b4d65fda70
This adds a new API, SSL_set_private_key_method, which allows the consumer to customize private key operations. For simplicity, it is incompatible with the multiple slots feature (which will hopefully go away) but does not, for now, break it. The new method is only routed up for the client for now. The server will require a decrypt hook as well for the plain RSA key exchange. BUG=347404 Change-Id: I35d69095c29134c34c2af88c613ad557d6957614 Reviewed-on: https://boringssl-review.googlesource.com/5049 Reviewed-by: Adam Langley <agl@google.com>
2638 lines
78 KiB
C
2638 lines
78 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/obj.h>
|
|
#include <openssl/rand.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
static int tls_decrypt_ticket(SSL *s, const uint8_t *tick, int ticklen,
|
|
const uint8_t *sess_id, int sesslen,
|
|
SSL_SESSION **psess);
|
|
static int ssl_check_clienthello_tlsext(SSL *s);
|
|
static int ssl_check_serverhello_tlsext(SSL *s);
|
|
|
|
const SSL3_ENC_METHOD TLSv1_enc_data = {
|
|
tls1_prf,
|
|
tls1_setup_key_block,
|
|
tls1_generate_master_secret,
|
|
tls1_change_cipher_state,
|
|
tls1_final_finish_mac,
|
|
tls1_cert_verify_mac,
|
|
TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
|
TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
|
|
tls1_alert_code,
|
|
tls1_export_keying_material,
|
|
0,
|
|
};
|
|
|
|
const SSL3_ENC_METHOD TLSv1_1_enc_data = {
|
|
tls1_prf,
|
|
tls1_setup_key_block,
|
|
tls1_generate_master_secret,
|
|
tls1_change_cipher_state,
|
|
tls1_final_finish_mac,
|
|
tls1_cert_verify_mac,
|
|
TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
|
TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
|
|
tls1_alert_code,
|
|
tls1_export_keying_material,
|
|
SSL_ENC_FLAG_EXPLICIT_IV,
|
|
};
|
|
|
|
const SSL3_ENC_METHOD TLSv1_2_enc_data = {
|
|
tls1_prf,
|
|
tls1_setup_key_block,
|
|
tls1_generate_master_secret,
|
|
tls1_change_cipher_state,
|
|
tls1_final_finish_mac,
|
|
tls1_cert_verify_mac,
|
|
TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
|
TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
|
|
tls1_alert_code,
|
|
tls1_export_keying_material,
|
|
SSL_ENC_FLAG_EXPLICIT_IV|SSL_ENC_FLAG_SIGALGS|SSL_ENC_FLAG_SHA256_PRF
|
|
|SSL_ENC_FLAG_TLS1_2_CIPHERS,
|
|
};
|
|
|
|
static int compare_uint16_t(const void *p1, const void *p2) {
|
|
uint16_t u1 = *((const uint16_t *)p1);
|
|
uint16_t u2 = *((const uint16_t *)p2);
|
|
if (u1 < u2) {
|
|
return -1;
|
|
} else if (u1 > u2) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Per http://tools.ietf.org/html/rfc5246#section-7.4.1.4, there may not be
|
|
* more than one extension of the same type in a ClientHello or ServerHello.
|
|
* This function does an initial scan over the extensions block to filter those
|
|
* out. */
|
|
static int tls1_check_duplicate_extensions(const CBS *cbs) {
|
|
CBS extensions = *cbs;
|
|
size_t num_extensions = 0, i = 0;
|
|
uint16_t *extension_types = NULL;
|
|
int ret = 0;
|
|
|
|
/* First pass: count the extensions. */
|
|
while (CBS_len(&extensions) > 0) {
|
|
uint16_t type;
|
|
CBS extension;
|
|
|
|
if (!CBS_get_u16(&extensions, &type) ||
|
|
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
|
|
goto done;
|
|
}
|
|
|
|
num_extensions++;
|
|
}
|
|
|
|
if (num_extensions == 0) {
|
|
return 1;
|
|
}
|
|
|
|
extension_types =
|
|
(uint16_t *)OPENSSL_malloc(sizeof(uint16_t) * num_extensions);
|
|
if (extension_types == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_check_duplicate_extensions,
|
|
ERR_R_MALLOC_FAILURE);
|
|
goto done;
|
|
}
|
|
|
|
/* Second pass: gather the extension types. */
|
|
extensions = *cbs;
|
|
for (i = 0; i < num_extensions; i++) {
|
|
CBS extension;
|
|
|
|
if (!CBS_get_u16(&extensions, &extension_types[i]) ||
|
|
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
|
|
/* This should not happen. */
|
|
goto done;
|
|
}
|
|
}
|
|
assert(CBS_len(&extensions) == 0);
|
|
|
|
/* Sort the extensions and make sure there are no duplicates. */
|
|
qsort(extension_types, num_extensions, sizeof(uint16_t), compare_uint16_t);
|
|
for (i = 1; i < num_extensions; i++) {
|
|
if (extension_types[i - 1] == extension_types[i]) {
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
done:
|
|
OPENSSL_free(extension_types);
|
|
return ret;
|
|
}
|
|
|
|
char ssl_early_callback_init(struct ssl_early_callback_ctx *ctx) {
|
|
CBS client_hello, session_id, cipher_suites, compression_methods, extensions;
|
|
|
|
CBS_init(&client_hello, ctx->client_hello, ctx->client_hello_len);
|
|
|
|
if (/* Skip client version. */
|
|
!CBS_skip(&client_hello, 2) ||
|
|
/* Skip client nonce. */
|
|
!CBS_skip(&client_hello, 32) ||
|
|
/* Extract session_id. */
|
|
!CBS_get_u8_length_prefixed(&client_hello, &session_id)) {
|
|
return 0;
|
|
}
|
|
|
|
ctx->session_id = CBS_data(&session_id);
|
|
ctx->session_id_len = CBS_len(&session_id);
|
|
|
|
/* Skip past DTLS cookie */
|
|
if (SSL_IS_DTLS(ctx->ssl)) {
|
|
CBS cookie;
|
|
|
|
if (!CBS_get_u8_length_prefixed(&client_hello, &cookie)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Extract cipher_suites. */
|
|
if (!CBS_get_u16_length_prefixed(&client_hello, &cipher_suites) ||
|
|
CBS_len(&cipher_suites) < 2 || (CBS_len(&cipher_suites) & 1) != 0) {
|
|
return 0;
|
|
}
|
|
ctx->cipher_suites = CBS_data(&cipher_suites);
|
|
ctx->cipher_suites_len = CBS_len(&cipher_suites);
|
|
|
|
/* Extract compression_methods. */
|
|
if (!CBS_get_u8_length_prefixed(&client_hello, &compression_methods) ||
|
|
CBS_len(&compression_methods) < 1) {
|
|
return 0;
|
|
}
|
|
ctx->compression_methods = CBS_data(&compression_methods);
|
|
ctx->compression_methods_len = CBS_len(&compression_methods);
|
|
|
|
/* If the ClientHello ends here then it's valid, but doesn't have any
|
|
* extensions. (E.g. SSLv3.) */
|
|
if (CBS_len(&client_hello) == 0) {
|
|
ctx->extensions = NULL;
|
|
ctx->extensions_len = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Extract extensions and check it is valid. */
|
|
if (!CBS_get_u16_length_prefixed(&client_hello, &extensions) ||
|
|
!tls1_check_duplicate_extensions(&extensions) ||
|
|
CBS_len(&client_hello) != 0) {
|
|
return 0;
|
|
}
|
|
ctx->extensions = CBS_data(&extensions);
|
|
ctx->extensions_len = CBS_len(&extensions);
|
|
|
|
return 1;
|
|
}
|
|
|
|
char SSL_early_callback_ctx_extension_get(
|
|
const struct ssl_early_callback_ctx *ctx, uint16_t extension_type,
|
|
const uint8_t **out_data, size_t *out_len) {
|
|
CBS extensions;
|
|
|
|
CBS_init(&extensions, ctx->extensions, ctx->extensions_len);
|
|
|
|
while (CBS_len(&extensions) != 0) {
|
|
uint16_t type;
|
|
CBS extension;
|
|
|
|
/* Decode the next extension. */
|
|
if (!CBS_get_u16(&extensions, &type) ||
|
|
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
|
|
return 0;
|
|
}
|
|
|
|
if (type == extension_type) {
|
|
*out_data = CBS_data(&extension);
|
|
*out_len = CBS_len(&extension);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct tls_curve {
|
|
uint16_t curve_id;
|
|
int nid;
|
|
};
|
|
|
|
/* ECC curves from RFC4492. */
|
|
static const struct tls_curve tls_curves[] = {
|
|
{21, NID_secp224r1},
|
|
{23, NID_X9_62_prime256v1},
|
|
{24, NID_secp384r1},
|
|
{25, NID_secp521r1},
|
|
};
|
|
|
|
static const uint8_t ecformats_default[] = {
|
|
TLSEXT_ECPOINTFORMAT_uncompressed,
|
|
};
|
|
|
|
static const uint16_t eccurves_default[] = {
|
|
23, /* X9_62_prime256v1 */
|
|
24, /* secp384r1 */
|
|
};
|
|
|
|
int tls1_ec_curve_id2nid(uint16_t curve_id) {
|
|
size_t i;
|
|
for (i = 0; i < sizeof(tls_curves) / sizeof(tls_curves[0]); i++) {
|
|
if (curve_id == tls_curves[i].curve_id) {
|
|
return tls_curves[i].nid;
|
|
}
|
|
}
|
|
return NID_undef;
|
|
}
|
|
|
|
int tls1_ec_nid2curve_id(uint16_t *out_curve_id, int nid) {
|
|
size_t i;
|
|
for (i = 0; i < sizeof(tls_curves) / sizeof(tls_curves[0]); i++) {
|
|
if (nid == tls_curves[i].nid) {
|
|
*out_curve_id = tls_curves[i].curve_id;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* tls1_get_curvelist sets |*out_curve_ids| and |*out_curve_ids_len| to the
|
|
* list of allowed curve IDs. If |get_peer_curves| is non-zero, return the
|
|
* peer's curve list. Otherwise, return the preferred list. */
|
|
static void tls1_get_curvelist(SSL *s, int get_peer_curves,
|
|
const uint16_t **out_curve_ids,
|
|
size_t *out_curve_ids_len) {
|
|
if (get_peer_curves) {
|
|
/* Only clients send a curve list, so this function is only called
|
|
* on the server. */
|
|
assert(s->server);
|
|
*out_curve_ids = s->s3->tmp.peer_ellipticcurvelist;
|
|
*out_curve_ids_len = s->s3->tmp.peer_ellipticcurvelist_length;
|
|
return;
|
|
}
|
|
|
|
*out_curve_ids = s->tlsext_ellipticcurvelist;
|
|
*out_curve_ids_len = s->tlsext_ellipticcurvelist_length;
|
|
if (!*out_curve_ids) {
|
|
*out_curve_ids = eccurves_default;
|
|
*out_curve_ids_len = sizeof(eccurves_default) / sizeof(eccurves_default[0]);
|
|
}
|
|
}
|
|
|
|
int tls1_check_curve(SSL *s, CBS *cbs, uint16_t *out_curve_id) {
|
|
uint8_t curve_type;
|
|
uint16_t curve_id;
|
|
const uint16_t *curves;
|
|
size_t curves_len, i;
|
|
|
|
/* Only support named curves. */
|
|
if (!CBS_get_u8(cbs, &curve_type) ||
|
|
curve_type != NAMED_CURVE_TYPE ||
|
|
!CBS_get_u16(cbs, &curve_id)) {
|
|
return 0;
|
|
}
|
|
|
|
tls1_get_curvelist(s, 0, &curves, &curves_len);
|
|
for (i = 0; i < curves_len; i++) {
|
|
if (curve_id == curves[i]) {
|
|
*out_curve_id = curve_id;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int tls1_get_shared_curve(SSL *s) {
|
|
const uint16_t *curves, *peer_curves, *pref, *supp;
|
|
size_t curves_len, peer_curves_len, pref_len, supp_len, i, j;
|
|
|
|
/* Can't do anything on client side */
|
|
if (s->server == 0) {
|
|
return NID_undef;
|
|
}
|
|
|
|
tls1_get_curvelist(s, 0 /* local curves */, &curves, &curves_len);
|
|
tls1_get_curvelist(s, 1 /* peer curves */, &peer_curves, &peer_curves_len);
|
|
|
|
if (peer_curves_len == 0) {
|
|
/* Clients are not required to send a supported_curves extension. In this
|
|
* case, the server is free to pick any curve it likes. See RFC 4492,
|
|
* section 4, paragraph 3. */
|
|
return (curves_len == 0) ? NID_undef : tls1_ec_curve_id2nid(curves[0]);
|
|
}
|
|
|
|
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
|
|
pref = curves;
|
|
pref_len = curves_len;
|
|
supp = peer_curves;
|
|
supp_len = peer_curves_len;
|
|
} else {
|
|
pref = peer_curves;
|
|
pref_len = peer_curves_len;
|
|
supp = curves;
|
|
supp_len = curves_len;
|
|
}
|
|
|
|
for (i = 0; i < pref_len; i++) {
|
|
for (j = 0; j < supp_len; j++) {
|
|
if (pref[i] == supp[j]) {
|
|
return tls1_ec_curve_id2nid(pref[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
return NID_undef;
|
|
}
|
|
|
|
int tls1_set_curves(uint16_t **out_curve_ids, size_t *out_curve_ids_len,
|
|
const int *curves, size_t ncurves) {
|
|
uint16_t *curve_ids;
|
|
size_t i;
|
|
|
|
curve_ids = (uint16_t *)OPENSSL_malloc(ncurves * sizeof(uint16_t));
|
|
if (curve_ids == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < ncurves; i++) {
|
|
if (!tls1_ec_nid2curve_id(&curve_ids[i], curves[i])) {
|
|
OPENSSL_free(curve_ids);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
OPENSSL_free(*out_curve_ids);
|
|
*out_curve_ids = curve_ids;
|
|
*out_curve_ids_len = ncurves;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* tls1_curve_params_from_ec_key sets |*out_curve_id| and |*out_comp_id| to the
|
|
* TLS curve ID and point format, respectively, for |ec|. It returns one on
|
|
* success and zero on failure. */
|
|
static int tls1_curve_params_from_ec_key(uint16_t *out_curve_id,
|
|
uint8_t *out_comp_id, EC_KEY *ec) {
|
|
int nid;
|
|
uint16_t id;
|
|
const EC_GROUP *grp;
|
|
|
|
if (ec == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
grp = EC_KEY_get0_group(ec);
|
|
if (grp == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
/* Determine curve ID */
|
|
nid = EC_GROUP_get_curve_name(grp);
|
|
if (!tls1_ec_nid2curve_id(&id, nid)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Set the named curve ID. Arbitrary explicit curves are not supported. */
|
|
*out_curve_id = id;
|
|
|
|
if (out_comp_id) {
|
|
if (EC_KEY_get0_public_key(ec) == NULL) {
|
|
return 0;
|
|
}
|
|
if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED) {
|
|
*out_comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
|
|
} else {
|
|
*out_comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* tls1_check_point_format returns one if |comp_id| is consistent with the
|
|
* peer's point format preferences. */
|
|
static int tls1_check_point_format(SSL *s, uint8_t comp_id) {
|
|
uint8_t *p = s->s3->tmp.peer_ecpointformatlist;
|
|
size_t plen = s->s3->tmp.peer_ecpointformatlist_length;
|
|
size_t i;
|
|
|
|
/* If point formats extension present check it, otherwise everything is
|
|
* supported (see RFC4492). */
|
|
if (p == NULL) {
|
|
return 1;
|
|
}
|
|
|
|
for (i = 0; i < plen; i++) {
|
|
if (comp_id == p[i]) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* tls1_check_curve_id returns one if |curve_id| is consistent with both our
|
|
* and the peer's curve preferences. Note: if called as the client, only our
|
|
* preferences are checked; the peer (the server) does not send preferences. */
|
|
static int tls1_check_curve_id(SSL *s, uint16_t curve_id) {
|
|
const uint16_t *curves;
|
|
size_t curves_len, i, get_peer_curves;
|
|
|
|
/* Check against our list, then the peer's list. */
|
|
for (get_peer_curves = 0; get_peer_curves <= 1; get_peer_curves++) {
|
|
if (get_peer_curves && !s->server) {
|
|
/* Servers do not present a preference list so, if we are a client, only
|
|
* check our list. */
|
|
continue;
|
|
}
|
|
|
|
tls1_get_curvelist(s, get_peer_curves, &curves, &curves_len);
|
|
if (get_peer_curves && curves_len == 0) {
|
|
/* Clients are not required to send a supported_curves extension. In this
|
|
* case, the server is free to pick any curve it likes. See RFC 4492,
|
|
* section 4, paragraph 3. */
|
|
continue;
|
|
}
|
|
for (i = 0; i < curves_len; i++) {
|
|
if (curves[i] == curve_id) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == curves_len) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void tls1_get_formatlist(SSL *s, const uint8_t **pformats,
|
|
size_t *pformatslen) {
|
|
/* If we have a custom point format list use it otherwise use default */
|
|
if (s->tlsext_ecpointformatlist) {
|
|
*pformats = s->tlsext_ecpointformatlist;
|
|
*pformatslen = s->tlsext_ecpointformatlist_length;
|
|
} else {
|
|
*pformats = ecformats_default;
|
|
*pformatslen = sizeof(ecformats_default);
|
|
}
|
|
}
|
|
|
|
int tls1_check_ec_cert(SSL *s, X509 *x) {
|
|
int ret = 0;
|
|
EVP_PKEY *pkey = X509_get_pubkey(x);
|
|
uint16_t curve_id;
|
|
uint8_t comp_id;
|
|
|
|
if (!pkey ||
|
|
pkey->type != EVP_PKEY_EC ||
|
|
!tls1_curve_params_from_ec_key(&curve_id, &comp_id, pkey->pkey.ec) ||
|
|
!tls1_check_curve_id(s, curve_id) ||
|
|
!tls1_check_point_format(s, comp_id)) {
|
|
goto done;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
done:
|
|
EVP_PKEY_free(pkey);
|
|
return ret;
|
|
}
|
|
|
|
int tls1_check_ec_tmp_key(SSL *s) {
|
|
if (s->cert->ecdh_nid != NID_undef) {
|
|
/* If the curve is preconfigured, ECDH is acceptable iff the peer supports
|
|
* the curve. */
|
|
uint16_t curve_id;
|
|
return tls1_ec_nid2curve_id(&curve_id, s->cert->ecdh_nid) &&
|
|
tls1_check_curve_id(s, curve_id);
|
|
}
|
|
|
|
if (s->cert->ecdh_tmp_cb != NULL) {
|
|
/* Assume the callback will provide an acceptable curve. */
|
|
return 1;
|
|
}
|
|
|
|
/* Otherwise, the curve gets selected automatically. ECDH is acceptable iff
|
|
* there is a shared curve. */
|
|
return tls1_get_shared_curve(s) != NID_undef;
|
|
}
|
|
|
|
/* List of supported signature algorithms and hashes. Should make this
|
|
* customisable at some point, for now include everything we support. */
|
|
|
|
#define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa,
|
|
|
|
#define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa,
|
|
|
|
#define tlsext_sigalg(md) tlsext_sigalg_rsa(md) tlsext_sigalg_ecdsa(md)
|
|
|
|
static const uint8_t tls12_sigalgs[] = {
|
|
tlsext_sigalg(TLSEXT_hash_sha512)
|
|
tlsext_sigalg(TLSEXT_hash_sha384)
|
|
tlsext_sigalg(TLSEXT_hash_sha256)
|
|
tlsext_sigalg(TLSEXT_hash_sha224)
|
|
tlsext_sigalg(TLSEXT_hash_sha1)
|
|
};
|
|
|
|
size_t tls12_get_psigalgs(SSL *s, const uint8_t **psigs) {
|
|
/* If server use client authentication sigalgs if not NULL */
|
|
if (s->server && s->cert->client_sigalgs) {
|
|
*psigs = s->cert->client_sigalgs;
|
|
return s->cert->client_sigalgslen;
|
|
} else if (s->cert->conf_sigalgs) {
|
|
*psigs = s->cert->conf_sigalgs;
|
|
return s->cert->conf_sigalgslen;
|
|
} else {
|
|
*psigs = tls12_sigalgs;
|
|
return sizeof(tls12_sigalgs);
|
|
}
|
|
}
|
|
|
|
/* tls12_check_peer_sigalg parses a SignatureAndHashAlgorithm out of |cbs|. It
|
|
* checks it is consistent with |s|'s sent supported signature algorithms and,
|
|
* if so, writes the relevant digest into |*out_md| and returns 1. Otherwise it
|
|
* returns 0 and writes an alert into |*out_alert|. */
|
|
int tls12_check_peer_sigalg(const EVP_MD **out_md, int *out_alert, SSL *s,
|
|
CBS *cbs, EVP_PKEY *pkey) {
|
|
const uint8_t *sent_sigs;
|
|
size_t sent_sigslen, i;
|
|
int sigalg = tls12_get_sigid(pkey->type);
|
|
uint8_t hash, signature;
|
|
|
|
/* Should never happen */
|
|
if (sigalg == -1) {
|
|
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, ERR_R_INTERNAL_ERROR);
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (!CBS_get_u8(cbs, &hash) ||
|
|
!CBS_get_u8(cbs, &signature)) {
|
|
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_DECODE_ERROR);
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* Check key type is consistent with signature */
|
|
if (sigalg != signature) {
|
|
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
|
|
return 0;
|
|
}
|
|
|
|
if (pkey->type == EVP_PKEY_EC) {
|
|
uint16_t curve_id;
|
|
uint8_t comp_id;
|
|
/* Check compression and curve matches extensions */
|
|
if (!tls1_curve_params_from_ec_key(&curve_id, &comp_id, pkey->pkey.ec)) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (s->server && (!tls1_check_curve_id(s, curve_id) ||
|
|
!tls1_check_point_format(s, comp_id))) {
|
|
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_CURVE);
|
|
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Check signature matches a type we sent */
|
|
sent_sigslen = tls12_get_psigalgs(s, &sent_sigs);
|
|
for (i = 0; i < sent_sigslen; i += 2, sent_sigs += 2) {
|
|
if (hash == sent_sigs[0] && signature == sent_sigs[1]) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Allow fallback to SHA-1. */
|
|
if (i == sent_sigslen && hash != TLSEXT_hash_sha1) {
|
|
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_SIGNATURE_TYPE);
|
|
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
|
|
return 0;
|
|
}
|
|
|
|
*out_md = tls12_get_hash(hash);
|
|
if (*out_md == NULL) {
|
|
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_UNKNOWN_DIGEST);
|
|
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Get a mask of disabled algorithms: an algorithm is disabled if it isn't
|
|
* supported or doesn't appear in supported signature algorithms. Unlike
|
|
* ssl_cipher_get_disabled this applies to a specific session and not global
|
|
* settings. */
|
|
void ssl_set_client_disabled(SSL *s) {
|
|
CERT *c = s->cert;
|
|
const uint8_t *sigalgs;
|
|
size_t i, sigalgslen;
|
|
int have_rsa = 0, have_ecdsa = 0;
|
|
c->mask_a = 0;
|
|
c->mask_k = 0;
|
|
|
|
/* Don't allow TLS 1.2 only ciphers if we don't suppport them */
|
|
if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s)) {
|
|
c->mask_ssl = SSL_TLSV1_2;
|
|
} else {
|
|
c->mask_ssl = 0;
|
|
}
|
|
|
|
/* Now go through all signature algorithms seeing if we support any for RSA,
|
|
* DSA, ECDSA. Do this for all versions not just TLS 1.2. */
|
|
sigalgslen = tls12_get_psigalgs(s, &sigalgs);
|
|
for (i = 0; i < sigalgslen; i += 2, sigalgs += 2) {
|
|
switch (sigalgs[1]) {
|
|
case TLSEXT_signature_rsa:
|
|
have_rsa = 1;
|
|
break;
|
|
|
|
case TLSEXT_signature_ecdsa:
|
|
have_ecdsa = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Disable auth if we don't include any appropriate signature algorithms. */
|
|
if (!have_rsa) {
|
|
c->mask_a |= SSL_aRSA;
|
|
}
|
|
if (!have_ecdsa) {
|
|
c->mask_a |= SSL_aECDSA;
|
|
}
|
|
|
|
/* with PSK there must be client callback set */
|
|
if (!s->psk_client_callback) {
|
|
c->mask_a |= SSL_aPSK;
|
|
c->mask_k |= SSL_kPSK;
|
|
}
|
|
}
|
|
|
|
/* header_len is the length of the ClientHello header written so far, used to
|
|
* compute padding. It does not include the record header. Pass 0 if no padding
|
|
* is to be done. */
|
|
uint8_t *ssl_add_clienthello_tlsext(SSL *s, uint8_t *buf, uint8_t *limit,
|
|
size_t header_len) {
|
|
int extdatalen = 0;
|
|
uint8_t *ret = buf;
|
|
uint8_t *orig = buf;
|
|
/* See if we support any ECC ciphersuites */
|
|
int using_ecc = 0;
|
|
|
|
if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s)) {
|
|
size_t i;
|
|
uint32_t alg_k, alg_a;
|
|
STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s);
|
|
|
|
for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) {
|
|
const SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i);
|
|
|
|
alg_k = c->algorithm_mkey;
|
|
alg_a = c->algorithm_auth;
|
|
if ((alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA)) {
|
|
using_ecc = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* don't add extensions for SSLv3 unless doing secure renegotiation */
|
|
if (s->client_version == SSL3_VERSION && !s->s3->send_connection_binding) {
|
|
return orig;
|
|
}
|
|
|
|
ret += 2;
|
|
|
|
if (ret >= limit) {
|
|
return NULL; /* should never occur. */
|
|
}
|
|
|
|
if (s->tlsext_hostname != NULL) {
|
|
/* Add TLS extension servername to the Client Hello message */
|
|
unsigned long size_str;
|
|
long lenmax;
|
|
|
|
/* check for enough space.
|
|
4 for the servername type and entension length
|
|
2 for servernamelist length
|
|
1 for the hostname type
|
|
2 for hostname length
|
|
+ hostname length */
|
|
|
|
lenmax = limit - ret - 9;
|
|
size_str = strlen(s->tlsext_hostname);
|
|
if (lenmax < 0 || size_str > (unsigned long)lenmax) {
|
|
return NULL;
|
|
}
|
|
|
|
/* extension type and length */
|
|
s2n(TLSEXT_TYPE_server_name, ret);
|
|
s2n(size_str + 5, ret);
|
|
|
|
/* length of servername list */
|
|
s2n(size_str + 3, ret);
|
|
|
|
/* hostname type, length and hostname */
|
|
*(ret++) = (uint8_t)TLSEXT_NAMETYPE_host_name;
|
|
s2n(size_str, ret);
|
|
memcpy(ret, s->tlsext_hostname, size_str);
|
|
ret += size_str;
|
|
}
|
|
|
|
/* Add RI if renegotiating */
|
|
if (s->s3->initial_handshake_complete) {
|
|
int el;
|
|
|
|
if (!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
if ((limit - ret - 4 - el) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_renegotiate, ret);
|
|
s2n(el, ret);
|
|
|
|
if (!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
ret += el;
|
|
}
|
|
|
|
/* Add extended master secret. */
|
|
if (s->version != SSL3_VERSION) {
|
|
if (limit - ret - 4 < 0) {
|
|
return NULL;
|
|
}
|
|
s2n(TLSEXT_TYPE_extended_master_secret, ret);
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (!(SSL_get_options(s) & SSL_OP_NO_TICKET)) {
|
|
int ticklen = 0;
|
|
/* Renegotiation does not participate in session resumption. However, still
|
|
* advertise the extension to avoid potentially breaking servers which carry
|
|
* over the state from the previous handshake, such as OpenSSL servers
|
|
* without upstream's 3c3f0259238594d77264a78944d409f2127642c4. */
|
|
if (!s->s3->initial_handshake_complete && s->session != NULL &&
|
|
s->session->tlsext_tick != NULL) {
|
|
ticklen = s->session->tlsext_ticklen;
|
|
}
|
|
|
|
/* Check for enough room 2 for extension type, 2 for len rest for
|
|
* ticket. */
|
|
if ((long)(limit - ret - 4 - ticklen) < 0) {
|
|
return NULL;
|
|
}
|
|
s2n(TLSEXT_TYPE_session_ticket, ret);
|
|
s2n(ticklen, ret);
|
|
if (ticklen) {
|
|
memcpy(ret, s->session->tlsext_tick, ticklen);
|
|
ret += ticklen;
|
|
}
|
|
}
|
|
|
|
if (ssl3_version_from_wire(s, s->client_version) >= TLS1_2_VERSION) {
|
|
size_t salglen;
|
|
const uint8_t *salg;
|
|
salglen = tls12_get_psigalgs(s, &salg);
|
|
if ((size_t)(limit - ret) < salglen + 6) {
|
|
return NULL;
|
|
}
|
|
s2n(TLSEXT_TYPE_signature_algorithms, ret);
|
|
s2n(salglen + 2, ret);
|
|
s2n(salglen, ret);
|
|
memcpy(ret, salg, salglen);
|
|
ret += salglen;
|
|
}
|
|
|
|
if (s->ocsp_stapling_enabled) {
|
|
/* The status_request extension is excessively extensible at every layer.
|
|
* On the client, only support requesting OCSP responses with an empty
|
|
* responder_id_list and no extensions. */
|
|
if (limit - ret - 4 - 1 - 2 - 2 < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_status_request, ret);
|
|
s2n(1 + 2 + 2, ret);
|
|
/* status_type */
|
|
*(ret++) = TLSEXT_STATUSTYPE_ocsp;
|
|
/* responder_id_list - empty */
|
|
s2n(0, ret);
|
|
/* request_extensions - empty */
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (s->ctx->next_proto_select_cb && !s->s3->initial_handshake_complete &&
|
|
!SSL_IS_DTLS(s)) {
|
|
/* The client advertises an emtpy extension to indicate its support for
|
|
* Next Protocol Negotiation */
|
|
if (limit - ret - 4 < 0) {
|
|
return NULL;
|
|
}
|
|
s2n(TLSEXT_TYPE_next_proto_neg, ret);
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (s->signed_cert_timestamps_enabled) {
|
|
/* The client advertises an empty extension to indicate its support for
|
|
* certificate timestamps. */
|
|
if (limit - ret - 4 < 0) {
|
|
return NULL;
|
|
}
|
|
s2n(TLSEXT_TYPE_certificate_timestamp, ret);
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (s->alpn_client_proto_list && !s->s3->initial_handshake_complete) {
|
|
if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len) {
|
|
return NULL;
|
|
}
|
|
s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
|
|
s2n(2 + s->alpn_client_proto_list_len, ret);
|
|
s2n(s->alpn_client_proto_list_len, ret);
|
|
memcpy(ret, s->alpn_client_proto_list, s->alpn_client_proto_list_len);
|
|
ret += s->alpn_client_proto_list_len;
|
|
}
|
|
|
|
if (s->tlsext_channel_id_enabled && !SSL_IS_DTLS(s)) {
|
|
/* The client advertises an emtpy extension to indicate its support for
|
|
* Channel ID. */
|
|
if (limit - ret - 4 < 0) {
|
|
return NULL;
|
|
}
|
|
if (s->ctx->tlsext_channel_id_enabled_new) {
|
|
s2n(TLSEXT_TYPE_channel_id_new, ret);
|
|
} else {
|
|
s2n(TLSEXT_TYPE_channel_id, ret);
|
|
}
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (SSL_get_srtp_profiles(s)) {
|
|
int el;
|
|
|
|
ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0);
|
|
|
|
if ((limit - ret - 4 - el) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_use_srtp, ret);
|
|
s2n(el, ret);
|
|
|
|
if (!ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
ret += el;
|
|
}
|
|
|
|
if (using_ecc) {
|
|
/* Add TLS extension ECPointFormats to the ClientHello message */
|
|
long lenmax;
|
|
const uint8_t *formats;
|
|
const uint16_t *curves;
|
|
size_t formats_len, curves_len, i;
|
|
|
|
tls1_get_formatlist(s, &formats, &formats_len);
|
|
|
|
lenmax = limit - ret - 5;
|
|
if (lenmax < 0) {
|
|
return NULL;
|
|
}
|
|
if (formats_len > (size_t)lenmax) {
|
|
return NULL;
|
|
}
|
|
if (formats_len > 255) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_ec_point_formats, ret);
|
|
s2n(formats_len + 1, ret);
|
|
*(ret++) = (uint8_t)formats_len;
|
|
memcpy(ret, formats, formats_len);
|
|
ret += formats_len;
|
|
|
|
/* Add TLS extension EllipticCurves to the ClientHello message */
|
|
tls1_get_curvelist(s, 0, &curves, &curves_len);
|
|
|
|
lenmax = limit - ret - 6;
|
|
if (lenmax < 0) {
|
|
return NULL;
|
|
}
|
|
if (curves_len * 2 > (size_t)lenmax) {
|
|
return NULL;
|
|
}
|
|
if (curves_len * 2 > 65532) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_elliptic_curves, ret);
|
|
s2n((curves_len * 2) + 2, ret);
|
|
|
|
s2n(curves_len * 2, ret);
|
|
for (i = 0; i < curves_len; i++) {
|
|
s2n(curves[i], ret);
|
|
}
|
|
}
|
|
|
|
if (header_len > 0) {
|
|
size_t clienthello_minsize = 0;
|
|
header_len += ret - orig;
|
|
if (header_len > 0xff && header_len < 0x200) {
|
|
/* Add padding to workaround bugs in F5 terminators. See
|
|
* https://tools.ietf.org/html/draft-agl-tls-padding-03
|
|
*
|
|
* NB: because this code works out the length of all existing extensions
|
|
* it MUST always appear last. */
|
|
clienthello_minsize = 0x200;
|
|
}
|
|
if (s->fastradio_padding) {
|
|
/* Pad the ClientHello record to 1024 bytes to fast forward the radio
|
|
* into DCH (high data rate) state in 3G networks. Note that when
|
|
* fastradio_padding is enabled, even if the header_len is less than 255
|
|
* bytes, the padding will be applied regardless. This is slightly
|
|
* different from the TLS padding extension suggested in
|
|
* https://tools.ietf.org/html/draft-agl-tls-padding-03 */
|
|
clienthello_minsize = 0x400;
|
|
}
|
|
if (header_len < clienthello_minsize) {
|
|
size_t padding_len = clienthello_minsize - header_len;
|
|
/* Extensions take at least four bytes to encode. Always include least
|
|
* one byte of data if including the extension. WebSphere Application
|
|
* Server 7.0 is intolerant to the last extension being zero-length. */
|
|
if (padding_len >= 4 + 1) {
|
|
padding_len -= 4;
|
|
} else {
|
|
padding_len = 1;
|
|
}
|
|
|
|
if (limit - ret - 4 - (long)padding_len < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_padding, ret);
|
|
s2n(padding_len, ret);
|
|
memset(ret, 0, padding_len);
|
|
ret += padding_len;
|
|
}
|
|
}
|
|
|
|
extdatalen = ret - orig - 2;
|
|
if (extdatalen == 0) {
|
|
return orig;
|
|
}
|
|
|
|
s2n(extdatalen, orig);
|
|
return ret;
|
|
}
|
|
|
|
uint8_t *ssl_add_serverhello_tlsext(SSL *s, uint8_t *buf, uint8_t *limit) {
|
|
int extdatalen = 0;
|
|
uint8_t *orig = buf;
|
|
uint8_t *ret = buf;
|
|
int next_proto_neg_seen;
|
|
uint32_t alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
|
|
uint32_t alg_a = s->s3->tmp.new_cipher->algorithm_auth;
|
|
int using_ecc = (alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA);
|
|
using_ecc = using_ecc && (s->s3->tmp.peer_ecpointformatlist != NULL);
|
|
|
|
/* don't add extensions for SSLv3, unless doing secure renegotiation */
|
|
if (s->version == SSL3_VERSION && !s->s3->send_connection_binding) {
|
|
return orig;
|
|
}
|
|
|
|
ret += 2;
|
|
if (ret >= limit) {
|
|
return NULL; /* should never happen. */
|
|
}
|
|
|
|
if (!s->hit && s->should_ack_sni && s->session->tlsext_hostname != NULL) {
|
|
if ((long)(limit - ret - 4) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_server_name, ret);
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (s->s3->send_connection_binding) {
|
|
int el;
|
|
|
|
if (!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
if ((limit - ret - 4 - el) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_renegotiate, ret);
|
|
s2n(el, ret);
|
|
|
|
if (!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
ret += el;
|
|
}
|
|
|
|
if (s->s3->tmp.extended_master_secret) {
|
|
if ((long)(limit - ret - 4) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_extended_master_secret, ret);
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (using_ecc) {
|
|
const uint8_t *plist;
|
|
size_t plistlen;
|
|
/* Add TLS extension ECPointFormats to the ServerHello message */
|
|
long lenmax;
|
|
|
|
tls1_get_formatlist(s, &plist, &plistlen);
|
|
|
|
lenmax = limit - ret - 5;
|
|
if (lenmax < 0) {
|
|
return NULL;
|
|
}
|
|
if (plistlen > (size_t)lenmax) {
|
|
return NULL;
|
|
}
|
|
if (plistlen > 255) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_ec_point_formats, ret);
|
|
s2n(plistlen + 1, ret);
|
|
*(ret++) = (uint8_t)plistlen;
|
|
memcpy(ret, plist, plistlen);
|
|
ret += plistlen;
|
|
}
|
|
/* Currently the server should not respond with a SupportedCurves extension */
|
|
|
|
if (s->tlsext_ticket_expected && !(SSL_get_options(s) & SSL_OP_NO_TICKET)) {
|
|
if ((long)(limit - ret - 4) < 0) {
|
|
return NULL;
|
|
}
|
|
s2n(TLSEXT_TYPE_session_ticket, ret);
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (s->s3->tmp.certificate_status_expected) {
|
|
if ((long)(limit - ret - 4) < 0) {
|
|
return NULL;
|
|
}
|
|
s2n(TLSEXT_TYPE_status_request, ret);
|
|
s2n(0, ret);
|
|
}
|
|
|
|
if (s->srtp_profile) {
|
|
int el;
|
|
|
|
ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0);
|
|
|
|
if ((limit - ret - 4 - el) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
s2n(TLSEXT_TYPE_use_srtp, ret);
|
|
s2n(el, ret);
|
|
|
|
if (!ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
|
|
return NULL;
|
|
}
|
|
ret += el;
|
|
}
|
|
|
|
next_proto_neg_seen = s->s3->next_proto_neg_seen;
|
|
s->s3->next_proto_neg_seen = 0;
|
|
if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) {
|
|
const uint8_t *npa;
|
|
unsigned int npalen;
|
|
int r;
|
|
|
|
r = s->ctx->next_protos_advertised_cb(
|
|
s, &npa, &npalen, s->ctx->next_protos_advertised_cb_arg);
|
|
if (r == SSL_TLSEXT_ERR_OK) {
|
|
if ((long)(limit - ret - 4 - npalen) < 0) {
|
|
return NULL;
|
|
}
|
|
s2n(TLSEXT_TYPE_next_proto_neg, ret);
|
|
s2n(npalen, ret);
|
|
memcpy(ret, npa, npalen);
|
|
ret += npalen;
|
|
s->s3->next_proto_neg_seen = 1;
|
|
}
|
|
}
|
|
|
|
if (s->s3->alpn_selected) {
|
|
const uint8_t *selected = s->s3->alpn_selected;
|
|
size_t len = s->s3->alpn_selected_len;
|
|
|
|
if ((long)(limit - ret - 4 - 2 - 1 - len) < 0) {
|
|
return NULL;
|
|
}
|
|
s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
|
|
s2n(3 + len, ret);
|
|
s2n(1 + len, ret);
|
|
*ret++ = len;
|
|
memcpy(ret, selected, len);
|
|
ret += len;
|
|
}
|
|
|
|
/* If the client advertised support for Channel ID, and we have it
|
|
* enabled, then we want to echo it back. */
|
|
if (s->s3->tlsext_channel_id_valid) {
|
|
if (limit - ret - 4 < 0) {
|
|
return NULL;
|
|
}
|
|
if (s->s3->tlsext_channel_id_new) {
|
|
s2n(TLSEXT_TYPE_channel_id_new, ret);
|
|
} else {
|
|
s2n(TLSEXT_TYPE_channel_id, ret);
|
|
}
|
|
s2n(0, ret);
|
|
}
|
|
|
|
extdatalen = ret - orig - 2;
|
|
if (extdatalen == 0) {
|
|
return orig;
|
|
}
|
|
|
|
s2n(extdatalen, orig);
|
|
return ret;
|
|
}
|
|
|
|
/* tls1_alpn_handle_client_hello is called to process the ALPN extension in a
|
|
* ClientHello.
|
|
* cbs: the contents of the extension, not including the type and length.
|
|
* out_alert: a pointer to the alert value to send in the event of a zero
|
|
* return.
|
|
*
|
|
* returns: 1 on success. */
|
|
static int tls1_alpn_handle_client_hello(SSL *s, CBS *cbs, int *out_alert) {
|
|
CBS protocol_name_list, protocol_name_list_copy;
|
|
const uint8_t *selected;
|
|
uint8_t selected_len;
|
|
int r;
|
|
|
|
if (s->ctx->alpn_select_cb == NULL) {
|
|
return 1;
|
|
}
|
|
|
|
if (!CBS_get_u16_length_prefixed(cbs, &protocol_name_list) ||
|
|
CBS_len(cbs) != 0 || CBS_len(&protocol_name_list) < 2) {
|
|
goto parse_error;
|
|
}
|
|
|
|
/* Validate the protocol list. */
|
|
protocol_name_list_copy = protocol_name_list;
|
|
while (CBS_len(&protocol_name_list_copy) > 0) {
|
|
CBS protocol_name;
|
|
|
|
if (!CBS_get_u8_length_prefixed(&protocol_name_list_copy, &protocol_name)) {
|
|
goto parse_error;
|
|
}
|
|
}
|
|
|
|
r = s->ctx->alpn_select_cb(
|
|
s, &selected, &selected_len, CBS_data(&protocol_name_list),
|
|
CBS_len(&protocol_name_list), s->ctx->alpn_select_cb_arg);
|
|
if (r == SSL_TLSEXT_ERR_OK) {
|
|
OPENSSL_free(s->s3->alpn_selected);
|
|
s->s3->alpn_selected = BUF_memdup(selected, selected_len);
|
|
if (!s->s3->alpn_selected) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
s->s3->alpn_selected_len = selected_len;
|
|
}
|
|
|
|
return 1;
|
|
|
|
parse_error:
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
static int ssl_scan_clienthello_tlsext(SSL *s, CBS *cbs, int *out_alert) {
|
|
int renegotiate_seen = 0;
|
|
CBS extensions;
|
|
|
|
s->should_ack_sni = 0;
|
|
s->srtp_profile = NULL;
|
|
s->s3->next_proto_neg_seen = 0;
|
|
s->s3->tmp.certificate_status_expected = 0;
|
|
s->s3->tmp.extended_master_secret = 0;
|
|
|
|
OPENSSL_free(s->s3->alpn_selected);
|
|
s->s3->alpn_selected = NULL;
|
|
|
|
/* Clear any signature algorithms extension received */
|
|
OPENSSL_free(s->cert->peer_sigalgs);
|
|
s->cert->peer_sigalgs = NULL;
|
|
s->cert->peer_sigalgslen = 0;
|
|
|
|
/* Clear any shared signature algorithms */
|
|
OPENSSL_free(s->cert->shared_sigalgs);
|
|
s->cert->shared_sigalgs = NULL;
|
|
s->cert->shared_sigalgslen = 0;
|
|
|
|
/* Clear ECC extensions */
|
|
OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
|
|
s->s3->tmp.peer_ecpointformatlist = NULL;
|
|
s->s3->tmp.peer_ecpointformatlist_length = 0;
|
|
|
|
OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
|
|
s->s3->tmp.peer_ellipticcurvelist = NULL;
|
|
s->s3->tmp.peer_ellipticcurvelist_length = 0;
|
|
|
|
/* There may be no extensions. */
|
|
if (CBS_len(cbs) == 0) {
|
|
goto ri_check;
|
|
}
|
|
|
|
/* Decode the extensions block and check it is valid. */
|
|
if (!CBS_get_u16_length_prefixed(cbs, &extensions) ||
|
|
!tls1_check_duplicate_extensions(&extensions)) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
while (CBS_len(&extensions) != 0) {
|
|
uint16_t type;
|
|
CBS extension;
|
|
|
|
/* Decode the next extension. */
|
|
if (!CBS_get_u16(&extensions, &type) ||
|
|
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* The servername extension is treated as follows:
|
|
|
|
- Only the hostname type is supported with a maximum length of 255.
|
|
- The servername is rejected if too long or if it contains zeros, in
|
|
which case an fatal alert is generated.
|
|
- The servername field is maintained together with the session cache.
|
|
- When a session is resumed, the servername call back invoked in order
|
|
to allow the application to position itself to the right context.
|
|
- The servername is acknowledged if it is new for a session or when
|
|
it is identical to a previously used for the same session.
|
|
Applications can control the behaviour. They can at any time
|
|
set a 'desirable' servername for a new SSL object. This can be the
|
|
case for example with HTTPS when a Host: header field is received and
|
|
a renegotiation is requested. In this case, a possible servername
|
|
presented in the new client hello is only acknowledged if it matches
|
|
the value of the Host: field.
|
|
- Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
|
|
if they provide for changing an explicit servername context for the
|
|
session,
|
|
i.e. when the session has been established with a servername extension.
|
|
- On session reconnect, the servername extension may be absent. */
|
|
|
|
if (type == TLSEXT_TYPE_server_name) {
|
|
CBS server_name_list;
|
|
char have_seen_host_name = 0;
|
|
|
|
if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) ||
|
|
CBS_len(&server_name_list) < 1 || CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* Decode each ServerName in the extension. */
|
|
while (CBS_len(&server_name_list) > 0) {
|
|
uint8_t name_type;
|
|
CBS host_name;
|
|
|
|
/* Decode the NameType. */
|
|
if (!CBS_get_u8(&server_name_list, &name_type)) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* Only host_name is supported. */
|
|
if (name_type != TLSEXT_NAMETYPE_host_name) {
|
|
continue;
|
|
}
|
|
|
|
if (have_seen_host_name) {
|
|
/* The ServerNameList MUST NOT contain more than one name of the same
|
|
* name_type. */
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
have_seen_host_name = 1;
|
|
|
|
if (!CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
|
|
CBS_len(&host_name) < 1) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (CBS_len(&host_name) > TLSEXT_MAXLEN_host_name ||
|
|
CBS_contains_zero_byte(&host_name)) {
|
|
*out_alert = SSL_AD_UNRECOGNIZED_NAME;
|
|
return 0;
|
|
}
|
|
|
|
if (!s->hit) {
|
|
assert(s->session->tlsext_hostname == NULL);
|
|
if (s->session->tlsext_hostname) {
|
|
/* This should be impossible. */
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* Copy the hostname as a string. */
|
|
if (!CBS_strdup(&host_name, &s->session->tlsext_hostname)) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->should_ack_sni = 1;
|
|
}
|
|
}
|
|
} else if (type == TLSEXT_TYPE_ec_point_formats) {
|
|
CBS ec_point_format_list;
|
|
|
|
if (!CBS_get_u8_length_prefixed(&extension, &ec_point_format_list) ||
|
|
CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (!CBS_stow(&ec_point_format_list, &s->s3->tmp.peer_ecpointformatlist,
|
|
&s->s3->tmp.peer_ecpointformatlist_length)) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
} else if (type == TLSEXT_TYPE_elliptic_curves) {
|
|
CBS elliptic_curve_list;
|
|
size_t i, num_curves;
|
|
|
|
if (!CBS_get_u16_length_prefixed(&extension, &elliptic_curve_list) ||
|
|
CBS_len(&elliptic_curve_list) == 0 ||
|
|
(CBS_len(&elliptic_curve_list) & 1) != 0 ||
|
|
CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
|
|
s->s3->tmp.peer_ellipticcurvelist_length = 0;
|
|
|
|
s->s3->tmp.peer_ellipticcurvelist =
|
|
(uint16_t *)OPENSSL_malloc(CBS_len(&elliptic_curve_list));
|
|
|
|
if (s->s3->tmp.peer_ellipticcurvelist == NULL) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
num_curves = CBS_len(&elliptic_curve_list) / 2;
|
|
for (i = 0; i < num_curves; i++) {
|
|
if (!CBS_get_u16(&elliptic_curve_list,
|
|
&s->s3->tmp.peer_ellipticcurvelist[i])) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (CBS_len(&elliptic_curve_list) != 0) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->s3->tmp.peer_ellipticcurvelist_length = num_curves;
|
|
} else if (type == TLSEXT_TYPE_renegotiate) {
|
|
if (!ssl_parse_clienthello_renegotiate_ext(s, &extension, out_alert)) {
|
|
return 0;
|
|
}
|
|
renegotiate_seen = 1;
|
|
} else if (type == TLSEXT_TYPE_signature_algorithms) {
|
|
CBS supported_signature_algorithms;
|
|
|
|
if (!CBS_get_u16_length_prefixed(&extension,
|
|
&supported_signature_algorithms) ||
|
|
CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* Ensure the signature algorithms are non-empty. It contains a list of
|
|
* SignatureAndHashAlgorithms which are two bytes each. */
|
|
if (CBS_len(&supported_signature_algorithms) == 0 ||
|
|
(CBS_len(&supported_signature_algorithms) % 2) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (!tls1_process_sigalgs(s, &supported_signature_algorithms)) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
/* If sigalgs received and no shared algorithms fatal error. */
|
|
if (s->cert->peer_sigalgs && !s->cert->shared_sigalgs) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_scan_clienthello_tlsext,
|
|
SSL_R_NO_SHARED_SIGATURE_ALGORITHMS);
|
|
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
|
|
return 0;
|
|
}
|
|
} else if (type == TLSEXT_TYPE_next_proto_neg &&
|
|
!s->s3->initial_handshake_complete &&
|
|
s->s3->alpn_selected == NULL && !SSL_IS_DTLS(s)) {
|
|
/* The extension must be empty. */
|
|
if (CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
s->s3->next_proto_neg_seen = 1;
|
|
} else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation &&
|
|
s->ctx->alpn_select_cb && !s->s3->initial_handshake_complete) {
|
|
if (!tls1_alpn_handle_client_hello(s, &extension, out_alert)) {
|
|
return 0;
|
|
}
|
|
/* ALPN takes precedence over NPN. */
|
|
s->s3->next_proto_neg_seen = 0;
|
|
} else if (type == TLSEXT_TYPE_channel_id && s->tlsext_channel_id_enabled &&
|
|
!SSL_IS_DTLS(s)) {
|
|
/* The extension must be empty. */
|
|
if (CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->s3->tlsext_channel_id_valid = 1;
|
|
} else if (type == TLSEXT_TYPE_channel_id_new &&
|
|
s->tlsext_channel_id_enabled && !SSL_IS_DTLS(s)) {
|
|
/* The extension must be empty. */
|
|
if (CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->s3->tlsext_channel_id_valid = 1;
|
|
s->s3->tlsext_channel_id_new = 1;
|
|
} else if (type == TLSEXT_TYPE_use_srtp) {
|
|
if (!ssl_parse_clienthello_use_srtp_ext(s, &extension, out_alert)) {
|
|
return 0;
|
|
}
|
|
} else if (type == TLSEXT_TYPE_extended_master_secret &&
|
|
s->version != SSL3_VERSION) {
|
|
if (CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->s3->tmp.extended_master_secret = 1;
|
|
}
|
|
}
|
|
|
|
ri_check:
|
|
/* Need RI if renegotiating */
|
|
|
|
if (!renegotiate_seen && s->s3->initial_handshake_complete &&
|
|
!(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
|
|
*out_alert = SSL_AD_HANDSHAKE_FAILURE;
|
|
OPENSSL_PUT_ERROR(SSL, ssl_scan_clienthello_tlsext,
|
|
SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ssl_parse_clienthello_tlsext(SSL *s, CBS *cbs) {
|
|
int alert = -1;
|
|
if (ssl_scan_clienthello_tlsext(s, cbs, &alert) <= 0) {
|
|
ssl3_send_alert(s, SSL3_AL_FATAL, alert);
|
|
return 0;
|
|
}
|
|
|
|
if (ssl_check_clienthello_tlsext(s) <= 0) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_parse_clienthello_tlsext,
|
|
SSL_R_CLIENTHELLO_TLSEXT);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* ssl_next_proto_validate validates a Next Protocol Negotiation block. No
|
|
* elements of zero length are allowed and the set of elements must exactly
|
|
* fill the length of the block. */
|
|
static char ssl_next_proto_validate(const CBS *cbs) {
|
|
CBS copy = *cbs;
|
|
|
|
while (CBS_len(©) != 0) {
|
|
CBS proto;
|
|
if (!CBS_get_u8_length_prefixed(©, &proto) || CBS_len(&proto) == 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int ssl_scan_serverhello_tlsext(SSL *s, CBS *cbs, int *out_alert) {
|
|
int tlsext_servername = 0;
|
|
int renegotiate_seen = 0;
|
|
CBS extensions;
|
|
|
|
/* TODO(davidben): Move all of these to some per-handshake state that gets
|
|
* systematically reset on a new handshake; perhaps allocate it fresh each
|
|
* time so it's not even kept around post-handshake. */
|
|
s->s3->next_proto_neg_seen = 0;
|
|
s->tlsext_ticket_expected = 0;
|
|
s->s3->tmp.certificate_status_expected = 0;
|
|
s->s3->tmp.extended_master_secret = 0;
|
|
s->srtp_profile = NULL;
|
|
|
|
OPENSSL_free(s->s3->alpn_selected);
|
|
s->s3->alpn_selected = NULL;
|
|
|
|
/* Clear ECC extensions */
|
|
OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
|
|
s->s3->tmp.peer_ecpointformatlist = NULL;
|
|
s->s3->tmp.peer_ecpointformatlist_length = 0;
|
|
|
|
/* There may be no extensions. */
|
|
if (CBS_len(cbs) == 0) {
|
|
goto ri_check;
|
|
}
|
|
|
|
/* Decode the extensions block and check it is valid. */
|
|
if (!CBS_get_u16_length_prefixed(cbs, &extensions) ||
|
|
!tls1_check_duplicate_extensions(&extensions)) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
while (CBS_len(&extensions) != 0) {
|
|
uint16_t type;
|
|
CBS extension;
|
|
|
|
/* Decode the next extension. */
|
|
if (!CBS_get_u16(&extensions, &type) ||
|
|
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (type == TLSEXT_TYPE_server_name) {
|
|
/* The extension must be empty. */
|
|
if (CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* We must have sent it in ClientHello. */
|
|
if (s->tlsext_hostname == NULL) {
|
|
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
|
|
return 0;
|
|
}
|
|
|
|
tlsext_servername = 1;
|
|
} else if (type == TLSEXT_TYPE_ec_point_formats) {
|
|
CBS ec_point_format_list;
|
|
|
|
if (!CBS_get_u8_length_prefixed(&extension, &ec_point_format_list) ||
|
|
CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (!CBS_stow(&ec_point_format_list, &s->s3->tmp.peer_ecpointformatlist,
|
|
&s->s3->tmp.peer_ecpointformatlist_length)) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
} else if (type == TLSEXT_TYPE_session_ticket) {
|
|
if ((SSL_get_options(s) & SSL_OP_NO_TICKET) || CBS_len(&extension) > 0) {
|
|
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
|
|
return 0;
|
|
}
|
|
|
|
s->tlsext_ticket_expected = 1;
|
|
} else if (type == TLSEXT_TYPE_status_request) {
|
|
/* The extension MUST be empty and may only sent if we've requested a
|
|
* status request message. */
|
|
if (CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (!s->ocsp_stapling_enabled) {
|
|
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
|
|
return 0;
|
|
}
|
|
|
|
/* Set a flag to expect a CertificateStatus message */
|
|
s->s3->tmp.certificate_status_expected = 1;
|
|
} else if (type == TLSEXT_TYPE_next_proto_neg &&
|
|
!s->s3->initial_handshake_complete && !SSL_IS_DTLS(s)) {
|
|
uint8_t *selected;
|
|
uint8_t selected_len;
|
|
|
|
/* We must have requested it. */
|
|
if (s->ctx->next_proto_select_cb == NULL) {
|
|
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
|
|
return 0;
|
|
}
|
|
|
|
/* The data must be valid. */
|
|
if (!ssl_next_proto_validate(&extension)) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (s->ctx->next_proto_select_cb(
|
|
s, &selected, &selected_len, CBS_data(&extension),
|
|
CBS_len(&extension),
|
|
s->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->next_proto_negotiated = BUF_memdup(selected, selected_len);
|
|
if (s->next_proto_negotiated == NULL) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->next_proto_negotiated_len = selected_len;
|
|
s->s3->next_proto_neg_seen = 1;
|
|
} else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation &&
|
|
!s->s3->initial_handshake_complete) {
|
|
CBS protocol_name_list, protocol_name;
|
|
|
|
/* We must have requested it. */
|
|
if (s->alpn_client_proto_list == NULL) {
|
|
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
|
|
return 0;
|
|
}
|
|
|
|
/* The extension data consists of a ProtocolNameList which must have
|
|
* exactly one ProtocolName. Each of these is length-prefixed. */
|
|
if (!CBS_get_u16_length_prefixed(&extension, &protocol_name_list) ||
|
|
CBS_len(&extension) != 0 ||
|
|
!CBS_get_u8_length_prefixed(&protocol_name_list, &protocol_name) ||
|
|
CBS_len(&protocol_name_list) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
if (!CBS_stow(&protocol_name, &s->s3->alpn_selected,
|
|
&s->s3->alpn_selected_len)) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
} else if (type == TLSEXT_TYPE_channel_id && !SSL_IS_DTLS(s)) {
|
|
if (CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->s3->tlsext_channel_id_valid = 1;
|
|
} else if (type == TLSEXT_TYPE_channel_id_new && !SSL_IS_DTLS(s)) {
|
|
if (CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->s3->tlsext_channel_id_valid = 1;
|
|
s->s3->tlsext_channel_id_new = 1;
|
|
} else if (type == TLSEXT_TYPE_certificate_timestamp) {
|
|
if (CBS_len(&extension) == 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
/* Session resumption uses the original session information. */
|
|
if (!s->hit &&
|
|
!CBS_stow(&extension, &s->session->tlsext_signed_cert_timestamp_list,
|
|
&s->session->tlsext_signed_cert_timestamp_list_length)) {
|
|
*out_alert = SSL_AD_INTERNAL_ERROR;
|
|
return 0;
|
|
}
|
|
} else if (type == TLSEXT_TYPE_renegotiate) {
|
|
if (!ssl_parse_serverhello_renegotiate_ext(s, &extension, out_alert)) {
|
|
return 0;
|
|
}
|
|
|
|
renegotiate_seen = 1;
|
|
} else if (type == TLSEXT_TYPE_use_srtp) {
|
|
if (!ssl_parse_serverhello_use_srtp_ext(s, &extension, out_alert)) {
|
|
return 0;
|
|
}
|
|
} else if (type == TLSEXT_TYPE_extended_master_secret) {
|
|
if (/* It is invalid for the server to select EMS and
|
|
SSLv3. */
|
|
s->version == SSL3_VERSION || CBS_len(&extension) != 0) {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
s->s3->tmp.extended_master_secret = 1;
|
|
}
|
|
}
|
|
|
|
if (!s->hit && tlsext_servername == 1 && s->tlsext_hostname) {
|
|
if (s->session->tlsext_hostname == NULL) {
|
|
s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname);
|
|
if (!s->session->tlsext_hostname) {
|
|
*out_alert = SSL_AD_UNRECOGNIZED_NAME;
|
|
return 0;
|
|
}
|
|
} else {
|
|
*out_alert = SSL_AD_DECODE_ERROR;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
ri_check:
|
|
/* Determine if we need to see RI. Strictly speaking if we want to avoid an
|
|
* attack we should *always* see RI even on initial server hello because the
|
|
* client doesn't see any renegotiation during an attack. However this would
|
|
* mean we could not connect to any server which doesn't support RI so for
|
|
* the immediate future tolerate RI absence on initial connect only. */
|
|
if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT) &&
|
|
!(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
|
|
*out_alert = SSL_AD_HANDSHAKE_FAILURE;
|
|
OPENSSL_PUT_ERROR(SSL, ssl_scan_serverhello_tlsext,
|
|
SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ssl_prepare_clienthello_tlsext(SSL *s) { return 1; }
|
|
|
|
int ssl_prepare_serverhello_tlsext(SSL *s) { return 1; }
|
|
|
|
static int ssl_check_clienthello_tlsext(SSL *s) {
|
|
int ret = SSL_TLSEXT_ERR_NOACK;
|
|
int al = SSL_AD_UNRECOGNIZED_NAME;
|
|
|
|
/* The handling of the ECPointFormats extension is done elsewhere, namely in
|
|
* ssl3_choose_cipher in s3_lib.c. */
|
|
|
|
if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) {
|
|
ret = s->ctx->tlsext_servername_callback(s, &al,
|
|
s->ctx->tlsext_servername_arg);
|
|
} else if (s->initial_ctx != NULL &&
|
|
s->initial_ctx->tlsext_servername_callback != 0) {
|
|
ret = s->initial_ctx->tlsext_servername_callback(
|
|
s, &al, s->initial_ctx->tlsext_servername_arg);
|
|
}
|
|
|
|
switch (ret) {
|
|
case SSL_TLSEXT_ERR_ALERT_FATAL:
|
|
ssl3_send_alert(s, SSL3_AL_FATAL, al);
|
|
return -1;
|
|
|
|
case SSL_TLSEXT_ERR_ALERT_WARNING:
|
|
ssl3_send_alert(s, SSL3_AL_WARNING, al);
|
|
return 1;
|
|
|
|
case SSL_TLSEXT_ERR_NOACK:
|
|
s->should_ack_sni = 0;
|
|
return 1;
|
|
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static int ssl_check_serverhello_tlsext(SSL *s) {
|
|
int ret = SSL_TLSEXT_ERR_NOACK;
|
|
int al = SSL_AD_UNRECOGNIZED_NAME;
|
|
|
|
/* If we are client and using an elliptic curve cryptography cipher suite,
|
|
* then if server returns an EC point formats lists extension it must contain
|
|
* uncompressed. */
|
|
uint32_t alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
|
|
uint32_t alg_a = s->s3->tmp.new_cipher->algorithm_auth;
|
|
if (((alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA)) &&
|
|
!tls1_check_point_format(s, TLSEXT_ECPOINTFORMAT_uncompressed)) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_check_serverhello_tlsext,
|
|
SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST);
|
|
return -1;
|
|
}
|
|
ret = SSL_TLSEXT_ERR_OK;
|
|
|
|
if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) {
|
|
ret = s->ctx->tlsext_servername_callback(s, &al,
|
|
s->ctx->tlsext_servername_arg);
|
|
} else if (s->initial_ctx != NULL &&
|
|
s->initial_ctx->tlsext_servername_callback != 0) {
|
|
ret = s->initial_ctx->tlsext_servername_callback(
|
|
s, &al, s->initial_ctx->tlsext_servername_arg);
|
|
}
|
|
|
|
switch (ret) {
|
|
case SSL_TLSEXT_ERR_ALERT_FATAL:
|
|
ssl3_send_alert(s, SSL3_AL_FATAL, al);
|
|
return -1;
|
|
|
|
case SSL_TLSEXT_ERR_ALERT_WARNING:
|
|
ssl3_send_alert(s, SSL3_AL_WARNING, al);
|
|
return 1;
|
|
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int ssl_parse_serverhello_tlsext(SSL *s, CBS *cbs) {
|
|
int alert = -1;
|
|
if (s->version < SSL3_VERSION) {
|
|
return 1;
|
|
}
|
|
|
|
if (ssl_scan_serverhello_tlsext(s, cbs, &alert) <= 0) {
|
|
ssl3_send_alert(s, SSL3_AL_FATAL, alert);
|
|
return 0;
|
|
}
|
|
|
|
if (ssl_check_serverhello_tlsext(s) <= 0) {
|
|
OPENSSL_PUT_ERROR(SSL, ssl_parse_serverhello_tlsext,
|
|
SSL_R_SERVERHELLO_TLSEXT);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Since the server cache lookup is done early on in the processing of the
|
|
* ClientHello, and other operations depend on the result, we need to handle
|
|
* any TLS session ticket extension at the same time.
|
|
*
|
|
* ctx: contains the early callback context, which is the result of a
|
|
* shallow parse of the ClientHello.
|
|
* ret: (output) on return, if a ticket was decrypted, then this is set to
|
|
* point to the resulting session.
|
|
*
|
|
* Returns:
|
|
* -1: fatal error, either from parsing or decrypting the ticket.
|
|
* 0: no ticket was found (or was ignored, based on settings).
|
|
* 1: a zero length extension was found, indicating that the client supports
|
|
* session tickets but doesn't currently have one to offer.
|
|
* 2: a ticket was offered but couldn't be decrypted because of a non-fatal
|
|
* error.
|
|
* 3: a ticket was successfully decrypted and *ret was set.
|
|
*
|
|
* Side effects:
|
|
* Sets s->tlsext_ticket_expected to 1 if the server will have to issue
|
|
* a new session ticket to the client because the client indicated support
|
|
* but the client either doesn't have a session ticket or we couldn't use
|
|
* the one it gave us, or if s->ctx->tlsext_ticket_key_cb asked to renew
|
|
* the client's ticket. Otherwise, s->tlsext_ticket_expected is set to 0.
|
|
*/
|
|
int tls1_process_ticket(SSL *s, const struct ssl_early_callback_ctx *ctx,
|
|
SSL_SESSION **ret) {
|
|
*ret = NULL;
|
|
s->tlsext_ticket_expected = 0;
|
|
const uint8_t *data;
|
|
size_t len;
|
|
int r;
|
|
|
|
/* If tickets disabled behave as if no ticket present to permit stateful
|
|
* resumption. */
|
|
if ((SSL_get_options(s) & SSL_OP_NO_TICKET) ||
|
|
(s->version <= SSL3_VERSION && !ctx->extensions) ||
|
|
!SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_session_ticket,
|
|
&data, &len)) {
|
|
return 0;
|
|
}
|
|
|
|
if (len == 0) {
|
|
/* The client will accept a ticket but doesn't currently have one. */
|
|
s->tlsext_ticket_expected = 1;
|
|
return 1;
|
|
}
|
|
|
|
r = tls_decrypt_ticket(s, data, len, ctx->session_id, ctx->session_id_len,
|
|
ret);
|
|
switch (r) {
|
|
case 2: /* ticket couldn't be decrypted */
|
|
s->tlsext_ticket_expected = 1;
|
|
return 2;
|
|
|
|
case 3: /* ticket was decrypted */
|
|
return r;
|
|
|
|
case 4: /* ticket decrypted but need to renew */
|
|
s->tlsext_ticket_expected = 1;
|
|
return 3;
|
|
|
|
default: /* fatal error */
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* tls_decrypt_ticket attempts to decrypt a session ticket.
|
|
*
|
|
* etick: points to the body of the session ticket extension.
|
|
* eticklen: the length of the session tickets extenion.
|
|
* sess_id: points at the session ID.
|
|
* sesslen: the length of the session ID.
|
|
* psess: (output) on return, if a ticket was decrypted, then this is set to
|
|
* point to the resulting session.
|
|
*
|
|
* Returns:
|
|
* -1: fatal error, either from parsing or decrypting the ticket.
|
|
* 2: the ticket couldn't be decrypted.
|
|
* 3: a ticket was successfully decrypted and *psess was set.
|
|
* 4: same as 3, but the ticket needs to be renewed. */
|
|
static int tls_decrypt_ticket(SSL *s, const uint8_t *etick, int eticklen,
|
|
const uint8_t *sess_id, int sesslen,
|
|
SSL_SESSION **psess) {
|
|
SSL_SESSION *sess;
|
|
uint8_t *sdec;
|
|
const uint8_t *p;
|
|
int slen, mlen, renew_ticket = 0;
|
|
uint8_t tick_hmac[EVP_MAX_MD_SIZE];
|
|
HMAC_CTX hctx;
|
|
EVP_CIPHER_CTX ctx;
|
|
SSL_CTX *tctx = s->initial_ctx;
|
|
|
|
/* Ensure there is room for the key name and the largest IV
|
|
* |tlsext_ticket_key_cb| may try to consume. The real limit may be lower, but
|
|
* the maximum IV length should be well under the minimum size for the
|
|
* session material and HMAC. */
|
|
if (eticklen < 16 + EVP_MAX_IV_LENGTH) {
|
|
return 2;
|
|
}
|
|
|
|
/* Initialize session ticket encryption and HMAC contexts */
|
|
HMAC_CTX_init(&hctx);
|
|
EVP_CIPHER_CTX_init(&ctx);
|
|
if (tctx->tlsext_ticket_key_cb) {
|
|
uint8_t *nctick = (uint8_t *)etick;
|
|
int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16, &ctx, &hctx,
|
|
0 /* decrypt */);
|
|
if (rv < 0) {
|
|
return -1;
|
|
}
|
|
if (rv == 0) {
|
|
return 2;
|
|
}
|
|
if (rv == 2) {
|
|
renew_ticket = 1;
|
|
}
|
|
} else {
|
|
/* Check key name matches */
|
|
if (memcmp(etick, tctx->tlsext_tick_key_name, 16)) {
|
|
return 2;
|
|
}
|
|
if (!HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16, tlsext_tick_md(),
|
|
NULL) ||
|
|
!EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
|
|
tctx->tlsext_tick_aes_key, etick + 16)) {
|
|
HMAC_CTX_cleanup(&hctx);
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* First, check the MAC. The MAC is at the end of the ticket. */
|
|
mlen = HMAC_size(&hctx);
|
|
if ((size_t) eticklen < 16 + EVP_CIPHER_CTX_iv_length(&ctx) + 1 + mlen) {
|
|
/* The ticket must be large enough for key name, IV, data, and MAC. */
|
|
HMAC_CTX_cleanup(&hctx);
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
return 2;
|
|
}
|
|
eticklen -= mlen;
|
|
/* Check HMAC of encrypted ticket */
|
|
HMAC_Update(&hctx, etick, eticklen);
|
|
HMAC_Final(&hctx, tick_hmac, NULL);
|
|
HMAC_CTX_cleanup(&hctx);
|
|
if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
return 2;
|
|
}
|
|
|
|
/* Attempt to decrypt session data */
|
|
/* Move p after IV to start of encrypted ticket, update length */
|
|
p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx);
|
|
eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx);
|
|
sdec = OPENSSL_malloc(eticklen);
|
|
if (!sdec) {
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
return -1;
|
|
}
|
|
EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen);
|
|
if (EVP_DecryptFinal_ex(&ctx, sdec + slen, &mlen) <= 0) {
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
OPENSSL_free(sdec);
|
|
return 2;
|
|
}
|
|
slen += mlen;
|
|
EVP_CIPHER_CTX_cleanup(&ctx);
|
|
p = sdec;
|
|
|
|
sess = SSL_SESSION_from_bytes(sdec, slen);
|
|
OPENSSL_free(sdec);
|
|
if (sess) {
|
|
/* The session ID, if non-empty, is used by some clients to detect that the
|
|
* ticket has been accepted. So we copy it to the session structure. If it
|
|
* is empty set length to zero as required by standard. */
|
|
if (sesslen) {
|
|
memcpy(sess->session_id, sess_id, sesslen);
|
|
}
|
|
sess->session_id_length = sesslen;
|
|
*psess = sess;
|
|
if (renew_ticket) {
|
|
return 4;
|
|
}
|
|
return 3;
|
|
}
|
|
|
|
ERR_clear_error();
|
|
/* For session parse failure, indicate that we need to send a new ticket. */
|
|
return 2;
|
|
}
|
|
|
|
/* Tables to translate from NIDs to TLS v1.2 ids */
|
|
typedef struct {
|
|
int nid;
|
|
int id;
|
|
} tls12_lookup;
|
|
|
|
static const tls12_lookup tls12_md[] = {{NID_md5, TLSEXT_hash_md5},
|
|
{NID_sha1, TLSEXT_hash_sha1},
|
|
{NID_sha224, TLSEXT_hash_sha224},
|
|
{NID_sha256, TLSEXT_hash_sha256},
|
|
{NID_sha384, TLSEXT_hash_sha384},
|
|
{NID_sha512, TLSEXT_hash_sha512}};
|
|
|
|
static const tls12_lookup tls12_sig[] = {{EVP_PKEY_RSA, TLSEXT_signature_rsa},
|
|
{EVP_PKEY_EC, TLSEXT_signature_ecdsa}};
|
|
|
|
static int tls12_find_id(int nid, const tls12_lookup *table, size_t tlen) {
|
|
size_t i;
|
|
for (i = 0; i < tlen; i++) {
|
|
if (table[i].nid == nid) {
|
|
return table[i].id;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int tls12_find_nid(int id, const tls12_lookup *table, size_t tlen) {
|
|
size_t i;
|
|
for (i = 0; i < tlen; i++) {
|
|
if (table[i].id == id) {
|
|
return table[i].nid;
|
|
}
|
|
}
|
|
|
|
return NID_undef;
|
|
}
|
|
|
|
int tls12_get_sigid(int pkey_type) {
|
|
return tls12_find_id(pkey_type, tls12_sig,
|
|
sizeof(tls12_sig) / sizeof(tls12_lookup));
|
|
}
|
|
|
|
int tls12_get_sigandhash(SSL *ssl, uint8_t *p, const EVP_PKEY *pk,
|
|
const EVP_MD *md) {
|
|
int sig_id, md_id;
|
|
|
|
if (!md) {
|
|
return 0;
|
|
}
|
|
|
|
md_id = tls12_find_id(EVP_MD_type(md), tls12_md,
|
|
sizeof(tls12_md) / sizeof(tls12_lookup));
|
|
if (md_id == -1) {
|
|
return 0;
|
|
}
|
|
|
|
sig_id = tls12_get_sigid(ssl_private_key_type(ssl, pk));
|
|
if (sig_id == -1) {
|
|
return 0;
|
|
}
|
|
|
|
p[0] = (uint8_t)md_id;
|
|
p[1] = (uint8_t)sig_id;
|
|
return 1;
|
|
}
|
|
|
|
const EVP_MD *tls12_get_hash(uint8_t hash_alg) {
|
|
switch (hash_alg) {
|
|
case TLSEXT_hash_md5:
|
|
return EVP_md5();
|
|
|
|
case TLSEXT_hash_sha1:
|
|
return EVP_sha1();
|
|
|
|
case TLSEXT_hash_sha224:
|
|
return EVP_sha224();
|
|
|
|
case TLSEXT_hash_sha256:
|
|
return EVP_sha256();
|
|
|
|
case TLSEXT_hash_sha384:
|
|
return EVP_sha384();
|
|
|
|
case TLSEXT_hash_sha512:
|
|
return EVP_sha512();
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* tls12_get_pkey_type returns the EVP_PKEY type corresponding to TLS signature
|
|
* algorithm |sig_alg|. It returns -1 if the type is unknown. */
|
|
static int tls12_get_pkey_type(uint8_t sig_alg) {
|
|
switch (sig_alg) {
|
|
case TLSEXT_signature_rsa:
|
|
return EVP_PKEY_RSA;
|
|
|
|
case TLSEXT_signature_ecdsa:
|
|
return EVP_PKEY_EC;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Convert TLS 1.2 signature algorithm extension values into NIDs */
|
|
static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid,
|
|
int *psignhash_nid, const uint8_t *data) {
|
|
int sign_nid = 0, hash_nid = 0;
|
|
if (!phash_nid && !psign_nid && !psignhash_nid) {
|
|
return;
|
|
}
|
|
|
|
if (phash_nid || psignhash_nid) {
|
|
hash_nid = tls12_find_nid(data[0], tls12_md,
|
|
sizeof(tls12_md) / sizeof(tls12_lookup));
|
|
if (phash_nid) {
|
|
*phash_nid = hash_nid;
|
|
}
|
|
}
|
|
|
|
if (psign_nid || psignhash_nid) {
|
|
sign_nid = tls12_find_nid(data[1], tls12_sig,
|
|
sizeof(tls12_sig) / sizeof(tls12_lookup));
|
|
if (psign_nid) {
|
|
*psign_nid = sign_nid;
|
|
}
|
|
}
|
|
|
|
if (psignhash_nid) {
|
|
if (sign_nid && hash_nid) {
|
|
OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid);
|
|
} else {
|
|
*psignhash_nid = NID_undef;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Given preference and allowed sigalgs set shared sigalgs */
|
|
static int tls12_do_shared_sigalgs(TLS_SIGALGS *shsig, const uint8_t *pref,
|
|
size_t preflen, const uint8_t *allow,
|
|
size_t allowlen) {
|
|
const uint8_t *ptmp, *atmp;
|
|
size_t i, j, nmatch = 0;
|
|
|
|
for (i = 0, ptmp = pref; i < preflen; i += 2, ptmp += 2) {
|
|
/* Skip disabled hashes or signature algorithms */
|
|
if (tls12_get_hash(ptmp[0]) == NULL ||
|
|
tls12_get_pkey_type(ptmp[1]) == -1) {
|
|
continue;
|
|
}
|
|
|
|
for (j = 0, atmp = allow; j < allowlen; j += 2, atmp += 2) {
|
|
if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) {
|
|
nmatch++;
|
|
if (shsig) {
|
|
shsig->rhash = ptmp[0];
|
|
shsig->rsign = ptmp[1];
|
|
tls1_lookup_sigalg(&shsig->hash_nid, &shsig->sign_nid,
|
|
&shsig->signandhash_nid, ptmp);
|
|
shsig++;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return nmatch;
|
|
}
|
|
|
|
/* Set shared signature algorithms for SSL structures */
|
|
static int tls1_set_shared_sigalgs(SSL *s) {
|
|
const uint8_t *pref, *allow, *conf;
|
|
size_t preflen, allowlen, conflen;
|
|
size_t nmatch;
|
|
TLS_SIGALGS *salgs = NULL;
|
|
CERT *c = s->cert;
|
|
|
|
OPENSSL_free(c->shared_sigalgs);
|
|
c->shared_sigalgs = NULL;
|
|
c->shared_sigalgslen = 0;
|
|
|
|
/* If client use client signature algorithms if not NULL */
|
|
if (!s->server && c->client_sigalgs) {
|
|
conf = c->client_sigalgs;
|
|
conflen = c->client_sigalgslen;
|
|
} else if (c->conf_sigalgs) {
|
|
conf = c->conf_sigalgs;
|
|
conflen = c->conf_sigalgslen;
|
|
} else {
|
|
conflen = tls12_get_psigalgs(s, &conf);
|
|
}
|
|
|
|
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
|
|
pref = conf;
|
|
preflen = conflen;
|
|
allow = c->peer_sigalgs;
|
|
allowlen = c->peer_sigalgslen;
|
|
} else {
|
|
allow = conf;
|
|
allowlen = conflen;
|
|
pref = c->peer_sigalgs;
|
|
preflen = c->peer_sigalgslen;
|
|
}
|
|
|
|
nmatch = tls12_do_shared_sigalgs(NULL, pref, preflen, allow, allowlen);
|
|
if (!nmatch) {
|
|
return 1;
|
|
}
|
|
|
|
salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS));
|
|
if (!salgs) {
|
|
return 0;
|
|
}
|
|
|
|
nmatch = tls12_do_shared_sigalgs(salgs, pref, preflen, allow, allowlen);
|
|
c->shared_sigalgs = salgs;
|
|
c->shared_sigalgslen = nmatch;
|
|
return 1;
|
|
}
|
|
|
|
/* Set preferred digest for each key type */
|
|
int tls1_process_sigalgs(SSL *s, const CBS *sigalgs) {
|
|
CERT *c = s->cert;
|
|
|
|
/* Extension ignored for inappropriate versions */
|
|
if (!SSL_USE_SIGALGS(s)) {
|
|
return 1;
|
|
}
|
|
|
|
if (CBS_len(sigalgs) % 2 != 0 ||
|
|
!CBS_stow(sigalgs, &c->peer_sigalgs, &c->peer_sigalgslen) ||
|
|
!tls1_set_shared_sigalgs(s)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
const EVP_MD *tls1_choose_signing_digest(SSL *s, EVP_PKEY *pkey) {
|
|
CERT *c = s->cert;
|
|
int type = ssl_private_key_type(s, pkey);
|
|
size_t i;
|
|
|
|
/* Select the first shared digest supported by our key. */
|
|
for (i = 0; i < c->shared_sigalgslen; i++) {
|
|
const EVP_MD *md = tls12_get_hash(c->shared_sigalgs[i].rhash);
|
|
if (md == NULL ||
|
|
tls12_get_pkey_type(c->shared_sigalgs[i].rsign) != type ||
|
|
!ssl_private_key_supports_digest(s, pkey, md)) {
|
|
continue;
|
|
}
|
|
return md;
|
|
}
|
|
|
|
/* If no suitable digest may be found, default to SHA-1. */
|
|
return EVP_sha1();
|
|
}
|
|
|
|
int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash,
|
|
uint8_t *rsig, uint8_t *rhash) {
|
|
const uint8_t *psig = s->cert->peer_sigalgs;
|
|
|
|
if (psig == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (idx >= 0) {
|
|
idx <<= 1;
|
|
if (idx >= (int)s->cert->peer_sigalgslen) {
|
|
return 0;
|
|
}
|
|
psig += idx;
|
|
if (rhash) {
|
|
*rhash = psig[0];
|
|
}
|
|
if (rsig) {
|
|
*rsig = psig[1];
|
|
}
|
|
tls1_lookup_sigalg(phash, psign, psignhash, psig);
|
|
}
|
|
|
|
return s->cert->peer_sigalgslen / 2;
|
|
}
|
|
|
|
int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash,
|
|
int *psignhash, uint8_t *rsig, uint8_t *rhash) {
|
|
TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs;
|
|
|
|
if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen) {
|
|
return 0;
|
|
}
|
|
|
|
shsigalgs += idx;
|
|
if (phash) {
|
|
*phash = shsigalgs->hash_nid;
|
|
}
|
|
if (psign) {
|
|
*psign = shsigalgs->sign_nid;
|
|
}
|
|
if (psignhash) {
|
|
*psignhash = shsigalgs->signandhash_nid;
|
|
}
|
|
if (rsig) {
|
|
*rsig = shsigalgs->rsign;
|
|
}
|
|
if (rhash) {
|
|
*rhash = shsigalgs->rhash;
|
|
}
|
|
|
|
return s->cert->shared_sigalgslen;
|
|
}
|
|
|
|
/* tls1_channel_id_hash calculates the signed data for a Channel ID on the
|
|
* given SSL connection and writes it to |md|. */
|
|
int tls1_channel_id_hash(EVP_MD_CTX *md, SSL *s) {
|
|
EVP_MD_CTX ctx;
|
|
uint8_t temp_digest[EVP_MAX_MD_SIZE];
|
|
unsigned temp_digest_len;
|
|
int i;
|
|
static const char kClientIDMagic[] = "TLS Channel ID signature";
|
|
|
|
if (s->s3->handshake_buffer &&
|
|
!ssl3_digest_cached_records(s, free_handshake_buffer)) {
|
|
return 0;
|
|
}
|
|
|
|
EVP_DigestUpdate(md, kClientIDMagic, sizeof(kClientIDMagic));
|
|
|
|
if (s->hit && s->s3->tlsext_channel_id_new) {
|
|
static const char kResumptionMagic[] = "Resumption";
|
|
EVP_DigestUpdate(md, kResumptionMagic, sizeof(kResumptionMagic));
|
|
if (s->session->original_handshake_hash_len == 0) {
|
|
return 0;
|
|
}
|
|
EVP_DigestUpdate(md, s->session->original_handshake_hash,
|
|
s->session->original_handshake_hash_len);
|
|
}
|
|
|
|
EVP_MD_CTX_init(&ctx);
|
|
for (i = 0; i < SSL_MAX_DIGEST; i++) {
|
|
if (s->s3->handshake_dgst[i] == NULL) {
|
|
continue;
|
|
}
|
|
if (!EVP_MD_CTX_copy_ex(&ctx, s->s3->handshake_dgst[i])) {
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
return 0;
|
|
}
|
|
EVP_DigestFinal_ex(&ctx, temp_digest, &temp_digest_len);
|
|
EVP_DigestUpdate(md, temp_digest, temp_digest_len);
|
|
}
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* tls1_record_handshake_hashes_for_channel_id records the current handshake
|
|
* hashes in |s->session| so that Channel ID resumptions can sign that data. */
|
|
int tls1_record_handshake_hashes_for_channel_id(SSL *s) {
|
|
int digest_len;
|
|
/* This function should never be called for a resumed session because the
|
|
* handshake hashes that we wish to record are for the original, full
|
|
* handshake. */
|
|
if (s->hit) {
|
|
return -1;
|
|
}
|
|
|
|
/* It only makes sense to call this function if Channel IDs have been
|
|
* negotiated. */
|
|
if (!s->s3->tlsext_channel_id_new) {
|
|
return -1;
|
|
}
|
|
|
|
digest_len =
|
|
tls1_handshake_digest(s, s->session->original_handshake_hash,
|
|
sizeof(s->session->original_handshake_hash));
|
|
if (digest_len < 0) {
|
|
return -1;
|
|
}
|
|
|
|
s->session->original_handshake_hash_len = digest_len;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen,
|
|
int client) {
|
|
uint8_t *sigalgs, *sptr;
|
|
int rhash, rsign;
|
|
size_t i;
|
|
|
|
if (salglen & 1) {
|
|
return 0;
|
|
}
|
|
|
|
sigalgs = OPENSSL_malloc(salglen);
|
|
if (sigalgs == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
|
|
rhash = tls12_find_id(*psig_nids++, tls12_md,
|
|
sizeof(tls12_md) / sizeof(tls12_lookup));
|
|
rsign = tls12_find_id(*psig_nids++, tls12_sig,
|
|
sizeof(tls12_sig) / sizeof(tls12_lookup));
|
|
|
|
if (rhash == -1 || rsign == -1) {
|
|
goto err;
|
|
}
|
|
*sptr++ = rhash;
|
|
*sptr++ = rsign;
|
|
}
|
|
|
|
if (client) {
|
|
OPENSSL_free(c->client_sigalgs);
|
|
c->client_sigalgs = sigalgs;
|
|
c->client_sigalgslen = salglen;
|
|
} else {
|
|
OPENSSL_free(c->conf_sigalgs);
|
|
c->conf_sigalgs = sigalgs;
|
|
c->conf_sigalgslen = salglen;
|
|
}
|
|
|
|
return 1;
|
|
|
|
err:
|
|
OPENSSL_free(sigalgs);
|
|
return 0;
|
|
}
|