boringssl/crypto/sha/asm/sha1-x86_64.pl
David Benjamin 722ba2db77 sha/asm/sha1-x86_64.pl: fix crash in SHAEXT code on Windows.
RT#4530

(Imported from upstream's 7123aa81e9fb19afb11fdf3850662c5f7ff1f19c.)

We've yet to enable this code, but this confirms that we do indeed need
to get our future all-variants stuff working on Windows as well as
Linux and find an AVX2-capable CI setup on each.

The crash here is caused by some win64-only code using %rax as a frame
pointer (perlasm injects a mov rax,rsp in the prologue of every win64
function).

Change-Id: Ifbe59ceb6ae29266d9cf8a461920344a32b6e555
Reviewed-on: https://boringssl-review.googlesource.com/10366
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Commit-Queue: David Benjamin <davidben@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
2016-08-16 19:46:06 +00:00

2060 lines
49 KiB
Perl

#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# sha1_block procedure for x86_64.
#
# It was brought to my attention that on EM64T compiler-generated code
# was far behind 32-bit assembler implementation. This is unlike on
# Opteron where compiler-generated code was only 15% behind 32-bit
# assembler, which originally made it hard to motivate the effort.
# There was suggestion to mechanically translate 32-bit code, but I
# dismissed it, reasoning that x86_64 offers enough register bank
# capacity to fully utilize SHA-1 parallelism. Therefore this fresh
# implementation:-) However! While 64-bit code does perform better
# on Opteron, I failed to beat 32-bit assembler on EM64T core. Well,
# x86_64 does offer larger *addressable* bank, but out-of-order core
# reaches for even more registers through dynamic aliasing, and EM64T
# core must have managed to run-time optimize even 32-bit code just as
# good as 64-bit one. Performance improvement is summarized in the
# following table:
#
# gcc 3.4 32-bit asm cycles/byte
# Opteron +45% +20% 6.8
# Xeon P4 +65% +0% 9.9
# Core2 +60% +10% 7.0
# August 2009.
#
# The code was revised to minimize code size and to maximize
# "distance" between instructions producing input to 'lea'
# instruction and the 'lea' instruction itself, which is essential
# for Intel Atom core.
# October 2010.
#
# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
# is to offload message schedule denoted by Wt in NIST specification,
# or Xupdate in OpenSSL source, to SIMD unit. See sha1-586.pl module
# for background and implementation details. The only difference from
# 32-bit code is that 64-bit code doesn't have to spill @X[] elements
# to free temporary registers.
# April 2011.
#
# Add AVX code path. See sha1-586.pl for further information.
# May 2013.
#
# Add AVX2+BMI code path. Initial attempt (utilizing BMI instructions
# and loading pair of consecutive blocks to 256-bit %ymm registers)
# did not provide impressive performance improvement till a crucial
# hint regarding the number of Xupdate iterations to pre-compute in
# advance was provided by Ilya Albrekht of Intel Corp.
# March 2014.
#
# Add support for Intel SHA Extensions.
######################################################################
# Current performance is summarized in following table. Numbers are
# CPU clock cycles spent to process single byte (less is better).
#
# x86_64 SSSE3 AVX[2]
# P4 9.05 -
# Opteron 6.26 -
# Core2 6.55 6.05/+8% -
# Westmere 6.73 5.30/+27% -
# Sandy Bridge 7.70 6.10/+26% 4.99/+54%
# Ivy Bridge 6.06 4.67/+30% 4.60/+32%
# Haswell 5.45 4.15/+31% 3.57/+53%
# Bulldozer 9.11 5.95/+53%
# VIA Nano 9.32 7.15/+30%
# Atom 10.3 9.17/+12%
# Silvermont 13.1(*) 9.37/+40%
#
# (*) obviously suboptimal result, nothing was done about it,
# because SSSE3 code is compiled unconditionally;
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
# In upstream, this is controlled by shelling out to the compiler to check
# versions, but BoringSSL is intended to be used with pre-generated perlasm
# output, so this isn't useful anyway.
#
# TODO(davidben): Enable AVX2 code after testing by setting $avx to 2. Is it
# necessary to disable AVX2 code when SHA Extensions code is disabled? Upstream
# did not tie them together until after $shaext was added.
$avx = 1;
# TODO(davidben): Consider enabling the Intel SHA Extensions code once it's
# been tested.
$shaext=0; ### set to zero if compiling for 1.0.1
$avx=1 if (!$shaext && $avx);
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
*STDOUT=*OUT;
$ctx="%rdi"; # 1st arg
$inp="%rsi"; # 2nd arg
$num="%rdx"; # 3rd arg
# reassign arguments in order to produce more compact code
$ctx="%r8";
$inp="%r9";
$num="%r10";
$t0="%eax";
$t1="%ebx";
$t2="%ecx";
@xi=("%edx","%ebp","%r14d");
$A="%esi";
$B="%edi";
$C="%r11d";
$D="%r12d";
$E="%r13d";
@V=($A,$B,$C,$D,$E);
sub BODY_00_19 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i+1;
$code.=<<___ if ($i==0);
mov `4*$i`($inp),$xi[0]
bswap $xi[0]
___
$code.=<<___ if ($i<15);
mov `4*$j`($inp),$xi[1]
mov $d,$t0
mov $xi[0],`4*$i`(%rsp)
mov $a,$t2
bswap $xi[1]
xor $c,$t0
rol \$5,$t2
and $b,$t0
lea 0x5a827999($xi[0],$e),$e
add $t2,$e
xor $d,$t0
rol \$30,$b
add $t0,$e
___
$code.=<<___ if ($i>=15);
xor `4*($j%16)`(%rsp),$xi[1]
mov $d,$t0
mov $xi[0],`4*($i%16)`(%rsp)
mov $a,$t2
xor `4*(($j+2)%16)`(%rsp),$xi[1]
xor $c,$t0
rol \$5,$t2
xor `4*(($j+8)%16)`(%rsp),$xi[1]
and $b,$t0
lea 0x5a827999($xi[0],$e),$e
rol \$30,$b
xor $d,$t0
add $t2,$e
rol \$1,$xi[1]
add $t0,$e
___
push(@xi,shift(@xi));
}
sub BODY_20_39 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i+1;
my $K=($i<40)?0x6ed9eba1:0xca62c1d6;
$code.=<<___ if ($i<79);
xor `4*($j%16)`(%rsp),$xi[1]
mov $b,$t0
`"mov $xi[0],".4*($i%16)."(%rsp)" if ($i<72)`
mov $a,$t2
xor `4*(($j+2)%16)`(%rsp),$xi[1]
xor $d,$t0
rol \$5,$t2
xor `4*(($j+8)%16)`(%rsp),$xi[1]
lea $K($xi[0],$e),$e
xor $c,$t0
add $t2,$e
rol \$30,$b
add $t0,$e
rol \$1,$xi[1]
___
$code.=<<___ if ($i==79);
mov $b,$t0
mov $a,$t2
xor $d,$t0
lea $K($xi[0],$e),$e
rol \$5,$t2
xor $c,$t0
add $t2,$e
rol \$30,$b
add $t0,$e
___
push(@xi,shift(@xi));
}
sub BODY_40_59 {
my ($i,$a,$b,$c,$d,$e)=@_;
my $j=$i+1;
$code.=<<___;
xor `4*($j%16)`(%rsp),$xi[1]
mov $d,$t0
mov $xi[0],`4*($i%16)`(%rsp)
mov $d,$t1
xor `4*(($j+2)%16)`(%rsp),$xi[1]
and $c,$t0
mov $a,$t2
xor `4*(($j+8)%16)`(%rsp),$xi[1]
lea 0x8f1bbcdc($xi[0],$e),$e
xor $c,$t1
rol \$5,$t2
add $t0,$e
rol \$1,$xi[1]
and $b,$t1
add $t2,$e
rol \$30,$b
add $t1,$e
___
push(@xi,shift(@xi));
}
$code.=<<___;
.text
.extern OPENSSL_ia32cap_P
.globl sha1_block_data_order
.type sha1_block_data_order,\@function,3
.align 16
sha1_block_data_order:
mov OPENSSL_ia32cap_P+0(%rip),%r9d
mov OPENSSL_ia32cap_P+4(%rip),%r8d
mov OPENSSL_ia32cap_P+8(%rip),%r10d
test \$`1<<9`,%r8d # check SSSE3 bit
jz .Lialu
___
$code.=<<___ if ($shaext);
test \$`1<<29`,%r10d # check SHA bit
jnz _shaext_shortcut
___
$code.=<<___ if ($avx>1);
and \$`1<<3|1<<5|1<<8`,%r10d # check AVX2+BMI1+BMI2
cmp \$`1<<3|1<<5|1<<8`,%r10d
je _avx2_shortcut
___
$code.=<<___ if ($avx);
and \$`1<<28`,%r8d # mask AVX bit
and \$`1<<30`,%r9d # mask "Intel CPU" bit
or %r9d,%r8d
cmp \$`1<<28|1<<30`,%r8d
je _avx_shortcut
___
$code.=<<___;
jmp _ssse3_shortcut
.align 16
.Lialu:
mov %rsp,%rax
push %rbx
push %rbp
push %r12
push %r13
push %r14
mov %rdi,$ctx # reassigned argument
sub \$`8+16*4`,%rsp
mov %rsi,$inp # reassigned argument
and \$-64,%rsp
mov %rdx,$num # reassigned argument
mov %rax,`16*4`(%rsp)
.Lprologue:
mov 0($ctx),$A
mov 4($ctx),$B
mov 8($ctx),$C
mov 12($ctx),$D
mov 16($ctx),$E
jmp .Lloop
.align 16
.Lloop:
___
for($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); }
for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
add 0($ctx),$A
add 4($ctx),$B
add 8($ctx),$C
add 12($ctx),$D
add 16($ctx),$E
mov $A,0($ctx)
mov $B,4($ctx)
mov $C,8($ctx)
mov $D,12($ctx)
mov $E,16($ctx)
sub \$1,$num
lea `16*4`($inp),$inp
jnz .Lloop
mov `16*4`(%rsp),%rsi
mov -40(%rsi),%r14
mov -32(%rsi),%r13
mov -24(%rsi),%r12
mov -16(%rsi),%rbp
mov -8(%rsi),%rbx
lea (%rsi),%rsp
.Lepilogue:
ret
.size sha1_block_data_order,.-sha1_block_data_order
___
if ($shaext) {{{
######################################################################
# Intel SHA Extensions implementation of SHA1 update function.
#
my ($ctx,$inp,$num)=("%rdi","%rsi","%rdx");
my ($ABCD,$E,$E_,$BSWAP,$ABCD_SAVE,$E_SAVE)=map("%xmm$_",(0..3,8,9));
my @MSG=map("%xmm$_",(4..7));
$code.=<<___;
.type sha1_block_data_order_shaext,\@function,3
.align 32
sha1_block_data_order_shaext:
_shaext_shortcut:
___
$code.=<<___ if ($win64);
lea `-8-4*16`(%rsp),%rsp
movaps %xmm6,-8-4*16(%rax)
movaps %xmm7,-8-3*16(%rax)
movaps %xmm8,-8-2*16(%rax)
movaps %xmm9,-8-1*16(%rax)
.Lprologue_shaext:
___
$code.=<<___;
movdqu ($ctx),$ABCD
movd 16($ctx),$E
movdqa K_XX_XX+0xa0(%rip),$BSWAP # byte-n-word swap
movdqu ($inp),@MSG[0]
pshufd \$0b00011011,$ABCD,$ABCD # flip word order
movdqu 0x10($inp),@MSG[1]
pshufd \$0b00011011,$E,$E # flip word order
movdqu 0x20($inp),@MSG[2]
pshufb $BSWAP,@MSG[0]
movdqu 0x30($inp),@MSG[3]
pshufb $BSWAP,@MSG[1]
pshufb $BSWAP,@MSG[2]
movdqa $E,$E_SAVE # offload $E
pshufb $BSWAP,@MSG[3]
jmp .Loop_shaext
.align 16
.Loop_shaext:
dec $num
lea 0x40($inp),%r8 # next input block
paddd @MSG[0],$E
cmovne %r8,$inp
movdqa $ABCD,$ABCD_SAVE # offload $ABCD
___
for($i=0;$i<20-4;$i+=2) {
$code.=<<___;
sha1msg1 @MSG[1],@MSG[0]
movdqa $ABCD,$E_
sha1rnds4 \$`int($i/5)`,$E,$ABCD # 0-3...
sha1nexte @MSG[1],$E_
pxor @MSG[2],@MSG[0]
sha1msg1 @MSG[2],@MSG[1]
sha1msg2 @MSG[3],@MSG[0]
movdqa $ABCD,$E
sha1rnds4 \$`int(($i+1)/5)`,$E_,$ABCD
sha1nexte @MSG[2],$E
pxor @MSG[3],@MSG[1]
sha1msg2 @MSG[0],@MSG[1]
___
push(@MSG,shift(@MSG)); push(@MSG,shift(@MSG));
}
$code.=<<___;
movdqu ($inp),@MSG[0]
movdqa $ABCD,$E_
sha1rnds4 \$3,$E,$ABCD # 64-67
sha1nexte @MSG[1],$E_
movdqu 0x10($inp),@MSG[1]
pshufb $BSWAP,@MSG[0]
movdqa $ABCD,$E
sha1rnds4 \$3,$E_,$ABCD # 68-71
sha1nexte @MSG[2],$E
movdqu 0x20($inp),@MSG[2]
pshufb $BSWAP,@MSG[1]
movdqa $ABCD,$E_
sha1rnds4 \$3,$E,$ABCD # 72-75
sha1nexte @MSG[3],$E_
movdqu 0x30($inp),@MSG[3]
pshufb $BSWAP,@MSG[2]
movdqa $ABCD,$E
sha1rnds4 \$3,$E_,$ABCD # 76-79
sha1nexte $E_SAVE,$E
pshufb $BSWAP,@MSG[3]
paddd $ABCD_SAVE,$ABCD
movdqa $E,$E_SAVE # offload $E
jnz .Loop_shaext
pshufd \$0b00011011,$ABCD,$ABCD
pshufd \$0b00011011,$E,$E
movdqu $ABCD,($ctx)
movd $E,16($ctx)
___
$code.=<<___ if ($win64);
movaps -8-4*16(%rax),%xmm6
movaps -8-3*16(%rax),%xmm7
movaps -8-2*16(%rax),%xmm8
movaps -8-1*16(%rax),%xmm9
mov %rax,%rsp
.Lepilogue_shaext:
___
$code.=<<___;
ret
.size sha1_block_data_order_shaext,.-sha1_block_data_order_shaext
___
}}}
{{{
my $Xi=4;
my @X=map("%xmm$_",(4..7,0..3));
my @Tx=map("%xmm$_",(8..10));
my $Kx="%xmm11";
my @V=($A,$B,$C,$D,$E)=("%eax","%ebx","%ecx","%edx","%ebp"); # size optimization
my @T=("%esi","%edi");
my $j=0;
my $rx=0;
my $K_XX_XX="%r11";
my $_rol=sub { &rol(@_) };
my $_ror=sub { &ror(@_) };
{ my $sn;
sub align32() {
++$sn;
$code.=<<___;
jmp .Lalign32_$sn # see "Decoded ICache" in manual
.align 32
.Lalign32_$sn:
___
}
}
$code.=<<___;
.type sha1_block_data_order_ssse3,\@function,3
.align 16
sha1_block_data_order_ssse3:
_ssse3_shortcut:
mov %rsp,%rax
push %rbx
push %rbp
push %r12
push %r13 # redundant, done to share Win64 SE handler
push %r14
lea `-64-($win64?6*16:0)`(%rsp),%rsp
___
$code.=<<___ if ($win64);
movaps %xmm6,-40-6*16(%rax)
movaps %xmm7,-40-5*16(%rax)
movaps %xmm8,-40-4*16(%rax)
movaps %xmm9,-40-3*16(%rax)
movaps %xmm10,-40-2*16(%rax)
movaps %xmm11,-40-1*16(%rax)
.Lprologue_ssse3:
___
$code.=<<___;
mov %rax,%r14 # original %rsp
and \$-64,%rsp
mov %rdi,$ctx # reassigned argument
mov %rsi,$inp # reassigned argument
mov %rdx,$num # reassigned argument
shl \$6,$num
add $inp,$num
lea K_XX_XX+64(%rip),$K_XX_XX
mov 0($ctx),$A # load context
mov 4($ctx),$B
mov 8($ctx),$C
mov 12($ctx),$D
mov $B,@T[0] # magic seed
mov 16($ctx),$E
mov $C,@T[1]
xor $D,@T[1]
and @T[1],@T[0]
movdqa 64($K_XX_XX),@X[2] # pbswap mask
movdqa -64($K_XX_XX),@Tx[1] # K_00_19
movdqu 0($inp),@X[-4&7] # load input to %xmm[0-3]
movdqu 16($inp),@X[-3&7]
movdqu 32($inp),@X[-2&7]
movdqu 48($inp),@X[-1&7]
pshufb @X[2],@X[-4&7] # byte swap
pshufb @X[2],@X[-3&7]
pshufb @X[2],@X[-2&7]
add \$64,$inp
paddd @Tx[1],@X[-4&7] # add K_00_19
pshufb @X[2],@X[-1&7]
paddd @Tx[1],@X[-3&7]
paddd @Tx[1],@X[-2&7]
movdqa @X[-4&7],0(%rsp) # X[]+K xfer to IALU
psubd @Tx[1],@X[-4&7] # restore X[]
movdqa @X[-3&7],16(%rsp)
psubd @Tx[1],@X[-3&7]
movdqa @X[-2&7],32(%rsp)
psubd @Tx[1],@X[-2&7]
jmp .Loop_ssse3
___
sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
my $arg = pop;
$arg = "\$$arg" if ($arg*1 eq $arg);
$code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
}
sub Xupdate_ssse3_16_31() # recall that $Xi starts wtih 4
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns)); # ror
&pshufd (@X[0],@X[-4&7],0xee); # was &movdqa (@X[0],@X[-3&7]);
eval(shift(@insns));
&movdqa (@Tx[0],@X[-1&7]);
&paddd (@Tx[1],@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
&punpcklqdq(@X[0],@X[-3&7]); # compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
&psrldq (@Tx[0],4); # "X[-3]", 3 dwords
eval(shift(@insns));
eval(shift(@insns));
&pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
eval(shift(@insns));
eval(shift(@insns)); # ror
&pxor (@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pxor (@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns)); # rol
&movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
&movdqa (@Tx[2],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
&movdqa (@Tx[0],@X[0]);
eval(shift(@insns));
&pslldq (@Tx[2],12); # "X[0]"<<96, extract one dword
&paddd (@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
&psrld (@Tx[0],31);
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
&movdqa (@Tx[1],@Tx[2]);
eval(shift(@insns));
eval(shift(@insns));
&psrld (@Tx[2],30);
eval(shift(@insns));
eval(shift(@insns)); # ror
&por (@X[0],@Tx[0]); # "X[0]"<<<=1
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pslld (@Tx[1],2);
&pxor (@X[0],@Tx[2]);
eval(shift(@insns));
&movdqa (@Tx[2],eval(2*16*(($Xi)/5)-64)."($K_XX_XX)"); # K_XX_XX
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
&pxor (@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2
&pshufd (@Tx[1],@X[-1&7],0xee) if ($Xi==7); # was &movdqa (@Tx[0],@X[-1&7]) in Xupdate_ssse3_32_79
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++; push(@X,shift(@X)); # "rotate" X[]
push(@Tx,shift(@Tx));
}
sub Xupdate_ssse3_32_79()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns)) if ($Xi==8);
&pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
eval(shift(@insns)) if ($Xi==8);
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns)) if (@insns[1] =~ /_ror/);
eval(shift(@insns)) if (@insns[0] =~ /_ror/);
&punpcklqdq(@Tx[0],@X[-1&7]); # compose "X[-6]", was &palignr(@Tx[0],@X[-2&7],8);
eval(shift(@insns));
eval(shift(@insns)); # rol
&pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
eval(shift(@insns));
eval(shift(@insns));
if ($Xi%5) {
&movdqa (@Tx[2],@Tx[1]);# "perpetuate" K_XX_XX...
} else { # ... or load next one
&movdqa (@Tx[2],eval(2*16*($Xi/5)-64)."($K_XX_XX)");
}
eval(shift(@insns)); # ror
&paddd (@Tx[1],@X[-1&7]);
eval(shift(@insns));
&pxor (@X[0],@Tx[0]); # "X[0]"^="X[-6]"
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns)) if (@insns[0] =~ /_ror/);
&movdqa (@Tx[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
&movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU
eval(shift(@insns)); # ror
eval(shift(@insns));
eval(shift(@insns)); # body_20_39
&pslld (@X[0],2);
eval(shift(@insns));
eval(shift(@insns));
&psrld (@Tx[0],30);
eval(shift(@insns)) if (@insns[0] =~ /_rol/);# rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
&por (@X[0],@Tx[0]); # "X[0]"<<<=2
eval(shift(@insns));
eval(shift(@insns)); # body_20_39
eval(shift(@insns)) if (@insns[1] =~ /_rol/);
eval(shift(@insns)) if (@insns[0] =~ /_rol/);
&pshufd(@Tx[1],@X[-1&7],0xee) if ($Xi<19); # was &movdqa (@Tx[1],@X[0])
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
foreach (@insns) { eval; } # remaining instructions
$Xi++; push(@X,shift(@X)); # "rotate" X[]
push(@Tx,shift(@Tx));
}
sub Xuplast_ssse3_80()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&paddd (@Tx[1],@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
&movdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IALU
foreach (@insns) { eval; } # remaining instructions
&cmp ($inp,$num);
&je (".Ldone_ssse3");
unshift(@Tx,pop(@Tx));
&movdqa (@X[2],"64($K_XX_XX)"); # pbswap mask
&movdqa (@Tx[1],"-64($K_XX_XX)"); # K_00_19
&movdqu (@X[-4&7],"0($inp)"); # load input
&movdqu (@X[-3&7],"16($inp)");
&movdqu (@X[-2&7],"32($inp)");
&movdqu (@X[-1&7],"48($inp)");
&pshufb (@X[-4&7],@X[2]); # byte swap
&add ($inp,64);
$Xi=0;
}
sub Xloop_ssse3()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pshufb (@X[($Xi-3)&7],@X[2]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&paddd (@X[($Xi-4)&7],@Tx[1]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&movdqa (eval(16*$Xi)."(%rsp)",@X[($Xi-4)&7]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&psubd (@X[($Xi-4)&7],@Tx[1]);
foreach (@insns) { eval; }
$Xi++;
}
sub Xtail_ssse3()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
foreach (@insns) { eval; }
}
sub body_00_19 () { # ((c^d)&b)^d
# on start @T[0]=(c^d)&b
return &body_20_39() if ($rx==19); $rx++;
(
'($a,$b,$c,$d,$e)=@V;'.
'&$_ror ($b,$j?7:2)', # $b>>>2
'&xor (@T[0],$d)',
'&mov (@T[1],$a)', # $b for next round
'&add ($e,eval(4*($j&15))."(%rsp)")', # X[]+K xfer
'&xor ($b,$c)', # $c^$d for next round
'&$_rol ($a,5)',
'&add ($e,@T[0])',
'&and (@T[1],$b)', # ($b&($c^$d)) for next round
'&xor ($b,$c)', # restore $b
'&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
);
}
sub body_20_39 () { # b^d^c
# on entry @T[0]=b^d
return &body_40_59() if ($rx==39); $rx++;
(
'($a,$b,$c,$d,$e)=@V;'.
'&add ($e,eval(4*($j&15))."(%rsp)")', # X[]+K xfer
'&xor (@T[0],$d) if($j==19);'.
'&xor (@T[0],$c) if($j> 19)', # ($b^$d^$c)
'&mov (@T[1],$a)', # $b for next round
'&$_rol ($a,5)',
'&add ($e,@T[0])',
'&xor (@T[1],$c) if ($j< 79)', # $b^$d for next round
'&$_ror ($b,7)', # $b>>>2
'&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
);
}
sub body_40_59 () { # ((b^c)&(c^d))^c
# on entry @T[0]=(b^c), (c^=d)
$rx++;
(
'($a,$b,$c,$d,$e)=@V;'.
'&add ($e,eval(4*($j&15))."(%rsp)")', # X[]+K xfer
'&and (@T[0],$c) if ($j>=40)', # (b^c)&(c^d)
'&xor ($c,$d) if ($j>=40)', # restore $c
'&$_ror ($b,7)', # $b>>>2
'&mov (@T[1],$a)', # $b for next round
'&xor (@T[0],$c)',
'&$_rol ($a,5)',
'&add ($e,@T[0])',
'&xor (@T[1],$c) if ($j==59);'.
'&xor (@T[1],$b) if ($j< 59)', # b^c for next round
'&xor ($b,$c) if ($j< 59)', # c^d for next round
'&add ($e,$a);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
);
}
$code.=<<___;
.align 16
.Loop_ssse3:
___
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_16_31(\&body_00_19);
&Xupdate_ssse3_32_79(\&body_00_19);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_40_59);
&Xupdate_ssse3_32_79(\&body_20_39);
&Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
$saved_j=$j; @saved_V=@V;
&Xloop_ssse3(\&body_20_39);
&Xloop_ssse3(\&body_20_39);
&Xloop_ssse3(\&body_20_39);
$code.=<<___;
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
add 12($ctx),$D
mov $A,0($ctx)
add 16($ctx),$E
mov @T[0],4($ctx)
mov @T[0],$B # magic seed
mov $C,8($ctx)
mov $C,@T[1]
mov $D,12($ctx)
xor $D,@T[1]
mov $E,16($ctx)
and @T[1],@T[0]
jmp .Loop_ssse3
.align 16
.Ldone_ssse3:
___
$j=$saved_j; @V=@saved_V;
&Xtail_ssse3(\&body_20_39);
&Xtail_ssse3(\&body_20_39);
&Xtail_ssse3(\&body_20_39);
$code.=<<___;
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
mov $A,0($ctx)
add 12($ctx),$D
mov @T[0],4($ctx)
add 16($ctx),$E
mov $C,8($ctx)
mov $D,12($ctx)
mov $E,16($ctx)
___
$code.=<<___ if ($win64);
movaps -40-6*16(%r14),%xmm6
movaps -40-5*16(%r14),%xmm7
movaps -40-4*16(%r14),%xmm8
movaps -40-3*16(%r14),%xmm9
movaps -40-2*16(%r14),%xmm10
movaps -40-1*16(%r14),%xmm11
___
$code.=<<___;
lea (%r14),%rsi
mov -40(%rsi),%r14
mov -32(%rsi),%r13
mov -24(%rsi),%r12
mov -16(%rsi),%rbp
mov -8(%rsi),%rbx
lea (%rsi),%rsp
.Lepilogue_ssse3:
ret
.size sha1_block_data_order_ssse3,.-sha1_block_data_order_ssse3
___
if ($avx) {
$Xi=4; # reset variables
@X=map("%xmm$_",(4..7,0..3));
@Tx=map("%xmm$_",(8..10));
$j=0;
$rx=0;
my $done_avx_label=".Ldone_avx";
my $_rol=sub { &shld(@_[0],@_) };
my $_ror=sub { &shrd(@_[0],@_) };
$code.=<<___;
.type sha1_block_data_order_avx,\@function,3
.align 16
sha1_block_data_order_avx:
_avx_shortcut:
mov %rsp,%rax
push %rbx
push %rbp
push %r12
push %r13 # redundant, done to share Win64 SE handler
push %r14
lea `-64-($win64?6*16:0)`(%rsp),%rsp
vzeroupper
___
$code.=<<___ if ($win64);
vmovaps %xmm6,-40-6*16(%rax)
vmovaps %xmm7,-40-5*16(%rax)
vmovaps %xmm8,-40-4*16(%rax)
vmovaps %xmm9,-40-3*16(%rax)
vmovaps %xmm10,-40-2*16(%rax)
vmovaps %xmm11,-40-1*16(%rax)
.Lprologue_avx:
___
$code.=<<___;
mov %rax,%r14 # original %rsp
and \$-64,%rsp
mov %rdi,$ctx # reassigned argument
mov %rsi,$inp # reassigned argument
mov %rdx,$num # reassigned argument
shl \$6,$num
add $inp,$num
lea K_XX_XX+64(%rip),$K_XX_XX
mov 0($ctx),$A # load context
mov 4($ctx),$B
mov 8($ctx),$C
mov 12($ctx),$D
mov $B,@T[0] # magic seed
mov 16($ctx),$E
mov $C,@T[1]
xor $D,@T[1]
and @T[1],@T[0]
vmovdqa 64($K_XX_XX),@X[2] # pbswap mask
vmovdqa -64($K_XX_XX),$Kx # K_00_19
vmovdqu 0($inp),@X[-4&7] # load input to %xmm[0-3]
vmovdqu 16($inp),@X[-3&7]
vmovdqu 32($inp),@X[-2&7]
vmovdqu 48($inp),@X[-1&7]
vpshufb @X[2],@X[-4&7],@X[-4&7] # byte swap
add \$64,$inp
vpshufb @X[2],@X[-3&7],@X[-3&7]
vpshufb @X[2],@X[-2&7],@X[-2&7]
vpshufb @X[2],@X[-1&7],@X[-1&7]
vpaddd $Kx,@X[-4&7],@X[0] # add K_00_19
vpaddd $Kx,@X[-3&7],@X[1]
vpaddd $Kx,@X[-2&7],@X[2]
vmovdqa @X[0],0(%rsp) # X[]+K xfer to IALU
vmovdqa @X[1],16(%rsp)
vmovdqa @X[2],32(%rsp)
jmp .Loop_avx
___
sub Xupdate_avx_16_31() # recall that $Xi starts wtih 4
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
&vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@Tx[1],$Kx,@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
&vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
&vpsrld (@Tx[0],@X[0],31);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpslldq(@Tx[2],@X[0],12); # "X[0]"<<96, extract one dword
&vpaddd (@X[0],@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpsrld (@Tx[1],@Tx[2],30);
&vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpslld (@Tx[2],@Tx[2],2);
&vpxor (@X[0],@X[0],@Tx[1]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@Tx[2]); # "X[0]"^=("X[0]">>96)<<<2
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa ($Kx,eval(2*16*(($Xi)/5)-64)."($K_XX_XX)") if ($Xi%5==0); # K_XX_XX
eval(shift(@insns));
eval(shift(@insns));
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xupdate_avx_32_79()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 to 44 instructions
my ($a,$b,$c,$d,$e);
&vpalignr(@Tx[0],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
&vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
eval(shift(@insns));
eval(shift(@insns)) if (@insns[0] !~ /&ro[rl]/);
&vpaddd (@Tx[1],$Kx,@X[-1&7]);
&vmovdqa ($Kx,eval(2*16*($Xi/5)-64)."($K_XX_XX)") if ($Xi%5==0);
eval(shift(@insns)); # ror
eval(shift(@insns));
&vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-6]"
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
&vpsrld (@Tx[0],@X[0],30);
&vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
eval(shift(@insns));
&vpslld (@X[0],@X[0],2);
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # ror
eval(shift(@insns));
&vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=2
eval(shift(@insns)); # body_20_39
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); # rol
eval(shift(@insns));
foreach (@insns) { eval; } # remaining instructions
$Xi++; push(@X,shift(@X)); # "rotate" X[]
}
sub Xuplast_avx_80()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
&vpaddd (@Tx[1],$Kx,@X[-1&7]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa (eval(16*(($Xi-1)&3))."(%rsp)",@Tx[1]); # X[]+K xfer IALU
foreach (@insns) { eval; } # remaining instructions
&cmp ($inp,$num);
&je ($done_avx_label);
&vmovdqa(@X[2],"64($K_XX_XX)"); # pbswap mask
&vmovdqa($Kx,"-64($K_XX_XX)"); # K_00_19
&vmovdqu(@X[-4&7],"0($inp)"); # load input
&vmovdqu(@X[-3&7],"16($inp)");
&vmovdqu(@X[-2&7],"32($inp)");
&vmovdqu(@X[-1&7],"48($inp)");
&vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
&add ($inp,64);
$Xi=0;
}
sub Xloop_avx()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
eval(shift(@insns));
eval(shift(@insns));
&vpshufb(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@X[$Xi&7],@X[($Xi-4)&7],$Kx);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vmovdqa(eval(16*$Xi)."(%rsp)",@X[$Xi&7]); # X[]+K xfer to IALU
eval(shift(@insns));
eval(shift(@insns));
foreach (@insns) { eval; }
$Xi++;
}
sub Xtail_avx()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
foreach (@insns) { eval; }
}
$code.=<<___;
.align 16
.Loop_avx:
___
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_16_31(\&body_00_19);
&Xupdate_avx_32_79(\&body_00_19);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_20_39);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_40_59);
&Xupdate_avx_32_79(\&body_20_39);
&Xuplast_avx_80(\&body_20_39); # can jump to "done"
$saved_j=$j; @saved_V=@V;
&Xloop_avx(\&body_20_39);
&Xloop_avx(\&body_20_39);
&Xloop_avx(\&body_20_39);
$code.=<<___;
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
add 12($ctx),$D
mov $A,0($ctx)
add 16($ctx),$E
mov @T[0],4($ctx)
mov @T[0],$B # magic seed
mov $C,8($ctx)
mov $C,@T[1]
mov $D,12($ctx)
xor $D,@T[1]
mov $E,16($ctx)
and @T[1],@T[0]
jmp .Loop_avx
.align 16
$done_avx_label:
___
$j=$saved_j; @V=@saved_V;
&Xtail_avx(\&body_20_39);
&Xtail_avx(\&body_20_39);
&Xtail_avx(\&body_20_39);
$code.=<<___;
vzeroupper
add 0($ctx),$A # update context
add 4($ctx),@T[0]
add 8($ctx),$C
mov $A,0($ctx)
add 12($ctx),$D
mov @T[0],4($ctx)
add 16($ctx),$E
mov $C,8($ctx)
mov $D,12($ctx)
mov $E,16($ctx)
___
$code.=<<___ if ($win64);
movaps -40-6*16(%r14),%xmm6
movaps -40-5*16(%r14),%xmm7
movaps -40-4*16(%r14),%xmm8
movaps -40-3*16(%r14),%xmm9
movaps -40-2*16(%r14),%xmm10
movaps -40-1*16(%r14),%xmm11
___
$code.=<<___;
lea (%r14),%rsi
mov -40(%rsi),%r14
mov -32(%rsi),%r13
mov -24(%rsi),%r12
mov -16(%rsi),%rbp
mov -8(%rsi),%rbx
lea (%rsi),%rsp
.Lepilogue_avx:
ret
.size sha1_block_data_order_avx,.-sha1_block_data_order_avx
___
if ($avx>1) {
use integer;
$Xi=4; # reset variables
@X=map("%ymm$_",(4..7,0..3));
@Tx=map("%ymm$_",(8..10));
$Kx="%ymm11";
$j=0;
my @ROTX=("%eax","%ebp","%ebx","%ecx","%edx","%esi");
my ($a5,$t0)=("%r12d","%edi");
my ($A,$F,$B,$C,$D,$E)=@ROTX;
my $rx=0;
my $frame="%r13";
$code.=<<___;
.type sha1_block_data_order_avx2,\@function,3
.align 16
sha1_block_data_order_avx2:
_avx2_shortcut:
mov %rsp,%rax
push %rbx
push %rbp
push %r12
push %r13
push %r14
vzeroupper
___
$code.=<<___ if ($win64);
lea -6*16(%rsp),%rsp
vmovaps %xmm6,-40-6*16(%rax)
vmovaps %xmm7,-40-5*16(%rax)
vmovaps %xmm8,-40-4*16(%rax)
vmovaps %xmm9,-40-3*16(%rax)
vmovaps %xmm10,-40-2*16(%rax)
vmovaps %xmm11,-40-1*16(%rax)
.Lprologue_avx2:
___
$code.=<<___;
mov %rax,%r14 # original %rsp
mov %rdi,$ctx # reassigned argument
mov %rsi,$inp # reassigned argument
mov %rdx,$num # reassigned argument
lea -640(%rsp),%rsp
shl \$6,$num
lea 64($inp),$frame
and \$-128,%rsp
add $inp,$num
lea K_XX_XX+64(%rip),$K_XX_XX
mov 0($ctx),$A # load context
cmp $num,$frame
cmovae $inp,$frame # next or same block
mov 4($ctx),$F
mov 8($ctx),$C
mov 12($ctx),$D
mov 16($ctx),$E
vmovdqu 64($K_XX_XX),@X[2] # pbswap mask
vmovdqu ($inp),%xmm0
vmovdqu 16($inp),%xmm1
vmovdqu 32($inp),%xmm2
vmovdqu 48($inp),%xmm3
lea 64($inp),$inp
vinserti128 \$1,($frame),@X[-4&7],@X[-4&7]
vinserti128 \$1,16($frame),@X[-3&7],@X[-3&7]
vpshufb @X[2],@X[-4&7],@X[-4&7]
vinserti128 \$1,32($frame),@X[-2&7],@X[-2&7]
vpshufb @X[2],@X[-3&7],@X[-3&7]
vinserti128 \$1,48($frame),@X[-1&7],@X[-1&7]
vpshufb @X[2],@X[-2&7],@X[-2&7]
vmovdqu -64($K_XX_XX),$Kx # K_00_19
vpshufb @X[2],@X[-1&7],@X[-1&7]
vpaddd $Kx,@X[-4&7],@X[0] # add K_00_19
vpaddd $Kx,@X[-3&7],@X[1]
vmovdqu @X[0],0(%rsp) # X[]+K xfer to IALU
vpaddd $Kx,@X[-2&7],@X[2]
vmovdqu @X[1],32(%rsp)
vpaddd $Kx,@X[-1&7],@X[3]
vmovdqu @X[2],64(%rsp)
vmovdqu @X[3],96(%rsp)
___
for (;$Xi<8;$Xi++) { # Xupdate_avx2_16_31
use integer;
&vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
&vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
&vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
&vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]"
&vpsrld (@Tx[0],@X[0],31);
&vmovdqu($Kx,eval(2*16*(($Xi)/5)-64)."($K_XX_XX)") if ($Xi%5==0); # K_XX_XX
&vpslldq(@Tx[2],@X[0],12); # "X[0]"<<96, extract one dword
&vpaddd (@X[0],@X[0],@X[0]);
&vpsrld (@Tx[1],@Tx[2],30);
&vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1
&vpslld (@Tx[2],@Tx[2],2);
&vpxor (@X[0],@X[0],@Tx[1]);
&vpxor (@X[0],@X[0],@Tx[2]); # "X[0]"^=("X[0]">>96)<<<2
&vpaddd (@Tx[1],@X[0],$Kx);
&vmovdqu("32*$Xi(%rsp)",@Tx[1]); # X[]+K xfer to IALU
push(@X,shift(@X)); # "rotate" X[]
}
$code.=<<___;
lea 128(%rsp),$frame
jmp .Loop_avx2
.align 32
.Loop_avx2:
rorx \$2,$F,$B
andn $D,$F,$t0
and $C,$F
xor $t0,$F
___
sub bodyx_00_19 () { # 8 instructions, 3 cycles critical path
# at start $f=(b&c)^(~b&d), $b>>>=2
return &bodyx_20_39() if ($rx==19); $rx++;
(
'($a,$f,$b,$c,$d,$e)=@ROTX;'.
'&add ($e,((32*($j/4)+4*($j%4))%256-128)."($frame)");'. # e+=X[i]+K
'&lea ($frame,"256($frame)") if ($j%32==31);',
'&andn ($t0,$a,$c)', # ~b&d for next round
'&add ($e,$f)', # e+=(b&c)^(~b&d)
'&rorx ($a5,$a,27)', # a<<<5
'&rorx ($f,$a,2)', # b>>>2 for next round
'&and ($a,$b)', # b&c for next round
'&add ($e,$a5)', # e+=a<<<5
'&xor ($a,$t0);'. # f=(b&c)^(~b&d) for next round
'unshift(@ROTX,pop(@ROTX)); $j++;'
)
}
sub bodyx_20_39 () { # 7 instructions, 2 cycles critical path
# on entry $f=b^c^d, $b>>>=2
return &bodyx_40_59() if ($rx==39); $rx++;
(
'($a,$f,$b,$c,$d,$e)=@ROTX;'.
'&add ($e,((32*($j/4)+4*($j%4))%256-128)."($frame)");'. # e+=X[i]+K
'&lea ($frame,"256($frame)") if ($j%32==31);',
'&lea ($e,"($e,$f)")', # e+=b^c^d
'&rorx ($a5,$a,27)', # a<<<5
'&rorx ($f,$a,2) if ($j<79)', # b>>>2 in next round
'&xor ($a,$b) if ($j<79)', # b^c for next round
'&add ($e,$a5)', # e+=a<<<5
'&xor ($a,$c) if ($j<79);'. # f=b^c^d for next round
'unshift(@ROTX,pop(@ROTX)); $j++;'
)
}
sub bodyx_40_59 () { # 10 instructions, 3 cycles critical path
# on entry $f=((b^c)&(c^d)), $b>>>=2
$rx++;
(
'($a,$f,$b,$c,$d,$e)=@ROTX;'.
'&add ($e,((32*($j/4)+4*($j%4))%256-128)."($frame)");'. # e+=X[i]+K
'&lea ($frame,"256($frame)") if ($j%32==31);',
'&xor ($f,$c) if ($j>39)', # (b^c)&(c^d)^c
'&mov ($t0,$b) if ($j<59)', # count on zero latency
'&xor ($t0,$c) if ($j<59)', # c^d for next round
'&lea ($e,"($e,$f)")', # e+=(b^c)&(c^d)^c
'&rorx ($a5,$a,27)', # a<<<5
'&rorx ($f,$a,2)', # b>>>2 in next round
'&xor ($a,$b)', # b^c for next round
'&add ($e,$a5)', # e+=a<<<5
'&and ($a,$t0) if ($j< 59);'. # f=(b^c)&(c^d) for next round
'&xor ($a,$c) if ($j==59);'. # f=b^c^d for next round
'unshift(@ROTX,pop(@ROTX)); $j++;'
)
}
sub Xupdate_avx2_16_31() # recall that $Xi starts wtih 4
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body,&$body); # 35 instructions
my ($a,$b,$c,$d,$e);
&vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpsrldq(@Tx[0],@X[-1&7],4); # "X[-3]", 3 dwords
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
&vpxor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-3]"^"X[-8]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpsrld (@Tx[0],@X[0],31);
&vmovdqu($Kx,eval(2*16*(($Xi)/5)-64)."($K_XX_XX)") if ($Xi%5==0); # K_XX_XX
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpslldq(@Tx[2],@X[0],12); # "X[0]"<<96, extract one dword
&vpaddd (@X[0],@X[0],@X[0]);
eval(shift(@insns));
eval(shift(@insns));
&vpsrld (@Tx[1],@Tx[2],30);
&vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=1
eval(shift(@insns));
eval(shift(@insns));
&vpslld (@Tx[2],@Tx[2],2);
&vpxor (@X[0],@X[0],@Tx[1]);
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@Tx[2]); # "X[0]"^=("X[0]">>96)<<<2
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@Tx[1],@X[0],$Kx);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vmovdqu(eval(32*($Xi))."(%rsp)",@Tx[1]); # X[]+K xfer to IALU
foreach (@insns) { eval; } # remaining instructions [if any]
$Xi++;
push(@X,shift(@X)); # "rotate" X[]
}
sub Xupdate_avx2_32_79()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body,&$body); # 35 to 50 instructions
my ($a,$b,$c,$d,$e);
&vpalignr(@Tx[0],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
&vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
&vmovdqu($Kx,eval(2*16*($Xi/5)-64)."($K_XX_XX)") if ($Xi%5==0);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpxor (@X[0],@X[0],@Tx[0]); # "X[0]"^="X[-6]"
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpsrld (@Tx[0],@X[0],30);
&vpslld (@X[0],@X[0],2);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
#&vpslld (@X[0],@X[0],2);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpor (@X[0],@X[0],@Tx[0]); # "X[0]"<<<=2
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@Tx[1],@X[0],$Kx);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vmovdqu("32*$Xi(%rsp)",@Tx[1]); # X[]+K xfer to IALU
foreach (@insns) { eval; } # remaining instructions
$Xi++;
push(@X,shift(@X)); # "rotate" X[]
}
sub Xloop_avx2()
{ use integer;
my $body = shift;
my @insns = (&$body,&$body,&$body,&$body,&$body); # 32 instructions
my ($a,$b,$c,$d,$e);
foreach (@insns) { eval; }
}
&align32();
&Xupdate_avx2_32_79(\&bodyx_00_19);
&Xupdate_avx2_32_79(\&bodyx_00_19);
&Xupdate_avx2_32_79(\&bodyx_00_19);
&Xupdate_avx2_32_79(\&bodyx_00_19);
&Xupdate_avx2_32_79(\&bodyx_20_39);
&Xupdate_avx2_32_79(\&bodyx_20_39);
&Xupdate_avx2_32_79(\&bodyx_20_39);
&Xupdate_avx2_32_79(\&bodyx_20_39);
&align32();
&Xupdate_avx2_32_79(\&bodyx_40_59);
&Xupdate_avx2_32_79(\&bodyx_40_59);
&Xupdate_avx2_32_79(\&bodyx_40_59);
&Xupdate_avx2_32_79(\&bodyx_40_59);
&Xloop_avx2(\&bodyx_20_39);
&Xloop_avx2(\&bodyx_20_39);
&Xloop_avx2(\&bodyx_20_39);
&Xloop_avx2(\&bodyx_20_39);
$code.=<<___;
lea 128($inp),$frame
lea 128($inp),%rdi # borrow $t0
cmp $num,$frame
cmovae $inp,$frame # next or previous block
# output is d-e-[a]-f-b-c => A=d,F=e,C=f,D=b,E=c
add 0($ctx),@ROTX[0] # update context
add 4($ctx),@ROTX[1]
add 8($ctx),@ROTX[3]
mov @ROTX[0],0($ctx)
add 12($ctx),@ROTX[4]
mov @ROTX[1],4($ctx)
mov @ROTX[0],$A # A=d
add 16($ctx),@ROTX[5]
mov @ROTX[3],$a5
mov @ROTX[3],8($ctx)
mov @ROTX[4],$D # D=b
#xchg @ROTX[5],$F # F=c, C=f
mov @ROTX[4],12($ctx)
mov @ROTX[1],$F # F=e
mov @ROTX[5],16($ctx)
#mov $F,16($ctx)
mov @ROTX[5],$E # E=c
mov $a5,$C # C=f
#xchg $F,$E # E=c, F=e
cmp $num,$inp
je .Ldone_avx2
___
$Xi=4; # reset variables
@X=map("%ymm$_",(4..7,0..3));
$code.=<<___;
vmovdqu 64($K_XX_XX),@X[2] # pbswap mask
cmp $num,%rdi # borrowed $t0
ja .Last_avx2
vmovdqu -64(%rdi),%xmm0 # low part of @X[-4&7]
vmovdqu -48(%rdi),%xmm1
vmovdqu -32(%rdi),%xmm2
vmovdqu -16(%rdi),%xmm3
vinserti128 \$1,0($frame),@X[-4&7],@X[-4&7]
vinserti128 \$1,16($frame),@X[-3&7],@X[-3&7]
vinserti128 \$1,32($frame),@X[-2&7],@X[-2&7]
vinserti128 \$1,48($frame),@X[-1&7],@X[-1&7]
jmp .Last_avx2
.align 32
.Last_avx2:
lea 128+16(%rsp),$frame
rorx \$2,$F,$B
andn $D,$F,$t0
and $C,$F
xor $t0,$F
sub \$-128,$inp
___
$rx=$j=0; @ROTX=($A,$F,$B,$C,$D,$E);
&Xloop_avx2 (\&bodyx_00_19);
&Xloop_avx2 (\&bodyx_00_19);
&Xloop_avx2 (\&bodyx_00_19);
&Xloop_avx2 (\&bodyx_00_19);
&Xloop_avx2 (\&bodyx_20_39);
&vmovdqu ($Kx,"-64($K_XX_XX)"); # K_00_19
&vpshufb (@X[-4&7],@X[-4&7],@X[2]); # byte swap
&Xloop_avx2 (\&bodyx_20_39);
&vpshufb (@X[-3&7],@X[-3&7],@X[2]);
&vpaddd (@Tx[0],@X[-4&7],$Kx); # add K_00_19
&Xloop_avx2 (\&bodyx_20_39);
&vmovdqu ("0(%rsp)",@Tx[0]);
&vpshufb (@X[-2&7],@X[-2&7],@X[2]);
&vpaddd (@Tx[1],@X[-3&7],$Kx);
&Xloop_avx2 (\&bodyx_20_39);
&vmovdqu ("32(%rsp)",@Tx[1]);
&vpshufb (@X[-1&7],@X[-1&7],@X[2]);
&vpaddd (@X[2],@X[-2&7],$Kx);
&Xloop_avx2 (\&bodyx_40_59);
&align32 ();
&vmovdqu ("64(%rsp)",@X[2]);
&vpaddd (@X[3],@X[-1&7],$Kx);
&Xloop_avx2 (\&bodyx_40_59);
&vmovdqu ("96(%rsp)",@X[3]);
&Xloop_avx2 (\&bodyx_40_59);
&Xupdate_avx2_16_31(\&bodyx_40_59);
&Xupdate_avx2_16_31(\&bodyx_20_39);
&Xupdate_avx2_16_31(\&bodyx_20_39);
&Xupdate_avx2_16_31(\&bodyx_20_39);
&Xloop_avx2 (\&bodyx_20_39);
$code.=<<___;
lea 128(%rsp),$frame
# output is d-e-[a]-f-b-c => A=d,F=e,C=f,D=b,E=c
add 0($ctx),@ROTX[0] # update context
add 4($ctx),@ROTX[1]
add 8($ctx),@ROTX[3]
mov @ROTX[0],0($ctx)
add 12($ctx),@ROTX[4]
mov @ROTX[1],4($ctx)
mov @ROTX[0],$A # A=d
add 16($ctx),@ROTX[5]
mov @ROTX[3],$a5
mov @ROTX[3],8($ctx)
mov @ROTX[4],$D # D=b
#xchg @ROTX[5],$F # F=c, C=f
mov @ROTX[4],12($ctx)
mov @ROTX[1],$F # F=e
mov @ROTX[5],16($ctx)
#mov $F,16($ctx)
mov @ROTX[5],$E # E=c
mov $a5,$C # C=f
#xchg $F,$E # E=c, F=e
cmp $num,$inp
jbe .Loop_avx2
.Ldone_avx2:
vzeroupper
___
$code.=<<___ if ($win64);
movaps -40-6*16(%r14),%xmm6
movaps -40-5*16(%r14),%xmm7
movaps -40-4*16(%r14),%xmm8
movaps -40-3*16(%r14),%xmm9
movaps -40-2*16(%r14),%xmm10
movaps -40-1*16(%r14),%xmm11
___
$code.=<<___;
lea (%r14),%rsi
mov -40(%rsi),%r14
mov -32(%rsi),%r13
mov -24(%rsi),%r12
mov -16(%rsi),%rbp
mov -8(%rsi),%rbx
lea (%rsi),%rsp
.Lepilogue_avx2:
ret
.size sha1_block_data_order_avx2,.-sha1_block_data_order_avx2
___
}
}
$code.=<<___;
.align 64
K_XX_XX:
.long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19
.long 0x5a827999,0x5a827999,0x5a827999,0x5a827999 # K_00_19
.long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39
.long 0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1 # K_20_39
.long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59
.long 0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc # K_40_59
.long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79
.long 0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6 # K_60_79
.long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap mask
.long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f # pbswap mask
.byte 0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0
___
}}}
$code.=<<___;
.asciz "SHA1 block transform for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align 64
___
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type se_handler,\@abi-omnipotent
.align 16
se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
lea .Lprologue(%rip),%r10
cmp %r10,%rbx # context->Rip<.Lprologue
jb .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
lea .Lepilogue(%rip),%r10
cmp %r10,%rbx # context->Rip>=.Lepilogue
jae .Lcommon_seh_tail
mov `16*4`(%rax),%rax # pull saved stack pointer
mov -8(%rax),%rbx
mov -16(%rax),%rbp
mov -24(%rax),%r12
mov -32(%rax),%r13
mov -40(%rax),%r14
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
jmp .Lcommon_seh_tail
.size se_handler,.-se_handler
___
$code.=<<___ if ($shaext);
.type shaext_handler,\@abi-omnipotent
.align 16
shaext_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
lea .Lprologue_shaext(%rip),%r10
cmp %r10,%rbx # context->Rip<.Lprologue
jb .Lcommon_seh_tail
lea .Lepilogue_shaext(%rip),%r10
cmp %r10,%rbx # context->Rip>=.Lepilogue
jae .Lcommon_seh_tail
lea -8-4*16(%rax),%rsi
lea 512($context),%rdi # &context.Xmm6
mov \$8,%ecx
.long 0xa548f3fc # cld; rep movsq
jmp .Lcommon_seh_tail
.size shaext_handler,.-shaext_handler
___
$code.=<<___;
.type ssse3_handler,\@abi-omnipotent
.align 16
ssse3_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<prologue label
jb .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lcommon_seh_tail
mov 232($context),%rax # pull context->R14
lea -40-6*16(%rax),%rsi
lea 512($context),%rdi # &context.Xmm6
mov \$12,%ecx
.long 0xa548f3fc # cld; rep movsq
mov -8(%rax),%rbx
mov -16(%rax),%rbp
mov -24(%rax),%r12
mov -32(%rax),%r13
mov -40(%rax),%r14
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore cotnext->R12
mov %r13,224($context) # restore cotnext->R13
mov %r14,232($context) # restore cotnext->R14
.Lcommon_seh_tail:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size ssse3_handler,.-ssse3_handler
.section .pdata
.align 4
.rva .LSEH_begin_sha1_block_data_order
.rva .LSEH_end_sha1_block_data_order
.rva .LSEH_info_sha1_block_data_order
___
$code.=<<___ if ($shaext);
.rva .LSEH_begin_sha1_block_data_order_shaext
.rva .LSEH_end_sha1_block_data_order_shaext
.rva .LSEH_info_sha1_block_data_order_shaext
___
$code.=<<___;
.rva .LSEH_begin_sha1_block_data_order_ssse3
.rva .LSEH_end_sha1_block_data_order_ssse3
.rva .LSEH_info_sha1_block_data_order_ssse3
___
$code.=<<___ if ($avx);
.rva .LSEH_begin_sha1_block_data_order_avx
.rva .LSEH_end_sha1_block_data_order_avx
.rva .LSEH_info_sha1_block_data_order_avx
___
$code.=<<___ if ($avx>1);
.rva .LSEH_begin_sha1_block_data_order_avx2
.rva .LSEH_end_sha1_block_data_order_avx2
.rva .LSEH_info_sha1_block_data_order_avx2
___
$code.=<<___;
.section .xdata
.align 8
.LSEH_info_sha1_block_data_order:
.byte 9,0,0,0
.rva se_handler
___
$code.=<<___ if ($shaext);
.LSEH_info_sha1_block_data_order_shaext:
.byte 9,0,0,0
.rva shaext_handler
___
$code.=<<___;
.LSEH_info_sha1_block_data_order_ssse3:
.byte 9,0,0,0
.rva ssse3_handler
.rva .Lprologue_ssse3,.Lepilogue_ssse3 # HandlerData[]
___
$code.=<<___ if ($avx);
.LSEH_info_sha1_block_data_order_avx:
.byte 9,0,0,0
.rva ssse3_handler
.rva .Lprologue_avx,.Lepilogue_avx # HandlerData[]
___
$code.=<<___ if ($avx>1);
.LSEH_info_sha1_block_data_order_avx2:
.byte 9,0,0,0
.rva ssse3_handler
.rva .Lprologue_avx2,.Lepilogue_avx2 # HandlerData[]
___
}
####################################################################
sub sha1rnds4 {
if (@_[0] =~ /\$([x0-9a-f]+),\s*%xmm([0-7]),\s*%xmm([0-7])/) {
my @opcode=(0x0f,0x3a,0xcc);
push @opcode,0xc0|($2&7)|(($3&7)<<3); # ModR/M
my $c=$1;
push @opcode,$c=~/^0/?oct($c):$c;
return ".byte\t".join(',',@opcode);
} else {
return "sha1rnds4\t".@_[0];
}
}
sub sha1op38 {
my $instr = shift;
my %opcodelet = (
"sha1nexte" => 0xc8,
"sha1msg1" => 0xc9,
"sha1msg2" => 0xca );
if (defined($opcodelet{$instr}) && @_[0] =~ /%xmm([0-9]+),\s*%xmm([0-9]+)/) {
my @opcode=(0x0f,0x38);
my $rex=0;
$rex|=0x04 if ($2>=8);
$rex|=0x01 if ($1>=8);
unshift @opcode,0x40|$rex if ($rex);
push @opcode,$opcodelet{$instr};
push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M
return ".byte\t".join(',',@opcode);
} else {
return $instr."\t".@_[0];
}
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/geo;
s/\b(sha1rnds4)\s+(.*)/sha1rnds4($2)/geo or
s/\b(sha1[^\s]*)\s+(.*)/sha1op38($1,$2)/geo;
print $_,"\n";
}
close STDOUT;