boringssl/ssl/test
David Benjamin 639846e5e4 Add tests for trailing data in handshake messages.
It's easy to forget to check those. Unfortunately, it's also easy to
forget to check inner structures, which is going to be harder to stress,
but do these to start with. In doing, so fix up and unify some
error-handling, and add a missing check when parsing TLS 1.2
CertificateRequest.

This was also inspired by the recent IETF posting.

Change-Id: I27fe3cd3506258389a75d486036388400f0a33ba
Reviewed-on: https://boringssl-review.googlesource.com/10963
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-09-12 21:00:50 +00:00
..
runner Add tests for trailing data in handshake messages. 2016-09-12 21:00:50 +00:00
async_bio.cc Replace Scoped* heap types with bssl::UniquePtr. 2016-09-01 22:22:54 +00:00
async_bio.h Replace Scoped* heap types with bssl::UniquePtr. 2016-09-01 22:22:54 +00:00
bssl_shim.cc Fold stack-allocated types into headers. 2016-09-07 21:50:05 +00:00
CMakeLists.txt
packeted_bio.cc Replace Scoped* heap types with bssl::UniquePtr. 2016-09-01 22:22:54 +00:00
packeted_bio.h Replace Scoped* heap types with bssl::UniquePtr. 2016-09-01 22:22:54 +00:00
PORTING.md Fix typo. 2016-08-16 18:05:47 +00:00
README.md Adding PORTING.md for instructions on how to port the test runner 2016-08-16 17:53:28 +00:00
test_config.cc Test resuming renewed sessions. 2016-08-18 23:53:19 +00:00
test_config.h Test resuming renewed sessions. 2016-08-18 23:53:19 +00:00

BoringSSL SSL Tests

This directory contains BoringSSL's protocol-level test suite.

Testing a TLS implementation can be difficult. We need to produce invalid but sufficiently correct handshakes to get our implementation close to its edge cases. TLS's cryptographic steps mean we cannot use a transcript and effectively need a TLS implementation on the other end. But we do not wish to litter BoringSSL with options for bugs to test against.

Instead, we use a fork of the Go crypto/tls package, heavily patched with configurable bugs. This code, along with a test suite and harness written in Go, lives in the runner directory. The harness runs BoringSSL via a C/C++ shim binary which lives in this directory. All communication with the shim binary occurs with command-line flags, sockets, and standard I/O.

This strategy also ensures we always test against a second implementation. All features should be implemented twice, once in C for BoringSSL and once in Go for testing. If possible, the Go code should be suitable for potentially upstreaming. However, sometimes test code has different needs. For example, our test DTLS code enforces strict ordering on sequence numbers and has controlled packet drop simulation.

To run the tests manually, run go test from the runner directory. It takes command-line flags found at the top of runner/runner.go. The -help option also works after using go test -c to make a runner.test binary first.

If adding a new test, these files may be a good starting point:

  • runner/runner.go: the test harness and all the individual tests.
  • runner/common.go: contains the Config and ProtocolBugs struct which control the Go TLS implementation's behavior.
  • test_config.h, test_config.cc: the command-line flags which control the shim's behavior.
  • bssl_shim.cc: the shim binary itself.

For porting the test suite to a different implementation see PORTING.md.