You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

338 rivejä
9.8 KiB

  1. /*
  2. * DTLS implementation written by Nagendra Modadugu
  3. * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
  4. */
  5. /* ====================================================================
  6. * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
  7. *
  8. * Redistribution and use in source and binary forms, with or without
  9. * modification, are permitted provided that the following conditions
  10. * are met:
  11. *
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, this list of conditions and the following disclaimer.
  14. *
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in
  17. * the documentation and/or other materials provided with the
  18. * distribution.
  19. *
  20. * 3. All advertising materials mentioning features or use of this
  21. * software must display the following acknowledgment:
  22. * "This product includes software developed by the OpenSSL Project
  23. * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
  24. *
  25. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  26. * endorse or promote products derived from this software without
  27. * prior written permission. For written permission, please contact
  28. * openssl-core@OpenSSL.org.
  29. *
  30. * 5. Products derived from this software may not be called "OpenSSL"
  31. * nor may "OpenSSL" appear in their names without prior written
  32. * permission of the OpenSSL Project.
  33. *
  34. * 6. Redistributions of any form whatsoever must retain the following
  35. * acknowledgment:
  36. * "This product includes software developed by the OpenSSL Project
  37. * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
  38. *
  39. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  40. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  41. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  42. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  43. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  44. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  45. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  46. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  48. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  49. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  50. * OF THE POSSIBILITY OF SUCH DAMAGE.
  51. * ====================================================================
  52. *
  53. * This product includes cryptographic software written by Eric Young
  54. * (eay@cryptsoft.com). This product includes software written by Tim
  55. * Hudson (tjh@cryptsoft.com). */
  56. #include <openssl/base.h>
  57. #include <limits.h>
  58. #include <stdio.h>
  59. #include <string.h>
  60. #if defined(OPENSSL_WINDOWS)
  61. #include <sys/timeb.h>
  62. #else
  63. #include <sys/socket.h>
  64. #include <sys/time.h>
  65. #endif
  66. #include <openssl/err.h>
  67. #include <openssl/mem.h>
  68. #include <openssl/obj.h>
  69. #include "internal.h"
  70. /* DTLS1_MTU_TIMEOUTS is the maximum number of timeouts to expire
  71. * before starting to decrease the MTU. */
  72. #define DTLS1_MTU_TIMEOUTS 2
  73. /* DTLS1_MAX_TIMEOUTS is the maximum number of timeouts to expire
  74. * before failing the DTLS handshake. */
  75. #define DTLS1_MAX_TIMEOUTS 12
  76. static void get_current_time(const SSL *ssl, struct timeval *out_clock);
  77. int dtls1_new(SSL *s) {
  78. DTLS1_STATE *d1;
  79. if (!ssl3_new(s)) {
  80. return 0;
  81. }
  82. d1 = OPENSSL_malloc(sizeof *d1);
  83. if (d1 == NULL) {
  84. ssl3_free(s);
  85. return 0;
  86. }
  87. memset(d1, 0, sizeof *d1);
  88. d1->buffered_messages = pqueue_new();
  89. d1->sent_messages = pqueue_new();
  90. if (!d1->buffered_messages || !d1->sent_messages) {
  91. pqueue_free(d1->buffered_messages);
  92. pqueue_free(d1->sent_messages);
  93. OPENSSL_free(d1);
  94. ssl3_free(s);
  95. return 0;
  96. }
  97. s->d1 = d1;
  98. /* Set the version to the highest version for DTLS. This controls the initial
  99. * state of |s->enc_method| and what the API reports as the version prior to
  100. * negotiation.
  101. *
  102. * TODO(davidben): This is fragile and confusing. */
  103. s->version = DTLS1_2_VERSION;
  104. return 1;
  105. }
  106. static void dtls1_clear_queues(SSL *s) {
  107. pitem *item = NULL;
  108. hm_fragment *frag = NULL;
  109. while ((item = pqueue_pop(s->d1->buffered_messages)) != NULL) {
  110. frag = (hm_fragment *)item->data;
  111. dtls1_hm_fragment_free(frag);
  112. pitem_free(item);
  113. }
  114. while ((item = pqueue_pop(s->d1->sent_messages)) != NULL) {
  115. frag = (hm_fragment *)item->data;
  116. dtls1_hm_fragment_free(frag);
  117. pitem_free(item);
  118. }
  119. }
  120. void dtls1_free(SSL *s) {
  121. ssl3_free(s);
  122. if (s == NULL || s->d1 == NULL) {
  123. return;
  124. }
  125. dtls1_clear_queues(s);
  126. pqueue_free(s->d1->buffered_messages);
  127. pqueue_free(s->d1->sent_messages);
  128. OPENSSL_free(s->d1);
  129. s->d1 = NULL;
  130. }
  131. int dtls1_supports_cipher(const SSL_CIPHER *cipher) {
  132. /* DTLS does not support stream ciphers. */
  133. return cipher->algorithm_enc != SSL_RC4;
  134. }
  135. void dtls1_start_timer(SSL *s) {
  136. /* If timer is not set, initialize duration with 1 second */
  137. if (s->d1->next_timeout.tv_sec == 0 && s->d1->next_timeout.tv_usec == 0) {
  138. s->d1->timeout_duration = 1;
  139. }
  140. /* Set timeout to current time */
  141. get_current_time(s, &s->d1->next_timeout);
  142. /* Add duration to current time */
  143. s->d1->next_timeout.tv_sec += s->d1->timeout_duration;
  144. BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0,
  145. &s->d1->next_timeout);
  146. }
  147. int DTLSv1_get_timeout(const SSL *ssl, struct timeval *out) {
  148. if (!SSL_IS_DTLS(ssl)) {
  149. return 0;
  150. }
  151. /* If no timeout is set, just return NULL */
  152. if (ssl->d1->next_timeout.tv_sec == 0 && ssl->d1->next_timeout.tv_usec == 0) {
  153. return 0;
  154. }
  155. /* Get current time */
  156. struct timeval timenow;
  157. get_current_time(ssl, &timenow);
  158. /* If timer already expired, set remaining time to 0 */
  159. if (ssl->d1->next_timeout.tv_sec < timenow.tv_sec ||
  160. (ssl->d1->next_timeout.tv_sec == timenow.tv_sec &&
  161. ssl->d1->next_timeout.tv_usec <= timenow.tv_usec)) {
  162. memset(out, 0, sizeof(struct timeval));
  163. return 1;
  164. }
  165. /* Calculate time left until timer expires */
  166. memcpy(out, &ssl->d1->next_timeout, sizeof(struct timeval));
  167. out->tv_sec -= timenow.tv_sec;
  168. out->tv_usec -= timenow.tv_usec;
  169. if (out->tv_usec < 0) {
  170. out->tv_sec--;
  171. out->tv_usec += 1000000;
  172. }
  173. /* If remaining time is less than 15 ms, set it to 0 to prevent issues
  174. * because of small devergences with socket timeouts. */
  175. if (out->tv_sec == 0 && out->tv_usec < 15000) {
  176. memset(out, 0, sizeof(struct timeval));
  177. }
  178. return 1;
  179. }
  180. int dtls1_is_timer_expired(SSL *s) {
  181. struct timeval timeleft;
  182. /* Get time left until timeout, return false if no timer running */
  183. if (!DTLSv1_get_timeout(s, &timeleft)) {
  184. return 0;
  185. }
  186. /* Return false if timer is not expired yet */
  187. if (timeleft.tv_sec > 0 || timeleft.tv_usec > 0) {
  188. return 0;
  189. }
  190. /* Timer expired, so return true */
  191. return 1;
  192. }
  193. void dtls1_double_timeout(SSL *s) {
  194. s->d1->timeout_duration *= 2;
  195. if (s->d1->timeout_duration > 60) {
  196. s->d1->timeout_duration = 60;
  197. }
  198. dtls1_start_timer(s);
  199. }
  200. void dtls1_stop_timer(SSL *s) {
  201. /* Reset everything */
  202. s->d1->num_timeouts = 0;
  203. memset(&s->d1->next_timeout, 0, sizeof(struct timeval));
  204. s->d1->timeout_duration = 1;
  205. BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0,
  206. &s->d1->next_timeout);
  207. /* Clear retransmission buffer */
  208. dtls1_clear_record_buffer(s);
  209. }
  210. int dtls1_check_timeout_num(SSL *s) {
  211. s->d1->num_timeouts++;
  212. /* Reduce MTU after 2 unsuccessful retransmissions */
  213. if (s->d1->num_timeouts > DTLS1_MTU_TIMEOUTS &&
  214. !(SSL_get_options(s) & SSL_OP_NO_QUERY_MTU)) {
  215. long mtu = BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_GET_FALLBACK_MTU, 0,
  216. NULL);
  217. if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) {
  218. s->d1->mtu = (unsigned)mtu;
  219. }
  220. }
  221. if (s->d1->num_timeouts > DTLS1_MAX_TIMEOUTS) {
  222. /* fail the connection, enough alerts have been sent */
  223. OPENSSL_PUT_ERROR(SSL, dtls1_check_timeout_num, SSL_R_READ_TIMEOUT_EXPIRED);
  224. return -1;
  225. }
  226. return 0;
  227. }
  228. int DTLSv1_handle_timeout(SSL *ssl) {
  229. if (!SSL_IS_DTLS(ssl)) {
  230. return -1;
  231. }
  232. /* if no timer is expired, don't do anything */
  233. if (!dtls1_is_timer_expired(ssl)) {
  234. return 0;
  235. }
  236. dtls1_double_timeout(ssl);
  237. if (dtls1_check_timeout_num(ssl) < 0) {
  238. return -1;
  239. }
  240. dtls1_start_timer(ssl);
  241. return dtls1_retransmit_buffered_messages(ssl);
  242. }
  243. static void get_current_time(const SSL *ssl, struct timeval *out_clock) {
  244. if (ssl->ctx->current_time_cb != NULL) {
  245. ssl->ctx->current_time_cb(ssl, out_clock);
  246. return;
  247. }
  248. #if defined(OPENSSL_WINDOWS)
  249. struct _timeb time;
  250. _ftime(&time);
  251. out_clock->tv_sec = time.time;
  252. out_clock->tv_usec = time.millitm * 1000;
  253. #else
  254. gettimeofday(out_clock, NULL);
  255. #endif
  256. }
  257. int dtls1_set_handshake_header(SSL *s, int htype, unsigned long len) {
  258. uint8_t *message = (uint8_t *)s->init_buf->data;
  259. const struct hm_header_st *msg_hdr = &s->d1->w_msg_hdr;
  260. uint8_t serialised_header[DTLS1_HM_HEADER_LENGTH];
  261. uint8_t *p = serialised_header;
  262. s->d1->handshake_write_seq = s->d1->next_handshake_write_seq;
  263. s->d1->next_handshake_write_seq++;
  264. dtls1_set_message_header(s, htype, len, s->d1->handshake_write_seq, 0, len);
  265. s->init_num = (int)len + DTLS1_HM_HEADER_LENGTH;
  266. s->init_off = 0;
  267. /* Buffer the message to handle re-xmits */
  268. dtls1_buffer_message(s, 0);
  269. /* Add the new message to the handshake hash. Serialize the message
  270. * header as if it were a single fragment. */
  271. *p++ = msg_hdr->type;
  272. l2n3(msg_hdr->msg_len, p);
  273. s2n(msg_hdr->seq, p);
  274. l2n3(0, p);
  275. l2n3(msg_hdr->msg_len, p);
  276. return ssl3_finish_mac(s, serialised_header, sizeof(serialised_header)) &&
  277. ssl3_finish_mac(s, message + DTLS1_HM_HEADER_LENGTH, len);
  278. }
  279. int dtls1_handshake_write(SSL *s) {
  280. return dtls1_do_write(s, SSL3_RT_HANDSHAKE, dtls1_use_current_epoch);
  281. }