boringssl/ssl/test/runner/prf.go
Nick Harper 60a85cb5e4 Implement ChannelID for TLS 1.3.
Channel ID for TLS 1.3 uses the same digest construction as
CertificateVerify. This message is signed with the Channel ID key and
put in the same handshake message (with the same format) as in TLS 1.2.

BUG=103

Change-Id: Ia5b2dffe5a39c39db0cecb0aa6bdc328e53accc2
Reviewed-on: https://boringssl-review.googlesource.com/11420
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-10-20 20:57:10 +00:00

503 lines
15 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runner
import (
"crypto"
"crypto/hmac"
"crypto/md5"
"crypto/sha1"
"crypto/sha256"
"hash"
)
// Split a premaster secret in two as specified in RFC 4346, section 5.
func splitPreMasterSecret(secret []byte) (s1, s2 []byte) {
s1 = secret[0 : (len(secret)+1)/2]
s2 = secret[len(secret)/2:]
return
}
// pHash implements the P_hash function, as defined in RFC 4346, section 5.
func pHash(result, secret, seed []byte, hash func() hash.Hash) {
h := hmac.New(hash, secret)
h.Write(seed)
a := h.Sum(nil)
j := 0
for j < len(result) {
h.Reset()
h.Write(a)
h.Write(seed)
b := h.Sum(nil)
todo := len(b)
if j+todo > len(result) {
todo = len(result) - j
}
copy(result[j:j+todo], b)
j += todo
h.Reset()
h.Write(a)
a = h.Sum(nil)
}
}
// prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5.
func prf10(result, secret, label, seed []byte) {
hashSHA1 := sha1.New
hashMD5 := md5.New
labelAndSeed := make([]byte, len(label)+len(seed))
copy(labelAndSeed, label)
copy(labelAndSeed[len(label):], seed)
s1, s2 := splitPreMasterSecret(secret)
pHash(result, s1, labelAndSeed, hashMD5)
result2 := make([]byte, len(result))
pHash(result2, s2, labelAndSeed, hashSHA1)
for i, b := range result2 {
result[i] ^= b
}
}
// prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5.
func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) {
return func(result, secret, label, seed []byte) {
labelAndSeed := make([]byte, len(label)+len(seed))
copy(labelAndSeed, label)
copy(labelAndSeed[len(label):], seed)
pHash(result, secret, labelAndSeed, hashFunc)
}
}
// prf30 implements the SSL 3.0 pseudo-random function, as defined in
// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6.
func prf30(result, secret, label, seed []byte) {
hashSHA1 := sha1.New()
hashMD5 := md5.New()
done := 0
i := 0
// RFC5246 section 6.3 says that the largest PRF output needed is 128
// bytes. Since no more ciphersuites will be added to SSLv3, this will
// remain true. Each iteration gives us 16 bytes so 10 iterations will
// be sufficient.
var b [11]byte
for done < len(result) {
for j := 0; j <= i; j++ {
b[j] = 'A' + byte(i)
}
hashSHA1.Reset()
hashSHA1.Write(b[:i+1])
hashSHA1.Write(secret)
hashSHA1.Write(seed)
digest := hashSHA1.Sum(nil)
hashMD5.Reset()
hashMD5.Write(secret)
hashMD5.Write(digest)
done += copy(result[done:], hashMD5.Sum(nil))
i++
}
}
const (
tlsRandomLength = 32 // Length of a random nonce in TLS 1.1.
masterSecretLength = 48 // Length of a master secret in TLS 1.1.
finishedVerifyLength = 12 // Length of verify_data in a Finished message.
)
var masterSecretLabel = []byte("master secret")
var extendedMasterSecretLabel = []byte("extended master secret")
var keyExpansionLabel = []byte("key expansion")
var clientFinishedLabel = []byte("client finished")
var serverFinishedLabel = []byte("server finished")
var finishedLabel = []byte("finished")
var channelIDLabel = []byte("TLS Channel ID signature\x00")
var channelIDResumeLabel = []byte("Resumption\x00")
func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) {
switch version {
case VersionSSL30:
return prf30
case VersionTLS10, VersionTLS11:
return prf10
// TODO(nharper): VersionTLS13 is in the case statement below only to
// support Fake TLS 1.3. Real TLS 1.3 should never call this function.
// Once we no longer support Fake TLS 1.3, the VersionTLS13 should be
// removed from this case statement.
case VersionTLS12, VersionTLS13:
if version == VersionTLS12 {
return prf12(suite.hash().New)
}
}
panic("unknown version")
}
// masterFromPreMasterSecret generates the master secret from the pre-master
// secret. See http://tools.ietf.org/html/rfc5246#section-8.1
func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte {
var seed [tlsRandomLength * 2]byte
copy(seed[0:len(clientRandom)], clientRandom)
copy(seed[len(clientRandom):], serverRandom)
masterSecret := make([]byte, masterSecretLength)
prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed[0:])
return masterSecret
}
// extendedMasterFromPreMasterSecret generates the master secret from the
// pre-master secret when the Triple Handshake fix is in effect. See
// https://tools.ietf.org/html/rfc7627
func extendedMasterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret []byte, h finishedHash) []byte {
masterSecret := make([]byte, masterSecretLength)
prfForVersion(version, suite)(masterSecret, preMasterSecret, extendedMasterSecretLabel, h.Sum())
return masterSecret
}
// keysFromMasterSecret generates the connection keys from the master
// secret, given the lengths of the MAC key, cipher key and IV, as defined in
// RFC 2246, section 6.3.
func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) {
var seed [tlsRandomLength * 2]byte
copy(seed[0:len(clientRandom)], serverRandom)
copy(seed[len(serverRandom):], clientRandom)
n := 2*macLen + 2*keyLen + 2*ivLen
keyMaterial := make([]byte, n)
prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed[0:])
clientMAC = keyMaterial[:macLen]
keyMaterial = keyMaterial[macLen:]
serverMAC = keyMaterial[:macLen]
keyMaterial = keyMaterial[macLen:]
clientKey = keyMaterial[:keyLen]
keyMaterial = keyMaterial[keyLen:]
serverKey = keyMaterial[:keyLen]
keyMaterial = keyMaterial[keyLen:]
clientIV = keyMaterial[:ivLen]
keyMaterial = keyMaterial[ivLen:]
serverIV = keyMaterial[:ivLen]
return
}
func newFinishedHash(version uint16, cipherSuite *cipherSuite) finishedHash {
var ret finishedHash
if version >= VersionTLS12 {
ret.hash = cipherSuite.hash()
ret.client = ret.hash.New()
ret.server = ret.hash.New()
if version == VersionTLS12 {
ret.prf = prf12(ret.hash.New)
}
} else {
ret.hash = crypto.MD5SHA1
ret.client = sha1.New()
ret.server = sha1.New()
ret.clientMD5 = md5.New()
ret.serverMD5 = md5.New()
ret.prf = prf10
}
ret.buffer = []byte{}
ret.version = version
return ret
}
// A finishedHash calculates the hash of a set of handshake messages suitable
// for including in a Finished message.
type finishedHash struct {
hash crypto.Hash
client hash.Hash
server hash.Hash
// Prior to TLS 1.2, an additional MD5 hash is required.
clientMD5 hash.Hash
serverMD5 hash.Hash
// In TLS 1.2 (and SSL 3 for implementation convenience), a
// full buffer is required.
buffer []byte
// TLS 1.3 has a resumption context which is carried over on PSK
// resumption.
resumptionContextHash []byte
version uint16
prf func(result, secret, label, seed []byte)
}
func (h *finishedHash) Write(msg []byte) (n int, err error) {
h.client.Write(msg)
h.server.Write(msg)
if h.version < VersionTLS12 {
h.clientMD5.Write(msg)
h.serverMD5.Write(msg)
}
if h.buffer != nil {
h.buffer = append(h.buffer, msg...)
}
return len(msg), nil
}
func (h finishedHash) Sum() []byte {
if h.version >= VersionTLS12 {
return h.client.Sum(nil)
}
out := make([]byte, 0, md5.Size+sha1.Size)
out = h.clientMD5.Sum(out)
return h.client.Sum(out)
}
// finishedSum30 calculates the contents of the verify_data member of a SSLv3
// Finished message given the MD5 and SHA1 hashes of a set of handshake
// messages.
func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic []byte) []byte {
md5.Write(magic)
md5.Write(masterSecret)
md5.Write(ssl30Pad1[:])
md5Digest := md5.Sum(nil)
md5.Reset()
md5.Write(masterSecret)
md5.Write(ssl30Pad2[:])
md5.Write(md5Digest)
md5Digest = md5.Sum(nil)
sha1.Write(magic)
sha1.Write(masterSecret)
sha1.Write(ssl30Pad1[:40])
sha1Digest := sha1.Sum(nil)
sha1.Reset()
sha1.Write(masterSecret)
sha1.Write(ssl30Pad2[:40])
sha1.Write(sha1Digest)
sha1Digest = sha1.Sum(nil)
ret := make([]byte, len(md5Digest)+len(sha1Digest))
copy(ret, md5Digest)
copy(ret[len(md5Digest):], sha1Digest)
return ret
}
var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54}
var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52}
// clientSum returns the contents of the verify_data member of a client's
// Finished message.
func (h finishedHash) clientSum(baseKey []byte) []byte {
if h.version == VersionSSL30 {
return finishedSum30(h.clientMD5, h.client, baseKey, ssl3ClientFinishedMagic[:])
}
if h.version < VersionTLS13 {
out := make([]byte, finishedVerifyLength)
h.prf(out, baseKey, clientFinishedLabel, h.Sum())
return out
}
clientFinishedKey := hkdfExpandLabel(h.hash, baseKey, finishedLabel, nil, h.hash.Size())
finishedHMAC := hmac.New(h.hash.New, clientFinishedKey)
finishedHMAC.Write(h.appendContextHashes(nil))
return finishedHMAC.Sum(nil)
}
// serverSum returns the contents of the verify_data member of a server's
// Finished message.
func (h finishedHash) serverSum(baseKey []byte) []byte {
if h.version == VersionSSL30 {
return finishedSum30(h.serverMD5, h.server, baseKey, ssl3ServerFinishedMagic[:])
}
if h.version < VersionTLS13 {
out := make([]byte, finishedVerifyLength)
h.prf(out, baseKey, serverFinishedLabel, h.Sum())
return out
}
serverFinishedKey := hkdfExpandLabel(h.hash, baseKey, finishedLabel, nil, h.hash.Size())
finishedHMAC := hmac.New(h.hash.New, serverFinishedKey)
finishedHMAC.Write(h.appendContextHashes(nil))
return finishedHMAC.Sum(nil)
}
// hashForClientCertificateSSL3 returns the hash to be signed for client
// certificates in SSL 3.0.
func (h finishedHash) hashForClientCertificateSSL3(masterSecret []byte) []byte {
md5Hash := md5.New()
md5Hash.Write(h.buffer)
sha1Hash := sha1.New()
sha1Hash.Write(h.buffer)
return finishedSum30(md5Hash, sha1Hash, masterSecret, nil)
}
// hashForChannelID returns the hash to be signed for TLS Channel
// ID. If a resumption, resumeHash has the previous handshake
// hash. Otherwise, it is nil.
func (h finishedHash) hashForChannelID(resumeHash []byte) []byte {
hash := sha256.New()
hash.Write(channelIDLabel)
if resumeHash != nil {
hash.Write(channelIDResumeLabel)
hash.Write(resumeHash)
}
hash.Write(h.server.Sum(nil))
return hash.Sum(nil)
}
// discardHandshakeBuffer is called when there is no more need to
// buffer the entirety of the handshake messages.
func (h *finishedHash) discardHandshakeBuffer() {
h.buffer = nil
}
// zeroSecretTLS13 returns the default all zeros secret for TLS 1.3, used when a
// given secret is not available in the handshake. See draft-ietf-tls-tls13-16,
// section 7.1.
func (h *finishedHash) zeroSecret() []byte {
return make([]byte, h.hash.Size())
}
// setResumptionContext sets the TLS 1.3 resumption context.
func (h *finishedHash) setResumptionContext(resumptionContext []byte) {
hash := h.hash.New()
hash.Write(resumptionContext)
h.resumptionContextHash = hash.Sum(nil)
}
// extractKey combines two secrets together with HKDF-Expand in the TLS 1.3 key
// derivation schedule.
func (h *finishedHash) extractKey(salt, ikm []byte) []byte {
return hkdfExtract(h.hash.New, salt, ikm)
}
// hkdfExpandLabel implements TLS 1.3's HKDF-Expand-Label function, as defined
// in section 7.1 of draft-ietf-tls-tls13-16.
func hkdfExpandLabel(hash crypto.Hash, secret, label, hashValue []byte, length int) []byte {
if len(label) > 255 || len(hashValue) > 255 {
panic("hkdfExpandLabel: label or hashValue too long")
}
hkdfLabel := make([]byte, 3+9+len(label)+1+len(hashValue))
x := hkdfLabel
x[0] = byte(length >> 8)
x[1] = byte(length)
x[2] = byte(9 + len(label))
x = x[3:]
copy(x, []byte("TLS 1.3, "))
x = x[9:]
copy(x, label)
x = x[len(label):]
x[0] = byte(len(hashValue))
copy(x[1:], hashValue)
return hkdfExpand(hash.New, secret, hkdfLabel, length)
}
// appendContextHashes returns the concatenation of the handshake hash and the
// resumption context hash, as used in TLS 1.3.
func (h *finishedHash) appendContextHashes(b []byte) []byte {
b = h.client.Sum(b)
b = append(b, h.resumptionContextHash...)
return b
}
// The following are labels for traffic secret derivation in TLS 1.3.
var (
earlyTrafficLabel = []byte("client early traffic secret")
clientHandshakeTrafficLabel = []byte("client handshake traffic secret")
serverHandshakeTrafficLabel = []byte("server handshake traffic secret")
clientApplicationTrafficLabel = []byte("client application traffic secret")
serverApplicationTrafficLabel = []byte("server application traffic secret")
applicationTrafficLabel = []byte("application traffic secret")
exporterLabel = []byte("exporter master secret")
resumptionLabel = []byte("resumption master secret")
)
// deriveSecret implements TLS 1.3's Derive-Secret function, as defined in
// section 7.1 of draft ietf-tls-tls13-16.
func (h *finishedHash) deriveSecret(secret, label []byte) []byte {
if h.resumptionContextHash == nil {
panic("Resumption context not set.")
}
return hkdfExpandLabel(h.hash, secret, label, h.appendContextHashes(nil), h.hash.Size())
}
// The following are context strings for CertificateVerify in TLS 1.3.
var (
clientCertificateVerifyContextTLS13 = []byte("TLS 1.3, client CertificateVerify")
serverCertificateVerifyContextTLS13 = []byte("TLS 1.3, server CertificateVerify")
channelIDContextTLS13 = []byte("TLS 1.3, Channel ID")
)
// certificateVerifyMessage returns the input to be signed for CertificateVerify
// in TLS 1.3.
func (h *finishedHash) certificateVerifyInput(context []byte) []byte {
const paddingLen = 64
b := make([]byte, paddingLen, paddingLen+len(context)+1+2*h.hash.Size())
for i := 0; i < paddingLen; i++ {
b[i] = 32
}
b = append(b, context...)
b = append(b, 0)
b = h.appendContextHashes(b)
return b
}
// The following are phase values for traffic key derivation in TLS 1.3.
var (
earlyHandshakePhase = []byte("early handshake key expansion")
earlyApplicationPhase = []byte("early application data key expansion")
handshakePhase = []byte("handshake key expansion")
applicationPhase = []byte("application data key expansion")
)
type trafficDirection int
const (
clientWrite trafficDirection = iota
serverWrite
)
// deriveTrafficAEAD derives traffic keys and constructs an AEAD given a traffic
// secret.
func deriveTrafficAEAD(version uint16, suite *cipherSuite, secret, phase []byte, side trafficDirection) interface{} {
label := make([]byte, 0, len(phase)+2+16)
label = append(label, phase...)
label = append(label, []byte(", key")...)
key := hkdfExpandLabel(suite.hash(), secret, label, nil, suite.keyLen)
label = label[:len(label)-3] // Remove "key" from the end.
label = append(label, []byte("iv")...)
iv := hkdfExpandLabel(suite.hash(), secret, label, nil, suite.ivLen(version))
return suite.aead(version, key, iv)
}
func updateTrafficSecret(hash crypto.Hash, secret []byte) []byte {
return hkdfExpandLabel(hash, secret, applicationTrafficLabel, nil, hash.Size())
}
func deriveResumptionPSK(suite *cipherSuite, resumptionSecret []byte) []byte {
return hkdfExpandLabel(suite.hash(), resumptionSecret, []byte("resumption psk"), nil, suite.hash().Size())
}
func deriveResumptionContext(suite *cipherSuite, resumptionSecret []byte) []byte {
return hkdfExpandLabel(suite.hash(), resumptionSecret, []byte("resumption context"), nil, suite.hash().Size())
}