boringssl/crypto/asn1/a_bitstr.c
Adam Langley 2b2d66d409 Remove string.h from base.h.
Including string.h in base.h causes any file that includes a BoringSSL
header to include string.h. Generally this wouldn't be a problem,
although string.h might slow down the compile if it wasn't otherwise
needed. However, it also causes problems for ipsec-tools in Android
because OpenSSL didn't have this behaviour.

This change removes string.h from base.h and, instead, adds it to each
.c file that requires it.

Change-Id: I5968e50b0e230fd3adf9b72dd2836e6f52d6fb37
Reviewed-on: https://boringssl-review.googlesource.com/3200
Reviewed-by: David Benjamin <davidben@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
2015-02-02 19:14:15 +00:00

259 lines
7.3 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/asn1.h>
#include <string.h>
#include <openssl/err.h>
#include <openssl/mem.h>
int ASN1_BIT_STRING_set(ASN1_BIT_STRING *x, unsigned char *d, int len)
{ return M_ASN1_BIT_STRING_set(x, d, len); }
int i2c_ASN1_BIT_STRING(ASN1_BIT_STRING *a, unsigned char **pp)
{
int ret,j,bits,len;
unsigned char *p,*d;
if (a == NULL) return(0);
len=a->length;
if (len > 0)
{
if (a->flags & ASN1_STRING_FLAG_BITS_LEFT)
{
bits=(int)a->flags&0x07;
}
else
{
for ( ; len > 0; len--)
{
if (a->data[len-1]) break;
}
j=a->data[len-1];
if (j & 0x01) bits=0;
else if (j & 0x02) bits=1;
else if (j & 0x04) bits=2;
else if (j & 0x08) bits=3;
else if (j & 0x10) bits=4;
else if (j & 0x20) bits=5;
else if (j & 0x40) bits=6;
else if (j & 0x80) bits=7;
else bits=0; /* should not happen */
}
}
else
bits=0;
ret=1+len;
if (pp == NULL) return(ret);
p= *pp;
*(p++)=(unsigned char)bits;
d=a->data;
memcpy(p,d,len);
p+=len;
if (len > 0) p[-1]&=(0xff<<bits);
*pp=p;
return(ret);
}
ASN1_BIT_STRING *c2i_ASN1_BIT_STRING(ASN1_BIT_STRING **a,
const unsigned char **pp, long len)
{
ASN1_BIT_STRING *ret=NULL;
const unsigned char *p;
unsigned char *s;
int padding;
if (len < 1)
{
OPENSSL_PUT_ERROR(ASN1, c2i_ASN1_BIT_STRING,
ASN1_R_STRING_TOO_SHORT);
goto err;
}
if ((a == NULL) || ((*a) == NULL))
{
if ((ret=M_ASN1_BIT_STRING_new()) == NULL) return(NULL);
}
else
ret=(*a);
p= *pp;
padding = *(p++);
if (padding > 7)
{
OPENSSL_PUT_ERROR(ASN1, c2i_ASN1_BIT_STRING,
ASN1_R_INVALID_BIT_STRING_BITS_LEFT);
goto err;
}
/* We do this to preserve the settings. If we modify
* the settings, via the _set_bit function, we will recalculate
* on output */
ret->flags&= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07); /* clear */
ret->flags|=(ASN1_STRING_FLAG_BITS_LEFT|padding); /* set */
if (len-- > 1) /* using one because of the bits left byte */
{
s=(unsigned char *)OPENSSL_malloc((int)len);
if (s == NULL)
{
OPENSSL_PUT_ERROR(ASN1, c2i_ASN1_BIT_STRING,
ERR_R_MALLOC_FAILURE);
goto err;
}
memcpy(s,p,(int)len);
s[len-1]&=(0xff<<padding);
p+=len;
}
else
s=NULL;
ret->length=(int)len;
if (ret->data != NULL) OPENSSL_free(ret->data);
ret->data=s;
ret->type=V_ASN1_BIT_STRING;
if (a != NULL) (*a)=ret;
*pp=p;
return(ret);
err:
if ((ret != NULL) && ((a == NULL) || (*a != ret)))
M_ASN1_BIT_STRING_free(ret);
return(NULL);
}
/* These next 2 functions from Goetz Babin-Ebell <babinebell@trustcenter.de>
*/
int ASN1_BIT_STRING_set_bit(ASN1_BIT_STRING *a, int n, int value)
{
int w,v,iv;
unsigned char *c;
w=n/8;
v=1<<(7-(n&0x07));
iv= ~v;
if (!value) v=0;
if (a == NULL)
return 0;
a->flags&= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07); /* clear, set on write */
if ((a->length < (w+1)) || (a->data == NULL))
{
if (!value) return(1); /* Don't need to set */
if (a->data == NULL)
c=(unsigned char *)OPENSSL_malloc(w+1);
else
c=(unsigned char *)OPENSSL_realloc_clean(a->data,
a->length,
w+1);
if (c == NULL)
{
OPENSSL_PUT_ERROR(ASN1, ASN1_BIT_STRING_set_bit, ERR_R_MALLOC_FAILURE);
return 0;
}
if (w+1-a->length > 0) memset(c+a->length, 0, w+1-a->length);
a->data=c;
a->length=w+1;
}
a->data[w]=((a->data[w])&iv)|v;
while ((a->length > 0) && (a->data[a->length-1] == 0))
a->length--;
return(1);
}
int ASN1_BIT_STRING_get_bit(ASN1_BIT_STRING *a, int n)
{
int w,v;
w=n/8;
v=1<<(7-(n&0x07));
if ((a == NULL) || (a->length < (w+1)) || (a->data == NULL))
return(0);
return((a->data[w]&v) != 0);
}
/*
* Checks if the given bit string contains only bits specified by
* the flags vector. Returns 0 if there is at least one bit set in 'a'
* which is not specified in 'flags', 1 otherwise.
* 'len' is the length of 'flags'.
*/
int ASN1_BIT_STRING_check(ASN1_BIT_STRING *a,
unsigned char *flags, int flags_len)
{
int i, ok;
/* Check if there is one bit set at all. */
if (!a || !a->data) return 1;
/* Check each byte of the internal representation of the bit string. */
ok = 1;
for (i = 0; i < a->length && ok; ++i)
{
unsigned char mask = i < flags_len ? ~flags[i] : 0xff;
/* We are done if there is an unneeded bit set. */
ok = (a->data[i] & mask) == 0;
}
return ok;
}