boringssl/crypto/fipsmodule/ecdsa/ecdsa.c
David Benjamin 61e9245543 Use some of the word-based functions for ECDSA verification.
This is only a hair faster than the signing change, but still something.
I kept the call to BN_mod_inverse_odd as that appears to be faster
(constant time is not a concern for verification).

Before:
Did 22855 ECDSA P-224 verify operations in 3015099us (7580.2 ops/sec)
Did 21276 ECDSA P-256 verify operations in 3083284us (6900.4 ops/sec)
Did 2635 ECDSA P-384 verify operations in 3032582us (868.9 ops/sec)
Did 1240 ECDSA P-521 verify operations in 3068631us (404.1 ops/sec)

After:
Did 23310 ECDSA P-224 verify operations in 3056226us (7627.1 ops/sec)
Did 21210 ECDSA P-256 verify operations in 3035765us (6986.7 ops/sec)
Did 2666 ECDSA P-384 verify operations in 3023592us (881.7 ops/sec)
Did 1209 ECDSA P-521 verify operations in 3054040us (395.9 ops/sec)

Change-Id: Iec995b1a959dbc83049d0f05bdc525c14a95c28e
Reviewed-on: https://boringssl-review.googlesource.com/23077
Reviewed-by: Adam Langley <agl@google.com>
2017-11-22 22:52:04 +00:00

443 lines
15 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* ====================================================================
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/ecdsa.h>
#include <assert.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include <openssl/type_check.h>
#include "../bn/internal.h"
#include "../ec/internal.h"
#include "../../internal.h"
// digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
// ECDSA. Note this value is not fully reduced modulo the order, only the
// correct number of bits.
static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
const uint8_t *digest, size_t digest_len) {
const BIGNUM *order = &group->order;
size_t num_bits = BN_num_bits(order);
// Need to truncate digest if it is too long: first truncate whole bytes.
if (8 * digest_len > num_bits) {
digest_len = (num_bits + 7) / 8;
}
OPENSSL_memset(out, 0, sizeof(EC_SCALAR));
for (size_t i = 0; i < digest_len; i++) {
out->bytes[i] = digest[digest_len - 1 - i];
}
// If still too long truncate remaining bits with a shift
if (8 * digest_len > num_bits) {
size_t shift = 8 - (num_bits & 0x7);
for (int i = 0; i < order->top - 1; i++) {
out->words[i] =
(out->words[i] >> shift) | (out->words[i + 1] << (BN_BITS2 - shift));
}
out->words[order->top - 1] >>= shift;
}
}
// field_element_to_scalar reduces |r| modulo |group->order|. |r| must
// previously have been reduced modulo |group->field|.
static int field_element_to_scalar(const EC_GROUP *group, BIGNUM *r) {
// We must have p < 2×order, assuming p is not tiny (p >= 17). Thus rather we
// can reduce by performing at most one subtraction.
//
// Proof: We only work with prime order curves, so the number of points on
// the curve is the order. Thus Hasse's theorem gives:
//
// |order - (p + 1)| <= 2×sqrt(p)
// p + 1 - order <= 2×sqrt(p)
// p + 1 - 2×sqrt(p) <= order
// p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17)
// p/2 < p/2 + 1 < order
// p < 2×order
//
// Additionally, one can manually check this property for built-in curves. It
// is enforced for legacy custom curves in |EC_GROUP_set_generator|.
//
// TODO(davidben): Introduce |EC_FIELD_ELEMENT|, make this a function from
// |EC_FIELD_ELEMENT| to |EC_SCALAR|, and cut out the |BIGNUM|. Does this need
// to be constant-time for signing? |r| is the x-coordinate for kG, which is
// public unless k was rerolled because |s| was zero.
assert(!BN_is_negative(r));
assert(BN_cmp(r, &group->field) < 0);
if (BN_cmp(r, &group->order) >= 0 &&
!BN_sub(r, r, &group->order)) {
return 0;
}
assert(!BN_is_negative(r));
assert(BN_cmp(r, &group->order) < 0);
return 1;
}
ECDSA_SIG *ECDSA_SIG_new(void) {
ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
if (sig == NULL) {
return NULL;
}
sig->r = BN_new();
sig->s = BN_new();
if (sig->r == NULL || sig->s == NULL) {
ECDSA_SIG_free(sig);
return NULL;
}
return sig;
}
void ECDSA_SIG_free(ECDSA_SIG *sig) {
if (sig == NULL) {
return;
}
BN_free(sig->r);
BN_free(sig->s);
OPENSSL_free(sig);
}
void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
const BIGNUM **out_s) {
if (out_r != NULL) {
*out_r = sig->r;
}
if (out_s != NULL) {
*out_s = sig->s;
}
}
int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
if (r == NULL || s == NULL) {
return 0;
}
BN_free(sig->r);
BN_free(sig->s);
sig->r = r;
sig->s = s;
return 1;
}
int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
const ECDSA_SIG *sig, const EC_KEY *eckey) {
const EC_GROUP *group = EC_KEY_get0_group(eckey);
const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey);
if (group == NULL || pub_key == NULL || sig == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
return 0;
}
BN_CTX *ctx = BN_CTX_new();
if (!ctx) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
return 0;
}
int ret = 0;
EC_POINT *point = NULL;
BN_CTX_start(ctx);
BIGNUM *X = BN_CTX_get(ctx);
if (X == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
EC_SCALAR r, s, m, u1, u2, s_inv_mont;
const BIGNUM *order = EC_GROUP_get0_order(group);
if (BN_is_zero(sig->r) ||
BN_is_negative(sig->r) ||
BN_ucmp(sig->r, order) >= 0 ||
!ec_bignum_to_scalar(group, &r, sig->r) ||
BN_is_zero(sig->s) ||
BN_is_negative(sig->s) ||
BN_ucmp(sig->s, order) >= 0 ||
!ec_bignum_to_scalar(group, &s, sig->s)) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
goto err;
}
// s_inv_mont = s^-1 mod order. We convert the result to Montgomery form for
// the products below.
int no_inverse;
if (!BN_mod_inverse_odd(X, &no_inverse, sig->s, order, ctx) ||
!ec_bignum_to_scalar(group, &s_inv_mont, X) ||
!bn_to_montgomery_small(s_inv_mont.words, order->top, s_inv_mont.words,
order->top, group->order_mont)) {
goto err;
}
// u1 = m * s_inv_mont mod order
// u2 = r * s_inv_mont mod order
//
// |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and
// |u2| will be taken out of Montgomery form, as desired. Note that, although
// |m| is not fully reduced, |bn_mod_mul_montgomery_small| only requires the
// product not exceed R * |order|. |s_inv_mont| is fully reduced and |m| <
// 2^BN_num_bits(order) <= R, so this holds.
digest_to_scalar(group, &m, digest, digest_len);
if (!bn_mod_mul_montgomery_small(u1.words, order->top, m.words, order->top,
s_inv_mont.words, order->top,
group->order_mont) ||
!bn_mod_mul_montgomery_small(u2.words, order->top, r.words, order->top,
s_inv_mont.words, order->top,
group->order_mont)) {
goto err;
}
point = EC_POINT_new(group);
if (point == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!ec_point_mul_scalar(group, point, &u1, pub_key, &u2, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
goto err;
}
if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
goto err;
}
if (!field_element_to_scalar(group, X)) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
goto err;
}
// The signature is correct iff |X| is equal to |sig->r|.
if (BN_ucmp(X, sig->r) != 0) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
EC_POINT_free(point);
return ret;
}
static int ecdsa_sign_setup(const EC_KEY *eckey, BN_CTX *ctx,
EC_SCALAR *out_kinv_mont, BIGNUM **rp,
const uint8_t *digest, size_t digest_len,
const EC_SCALAR *priv_key) {
EC_POINT *tmp_point = NULL;
int ret = 0;
EC_SCALAR k;
BIGNUM *r = BN_new(); // this value is later returned in *rp
if (r == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
goto err;
}
const EC_GROUP *group = EC_KEY_get0_group(eckey);
const BIGNUM *order = EC_GROUP_get0_order(group);
tmp_point = EC_POINT_new(group);
if (tmp_point == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
goto err;
}
// Check that the size of the group order is FIPS compliant (FIPS 186-4
// B.5.2).
if (BN_num_bits(order) < 160) {
OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
goto err;
}
do {
// Include the private key and message digest in the k generation.
if (eckey->fixed_k != NULL) {
if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) {
goto err;
}
} else {
// Pass a SHA512 hash of the private key and digest as additional data
// into the RBG. This is a hardening measure against entropy failure.
OPENSSL_COMPILE_ASSERT(SHA512_DIGEST_LENGTH >= 32,
additional_data_is_too_large_for_sha512);
SHA512_CTX sha;
uint8_t additional_data[SHA512_DIGEST_LENGTH];
SHA512_Init(&sha);
SHA512_Update(&sha, priv_key->words, order->top * sizeof(BN_ULONG));
SHA512_Update(&sha, digest, digest_len);
SHA512_Final(additional_data, &sha);
if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
goto err;
}
}
// Compute k^-1. We leave it in the Montgomery domain as an optimization for
// later operations.
if (!bn_to_montgomery_small(out_kinv_mont->words, order->top, k.words,
order->top, group->order_mont) ||
!bn_mod_inverse_prime_mont_small(out_kinv_mont->words, order->top,
out_kinv_mont->words, order->top,
group->order_mont)) {
goto err;
}
// Compute r, the x-coordinate of generator * k.
if (!ec_point_mul_scalar(group, tmp_point, &k, NULL, NULL, ctx) ||
!EC_POINT_get_affine_coordinates_GFp(group, tmp_point, r, NULL,
ctx)) {
goto err;
}
if (!field_element_to_scalar(group, r)) {
goto err;
}
} while (BN_is_zero(r));
BN_clear_free(*rp);
*rp = r;
r = NULL;
ret = 1;
err:
OPENSSL_cleanse(&k, sizeof(k));
BN_clear_free(r);
EC_POINT_free(tmp_point);
return ret;
}
ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
const EC_KEY *eckey) {
if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
return NULL;
}
const EC_GROUP *group = EC_KEY_get0_group(eckey);
const BIGNUM *priv_key_bn = EC_KEY_get0_private_key(eckey);
if (group == NULL || priv_key_bn == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
return NULL;
}
const BIGNUM *order = EC_GROUP_get0_order(group);
int ok = 0;
ECDSA_SIG *ret = ECDSA_SIG_new();
BN_CTX *ctx = BN_CTX_new();
EC_SCALAR kinv_mont, priv_key, r_mont, s, tmp, m;
if (ret == NULL || ctx == NULL) {
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
return NULL;
}
digest_to_scalar(group, &m, digest, digest_len);
if (!ec_bignum_to_scalar(group, &priv_key, priv_key_bn)) {
goto err;
}
for (;;) {
if (!ecdsa_sign_setup(eckey, ctx, &kinv_mont, &ret->r, digest, digest_len,
&priv_key)) {
goto err;
}
// Compute priv_key * r (mod order). Note if only one parameter is in the
// Montgomery domain, |bn_mod_mul_montgomery_small| will compute the answer
// in the normal domain.
if (!ec_bignum_to_scalar(group, &r_mont, ret->r) ||
!bn_to_montgomery_small(r_mont.words, order->top, r_mont.words,
order->top, group->order_mont) ||
!bn_mod_mul_montgomery_small(s.words, order->top, priv_key.words,
order->top, r_mont.words, order->top,
group->order_mont)) {
goto err;
}
// Compute s += m in constant time. Reduce one copy of |order| if necessary.
// Note this does not leave |s| fully reduced. We have
// |m| < 2^BN_num_bits(order), so subtracting |order| leaves
// 0 <= |s| < 2^BN_num_bits(order).
BN_ULONG carry = bn_add_words(s.words, s.words, m.words, order->top);
BN_ULONG v = bn_sub_words(tmp.words, s.words, order->d, order->top) - carry;
v = 0u - v;
for (int i = 0; i < order->top; i++) {
s.words[i] = constant_time_select_w(v, s.words[i], tmp.words[i]);
}
// Finally, multiply s by k^-1. That was retained in Montgomery form, so the
// same technique as the previous multiplication works. Although the
// previous step did not fully reduce |s|, |bn_mod_mul_montgomery_small|
// only requires the product not exceed R * |order|. |kinv_mont| is fully
// reduced and |s| < 2^BN_num_bits(order) <= R, so this holds.
if (!bn_mod_mul_montgomery_small(s.words, order->top, s.words, order->top,
kinv_mont.words, order->top,
group->order_mont) ||
!bn_set_words(ret->s, s.words, order->top)) {
goto err;
}
if (!BN_is_zero(ret->s)) {
// s != 0 => we have a valid signature
break;
}
}
ok = 1;
err:
if (!ok) {
ECDSA_SIG_free(ret);
ret = NULL;
}
BN_CTX_free(ctx);
OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont));
OPENSSL_cleanse(&priv_key, sizeof(priv_key));
OPENSSL_cleanse(&r_mont, sizeof(r_mont));
OPENSSL_cleanse(&s, sizeof(s));
OPENSSL_cleanse(&tmp, sizeof(tmp));
OPENSSL_cleanse(&m, sizeof(m));
return ret;
}