEY_EC ||
  583. EVP_PKEY_bits(private_key) != 256) {
  584. OPENSSL_PUT_ERROR(SSL, SSL_set1_tls_channel_id, SSL_R_CHANNEL_ID_NOT_P256);
  585. return 0;
  586. }
  587. EVP_PKEY_free(ssl->tlsext_channel_id_private);
  588. ssl->tlsext_channel_id_private = EVP_PKEY_up_ref(private_key);
  589. return 1;
  590. }
  591. size_t SSL_get_tls_channel_id(SSL *ssl, uint8_t *out, size_t max_out) {
  592. if (!ssl->s3->tlsext_channel_id_valid) {
  593. return 0;
  594. }
  595. memcpy(out, ssl->s3->tlsext_channel_id, (max_out < 64) ? max_out : 64);
  596. return 64;
  597. }
  598. int SSL_set_tlsext_host_name(SSL *ssl, const char *name) {
  599. OPENSSL_free(ssl->tlsext_hostname);
  600. ssl->tlsext_hostname = NULL;
  601. if (name == NULL) {
  602. return 1;
  603. }
  604. if (strlen(name) > TLSEXT_MAXLEN_host_name) {
  605. OPENSSL_PUT_ERROR(SSL, SSL_set_tlsext_host_name,
  606. SSL_R_SSL3_EXT_INVALID_SERVERNAME);
  607. return 0;
  608. }
  609. ssl->tlsext_hostname = BUF_strdup(name);
  610. if (ssl->tlsext_hostname == NULL) {
  611. OPENSSL_PUT_ERROR(SSL, SSL_set_tlsext_host_name, ERR_R_MALLOC_FAILURE);
  612. return 0;
  613. }
  614. return 1;
  615. }
  616. long ssl3_ctrl(SSL *s, int cmd, long larg, void *parg) {
  617. int ret = 0;
  618. switch (cmd) {
  619. case SSL_CTRL_CHAIN:
  620. if (larg) {
  621. return ssl_cert_set1_chain(s->cert, (STACK_OF(X509) *)parg);
  622. } else {
  623. return ssl_cert_set0_chain(s->cert, (STACK_OF(X509) *)parg);
  624. }
  625. case SSL_CTRL_CHAIN_CERT:
  626. if (larg) {
  627. return ssl_cert_add1_chain_cert(s->cert, (X509 *)parg);
  628. } else {
  629. return ssl_cert_add0_chain_cert(s->cert, (X509 *)parg);
  630. }
  631. case SSL_CTRL_GET_CHAIN_CERTS:
  632. *(STACK_OF(X509) **)parg = s->cert->key->chain;
  633. ret = 1;
  634. break;
  635. case SSL_CTRL_SELECT_CURRENT_CERT:
  636. return ssl_cert_select_current(s->cert, (X509 *)parg);
  637. case SSL_CTRL_GET_CURVES: {
  638. const uint16_t *clist = s->s3->tmp.peer_ellipticcurvelist;
  639. size_t clistlen = s->s3->tmp.peer_ellipticcurvelist_length;
  640. if (parg) {
  641. size_t i;
  642. int *cptr = parg;
  643. int nid;
  644. for (i = 0; i < clistlen; i++) {
  645. nid = tls1_ec_curve_id2nid(clist[i]);
  646. if (nid != NID_undef) {
  647. cptr[i] = nid;
  648. } else {
  649. cptr[i] = TLSEXT_nid_unknown | clist[i];
  650. }
  651. }
  652. }
  653. return (int)clistlen;
  654. }
  655. case SSL_CTRL_SET_CURVES:
  656. return tls1_set_curves(&s->tlsext_ellipticcurvelist,
  657. &s->tlsext_ellipticcurvelist_length, parg, larg);
  658. case SSL_CTRL_SET_SIGALGS:
  659. return tls1_set_sigalgs(s->cert, parg, larg, 0);
  660. case SSL_CTRL_SET_CLIENT_SIGALGS:
  661. return tls1_set_sigalgs(s->cert, parg, larg, 1);
  662. case SSL_CTRL_GET_CLIENT_CERT_TYPES: {
  663. const uint8_t **pctype = parg;
  664. if (s->server || !s->s3->tmp.cert_req) {
  665. return 0;
  666. }
  667. if (pctype) {
  668. *pctype = s->s3->tmp.certificate_types;
  669. }
  670. return (int)s->s3->tmp.num_certificate_types;
  671. }
  672. case SSL_CTRL_SET_CLIENT_CERT_TYPES:
  673. if (!s->server) {
  674. return 0;
  675. }
  676. return ssl3_set_req_cert_type(s->cert, parg, larg);
  677. case SSL_CTRL_BUILD_CERT_CHAIN:
  678. return ssl_build_cert_chain(s->cert, s->ctx->cert_store, larg);
  679. case SSL_CTRL_SET_VERIFY_CERT_STORE:
  680. return ssl_cert_set_cert_store(s->cert, parg, 0, larg);
  681. case SSL_CTRL_SET_CHAIN_CERT_STORE:
  682. return ssl_cert_set_cert_store(s->cert, parg, 1, larg);
  683. case SSL_CTRL_GET_SERVER_TMP_KEY:
  684. if (s->server || !s->session || !s->session->sess_cert) {
  685. return 0;
  686. } else {
  687. SESS_CERT *sc;
  688. EVP_PKEY *ptmp;
  689. int rv = 0;
  690. sc = s->session->sess_cert;
  691. if (!sc->peer_dh_tmp && !sc->peer_ecdh_tmp) {
  692. return 0;
  693. }
  694. ptmp = EVP_PKEY_new();
  695. if (!ptmp) {
  696. return 0;
  697. }
  698. if (sc->peer_dh_tmp) {
  699. rv = EVP_PKEY_set1_DH(ptmp, sc->peer_dh_tmp);
  700. } else if (sc->peer_ecdh_tmp) {
  701. rv = EVP_PKEY_set1_EC_KEY(ptmp, sc->peer_ecdh_tmp);
  702. }
  703. if (rv) {
  704. *(EVP_PKEY **)parg = ptmp;
  705. return 1;
  706. }
  707. EVP_PKEY_free(ptmp);
  708. return 0;
  709. }
  710. case SSL_CTRL_GET_EC_POINT_FORMATS: {
  711. const uint8_t **pformat = parg;
  712. if (!s->s3->tmp.peer_ecpointformatlist) {
  713. return 0;
  714. }
  715. *pformat = s->s3->tmp.peer_ecpointformatlist;
  716. return (int)s->s3->tmp.peer_ecpointformatlist_length;
  717. }
  718. default:
  719. break;
  720. }
  721. return ret;
  722. }
  723. long ssl3_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) {
  724. switch (cmd) {
  725. case SSL_CTRL_SET_TLSEXT_TICKET_KEYS:
  726. case SSL_CTRL_GET_TLSEXT_TICKET_KEYS: {
  727. uint8_t *keys = parg;
  728. if (!keys) {
  729. return 48;
  730. }
  731. if (larg != 48) {
  732. OPENSSL_PUT_ERROR(SSL, ssl3_ctx_ctrl, SSL_R_INVALID_TICKET_KEYS_LENGTH);
  733. return 0;
  734. }
  735. if (cmd == SSL_CTRL_SET_TLSEXT_TICKET_KEYS) {
  736. memcpy(ctx->tlsext_tick_key_name, keys, 16);
  737. memcpy(ctx->tlsext_tick_hmac_key, keys + 16, 16);
  738. memcpy(ctx->tlsext_tick_aes_key, keys + 32, 16);
  739. } else {
  740. memcpy(keys, ctx->tlsext_tick_key_name, 16);
  741. memcpy(keys + 16, ctx->tlsext_tick_hmac_key, 16);
  742. memcpy(keys + 32, ctx->tlsext_tick_aes_key, 16);
  743. }
  744. return 1;
  745. }
  746. case SSL_CTRL_SET_CURVES:
  747. return tls1_set_curves(&ctx->tlsext_ellipticcurvelist,
  748. &ctx->tlsext_ellipticcurvelist_length, parg, larg);
  749. case SSL_CTRL_SET_SIGALGS:
  750. return tls1_set_sigalgs(ctx->cert, parg, larg, 0);
  751. case SSL_CTRL_SET_CLIENT_SIGALGS:
  752. return tls1_set_sigalgs(ctx->cert, parg, larg, 1);
  753. case SSL_CTRL_SET_CLIENT_CERT_TYPES:
  754. return ssl3_set_req_cert_type(ctx->cert, parg, larg);
  755. case SSL_CTRL_BUILD_CERT_CHAIN:
  756. return ssl_build_cert_chain(ctx->cert, ctx->cert_store, larg);
  757. case SSL_CTRL_SET_VERIFY_CERT_STORE:
  758. return ssl_cert_set_cert_store(ctx->cert, parg, 0, larg);
  759. case SSL_CTRL_SET_CHAIN_CERT_STORE:
  760. return ssl_cert_set_cert_store(ctx->cert, parg, 1, larg);
  761. case SSL_CTRL_EXTRA_CHAIN_CERT:
  762. if (ctx->extra_certs == NULL) {
  763. ctx->extra_certs = sk_X509_new_null();
  764. if (ctx->extra_certs == NULL) {
  765. return 0;
  766. }
  767. }
  768. sk_X509_push(ctx->extra_certs, (X509 *)parg);
  769. break;
  770. case SSL_CTRL_GET_EXTRA_CHAIN_CERTS:
  771. if (ctx->extra_certs == NULL && larg == 0) {
  772. *(STACK_OF(X509) **)parg = ctx->cert->key->chain;
  773. } else {
  774. *(STACK_OF(X509) **)parg = ctx->extra_certs;
  775. }
  776. break;
  777. case SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS:
  778. sk_X509_pop_free(ctx->extra_certs, X509_free);
  779. ctx->extra_certs = NULL;
  780. break;
  781. case SSL_CTRL_CHAIN:
  782. if (larg) {
  783. return ssl_cert_set1_chain(ctx->cert, (STACK_OF(X509) *)parg);
  784. } else {
  785. return ssl_cert_set0_chain(ctx->cert, (STACK_OF(X509) *)parg);
  786. }
  787. case SSL_CTRL_CHAIN_CERT:
  788. if (larg) {
  789. return ssl_cert_add1_chain_cert(ctx->cert, (X509 *)parg);
  790. } else {
  791. return ssl_cert_add0_chain_cert(ctx->cert, (X509 *)parg);
  792. }
  793. case SSL_CTRL_GET_CHAIN_CERTS:
  794. *(STACK_OF(X509) **)parg = ctx->cert->key->chain;
  795. break;
  796. case SSL_CTRL_SELECT_CURRENT_CERT:
  797. return ssl_cert_select_current(ctx->cert, (X509 *)parg);
  798. default:
  799. return 0;
  800. }
  801. return 1;
  802. }
  803. int SSL_CTX_set_tlsext_servername_callback(
  804. SSL_CTX *ctx, int (*callback)(SSL *ssl, int *out_alert, void *arg)) {
  805. ctx->tlsext_servername_callback = callback;
  806. return 1;
  807. }
  808. int SSL_CTX_set_tlsext_servername_arg(SSL_CTX *ctx, void *arg) {
  809. ctx->tlsext_servername_arg = arg;
  810. return 1;
  811. }
  812. int SSL_CTX_set_tlsext_ticket_key_cb(
  813. SSL_CTX *ctx, int (*callback)(SSL *ssl, uint8_t *key_name, uint8_t *iv,
  814. EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
  815. int encrypt)) {
  816. ctx->tlsext_ticket_key_cb = callback;
  817. return 1;
  818. }
  819. /* ssl3_get_cipher_by_value returns the SSL_CIPHER with value |value| or NULL
  820. * if none exists.
  821. *
  822. * This function needs to check if the ciphers required are actually
  823. * available. */
  824. const SSL_CIPHER *ssl3_get_cipher_by_value(uint16_t value) {
  825. SSL_CIPHER c;
  826. c.id = 0x03000000L | value;
  827. return bsearch(&c, ssl3_ciphers, SSL3_NUM_CIPHERS, sizeof(SSL_CIPHER),
  828. ssl_cipher_id_cmp);
  829. }
  830. /* ssl3_get_cipher_by_value returns the cipher value of |c|. */
  831. uint16_t ssl3_get_cipher_value(const SSL_CIPHER *c) {
  832. uint32_t id = c->id;
  833. /* All ciphers are SSLv3 now. */
  834. assert((id & 0xff000000) == 0x03000000);
  835. return id & 0xffff;
  836. }
  837. struct ssl_cipher_preference_list_st *ssl_get_cipher_preferences(SSL *s) {
  838. if (s->cipher_list != NULL) {
  839. return s->cipher_list;
  840. }
  841. if (s->version >= TLS1_1_VERSION && s->ctx != NULL &&
  842. s->ctx->cipher_list_tls11 != NULL) {
  843. return s->ctx->cipher_list_tls11;
  844. }
  845. if (s->ctx != NULL && s->ctx->cipher_list != NULL) {
  846. return s->ctx->cipher_list;
  847. }
  848. return NULL;
  849. }
  850. const SSL_CIPHER *ssl3_choose_cipher(
  851. SSL *s, STACK_OF(SSL_CIPHER) *clnt,
  852. struct ssl_cipher_preference_list_st *server_pref) {
  853. const SSL_CIPHER *c, *ret = NULL;
  854. STACK_OF(SSL_CIPHER) *srvr = server_pref->ciphers, *prio, *allow;
  855. size_t i;
  856. int ok;
  857. size_t cipher_index;
  858. uint32_t alg_k, alg_a, mask_k, mask_a;
  859. /* in_group_flags will either be NULL, or will point to an array of bytes
  860. * which indicate equal-preference groups in the |prio| stack. See the
  861. * comment about |in_group_flags| in the |ssl_cipher_preference_list_st|
  862. * struct. */
  863. const uint8_t *in_group_flags;
  864. /* group_min contains the minimal index so far found in a group, or -1 if no
  865. * such value exists yet. */
  866. int group_min = -1;
  867. if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
  868. prio = srvr;
  869. in_group_flags = server_pref->in_group_flags;
  870. allow = clnt;
  871. } else {
  872. prio = clnt;
  873. in_group_flags = NULL;
  874. allow = srvr;
  875. }
  876. ssl_get_compatible_server_ciphers(s, &mask_k, &mask_a);
  877. for (i = 0; i < sk_SSL_CIPHER_num(prio); i++) {
  878. c = sk_SSL_CIPHER_value(prio, i);
  879. ok = 1;
  880. /* Skip TLS v1.2 only ciphersuites if not supported */
  881. if ((c->algorithm_ssl & SSL_TLSV1_2) && !SSL_USE_TLS1_2_CIPHERS(s)) {
  882. ok = 0;
  883. }
  884. alg_k = c->algorithm_mkey;
  885. alg_a = c->algorithm_auth;
  886. ok = ok && (alg_k & mask_k) && (alg_a & mask_a);
  887. if (ok && sk_SSL_CIPHER_find(allow, &cipher_index, c)) {
  888. if (in_group_flags != NULL && in_group_flags[i] == 1) {
  889. /* This element of |prio| is in a group. Update the minimum index found
  890. * so far and continue looking. */
  891. if (group_min == -1 || (size_t)group_min > cipher_index) {
  892. group_min = cipher_index;
  893. }
  894. } else {
  895. if (group_min != -1 && (size_t)group_min < cipher_index) {
  896. cipher_index = group_min;
  897. }
  898. ret = sk_SSL_CIPHER_value(allow, cipher_index);
  899. break;
  900. }
  901. }
  902. if (in_group_flags != NULL && in_group_flags[i] == 0 && group_min != -1) {
  903. /* We are about to leave a group, but we found a match in it, so that's
  904. * our answer. */
  905. ret = sk_SSL_CIPHER_value(allow, group_min);
  906. break;
  907. }
  908. }
  909. return ret;
  910. }
  911. int ssl3_get_req_cert_type(SSL *s, uint8_t *p) {
  912. int ret = 0;
  913. const uint8_t *sig;
  914. size_t i, siglen;
  915. int have_rsa_sign = 0;
  916. int have_ecdsa_sign = 0;
  917. /* If we have custom certificate types set, use them */
  918. if (s->cert->client_certificate_types) {
  919. memcpy(p, s->cert->client_certificate_types,
  920. s->cert->num_client_certificate_types);
  921. return s->cert->num_client_certificate_types;
  922. }
  923. /* get configured sigalgs */
  924. siglen = tls12_get_psigalgs(s, &sig);
  925. for (i = 0; i < siglen; i += 2, sig += 2) {
  926. switch (sig[1]) {
  927. case TLSEXT_signature_rsa:
  928. have_rsa_sign = 1;
  929. break;
  930. case TLSEXT_signature_ecdsa:
  931. have_ecdsa_sign = 1;
  932. break;
  933. }
  934. }
  935. if (have_rsa_sign) {
  936. p[ret++] = SSL3_CT_RSA_SIGN;
  937. }
  938. /* ECDSA certs can be used with RSA cipher suites as well so we don't need to
  939. * check for SSL_kECDH or SSL_kECDHE. */
  940. if (s->version >= TLS1_VERSION && have_ecdsa_sign) {
  941. p[ret++] = TLS_CT_ECDSA_SIGN;
  942. }
  943. return ret;
  944. }
  945. static int ssl3_set_req_cert_type(CERT *c, const uint8_t *p, size_t len) {
  946. OPENSSL_free(c->client_certificate_types);
  947. c->client_certificate_types = NULL;
  948. c->num_client_certificate_types = 0;
  949. if (!p || !len) {
  950. return 1;
  951. }
  952. if (len > 0xff) {
  953. return 0;
  954. }
  955. c->client_certificate_types = BUF_memdup(p, len);
  956. if (!c->client_certificate_types) {
  957. return 0;
  958. }
  959. c->num_client_certificate_types = len;
  960. return 1;
  961. }
  962. int ssl3_shutdown(SSL *s) {
  963. int ret;
  964. /* Do nothing if configured not to send a close_notify. */
  965. if (s->quiet_shutdown) {
  966. s->shutdown = SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN;
  967. return 1;
  968. }
  969. if (!(s->shutdown & SSL_SENT_SHUTDOWN)) {
  970. s->shutdown |= SSL_SENT_SHUTDOWN;
  971. ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY);
  972. /* our shutdown alert has been sent now, and if it still needs to be
  973. * written, s->s3->alert_dispatch will be true */
  974. if (s->s3->alert_dispatch) {
  975. return -1; /* return WANT_WRITE */
  976. }
  977. } else if (s->s3->alert_dispatch) {
  978. /* resend it if not sent */
  979. ret = s->method->ssl_dispatch_alert(s);
  980. if (ret == -1) {
  981. /* we only get to return -1 here the 2nd/Nth invocation, we must have
  982. * already signalled return 0 upon a previous invoation, return
  983. * WANT_WRITE */
  984. return ret;
  985. }
  986. } else if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) {
  987. /* If we are waiting for a close from our peer, we are closed */
  988. s->method->ssl_read_bytes(s, 0, NULL, 0, 0);
  989. if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) {
  990. return -1; /* return WANT_READ */
  991. }
  992. }
  993. if (s->shutdown == (SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN) &&
  994. !s->s3->alert_dispatch) {
  995. return 1;
  996. } else {
  997. return 0;
  998. }
  999. }
  1000. int ssl3_write(SSL *s, const void *buf, int len) {
  1001. ERR_clear_system_error();
  1002. if (s->s3->renegotiate) {
  1003. ssl3_renegotiate_check(s);
  1004. }
  1005. return s->method->ssl_write_bytes(s, SSL3_RT_APPLICATION_DATA, buf, len);
  1006. }
  1007. static int ssl3_read_internal(SSL *s, void *buf, int len, int peek) {
  1008. ERR_clear_system_error();
  1009. if (s->s3->renegotiate) {
  1010. ssl3_renegotiate_check(s);
  1011. }
  1012. return s->method->ssl_read_bytes(s, SSL3_RT_APPLICATION_DATA, buf, len, peek);
  1013. }
  1014. int ssl3_read(SSL *s, void *buf, int len) {
  1015. return ssl3_read_internal(s, buf, len, 0);
  1016. }
  1017. int ssl3_peek(SSL *s, void *buf, int len) {
  1018. return ssl3_read_internal(s, buf, len, 1);
  1019. }
  1020. int ssl3_renegotiate(SSL *s) {
  1021. if (s->handshake_func == NULL) {
  1022. return 1;
  1023. }
  1024. s->s3->renegotiate = 1;
  1025. return 1;
  1026. }
  1027. int ssl3_renegotiate_check(SSL *s) {
  1028. if (s->s3->renegotiate && s->s3->rbuf.left == 0 && s->s3->wbuf.left == 0 &&
  1029. !SSL_in_init(s)) {
  1030. /* if we are the server, and we have sent a 'RENEGOTIATE' message, we
  1031. * need to go to SSL_ST_ACCEPT. */
  1032. s->state = SSL_ST_RENEGOTIATE;
  1033. s->s3->renegotiate = 0;
  1034. s->s3->total_renegotiations++;
  1035. return 1;
  1036. }
  1037. return 0;
  1038. }
  1039. /* If we are using default SHA1+MD5 algorithms switch to new SHA256 PRF and
  1040. * handshake macs if required. */
  1041. uint32_t ssl_get_algorithm2(SSL *s) {
  1042. static const uint32_t kMask = SSL_HANDSHAKE_MAC_DEFAULT | TLS1_PRF;
  1043. uint32_t alg2 = s->s3->tmp.new_cipher->algorithm2;
  1044. if (s->enc_method->enc_flags & SSL_ENC_FLAG_SHA256_PRF &&
  1045. (alg2 & kMask) == kMask) {
  1046. return SSL_HANDSHAKE_MAC_SHA256 | TLS1_PRF_SHA256;
  1047. }
  1048. return alg2;
  1049. }