You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3297 lines
132 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com).
  108. *
  109. */
  110. /* ====================================================================
  111. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  112. * ECC cipher suite support in OpenSSL originally developed by
  113. * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
  114. */
  115. /* ====================================================================
  116. * Copyright 2005 Nokia. All rights reserved.
  117. *
  118. * The portions of the attached software ("Contribution") is developed by
  119. * Nokia Corporation and is licensed pursuant to the OpenSSL open source
  120. * license.
  121. *
  122. * The Contribution, originally written by Mika Kousa and Pasi Eronen of
  123. * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
  124. * support (see RFC 4279) to OpenSSL.
  125. *
  126. * No patent licenses or other rights except those expressly stated in
  127. * the OpenSSL open source license shall be deemed granted or received
  128. * expressly, by implication, estoppel, or otherwise.
  129. *
  130. * No assurances are provided by Nokia that the Contribution does not
  131. * infringe the patent or other intellectual property rights of any third
  132. * party or that the license provides you with all the necessary rights
  133. * to make use of the Contribution.
  134. *
  135. * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
  136. * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
  137. * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
  138. * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
  139. * OTHERWISE.
  140. */
  141. #ifndef OPENSSL_HEADER_SSL_INTERNAL_H
  142. #define OPENSSL_HEADER_SSL_INTERNAL_H
  143. #include <openssl/base.h>
  144. #include <stdlib.h>
  145. #include <limits>
  146. #include <new>
  147. #include <type_traits>
  148. #include <utility>
  149. #include <openssl/aead.h>
  150. #include <openssl/err.h>
  151. #include <openssl/lhash.h>
  152. #include <openssl/mem.h>
  153. #include <openssl/span.h>
  154. #include <openssl/ssl.h>
  155. #include <openssl/stack.h>
  156. #include "../crypto/err/internal.h"
  157. #include "../crypto/internal.h"
  158. #if defined(OPENSSL_WINDOWS)
  159. // Windows defines struct timeval in winsock2.h.
  160. OPENSSL_MSVC_PRAGMA(warning(push, 3))
  161. #include <winsock2.h>
  162. OPENSSL_MSVC_PRAGMA(warning(pop))
  163. #else
  164. #include <sys/time.h>
  165. #endif
  166. namespace bssl {
  167. struct SSL_CONFIG;
  168. struct SSL_HANDSHAKE;
  169. struct SSL_PROTOCOL_METHOD;
  170. struct SSL_X509_METHOD;
  171. // C++ utilities.
  172. // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It
  173. // returns nullptr on allocation error. It only implements single-object
  174. // allocation and not new T[n].
  175. //
  176. // Note: unlike |new|, this does not support non-public constructors.
  177. template <typename T, typename... Args>
  178. T *New(Args &&... args) {
  179. void *t = OPENSSL_malloc(sizeof(T));
  180. if (t == nullptr) {
  181. OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
  182. return nullptr;
  183. }
  184. return new (t) T(std::forward<Args>(args)...);
  185. }
  186. // Delete behaves like |delete| but uses |OPENSSL_free| to release memory.
  187. //
  188. // Note: unlike |delete| this does not support non-public destructors.
  189. template <typename T>
  190. void Delete(T *t) {
  191. if (t != nullptr) {
  192. t->~T();
  193. OPENSSL_free(t);
  194. }
  195. }
  196. // All types with kAllowUniquePtr set may be used with UniquePtr. Other types
  197. // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration.
  198. namespace internal {
  199. template <typename T>
  200. struct DeleterImpl<T, typename std::enable_if<T::kAllowUniquePtr>::type> {
  201. static void Free(T *t) { Delete(t); }
  202. };
  203. } // namespace internal
  204. // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation
  205. // error.
  206. template <typename T, typename... Args>
  207. UniquePtr<T> MakeUnique(Args &&... args) {
  208. return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
  209. }
  210. #if defined(BORINGSSL_ALLOW_CXX_RUNTIME)
  211. #define HAS_VIRTUAL_DESTRUCTOR
  212. #define PURE_VIRTUAL = 0
  213. #else
  214. // HAS_VIRTUAL_DESTRUCTOR should be declared in any base class which defines a
  215. // virtual destructor. This avoids a dependency on |_ZdlPv| and prevents the
  216. // class from being used with |delete|.
  217. #define HAS_VIRTUAL_DESTRUCTOR \
  218. void operator delete(void *) { abort(); }
  219. // PURE_VIRTUAL should be used instead of = 0 when defining pure-virtual
  220. // functions. This avoids a dependency on |__cxa_pure_virtual| but loses
  221. // compile-time checking.
  222. #define PURE_VIRTUAL \
  223. { abort(); }
  224. #endif
  225. // CONSTEXPR_ARRAY works around a VS 2015 bug where ranged for loops don't work
  226. // on constexpr arrays.
  227. #if defined(_MSC_VER) && !defined(__clang__) && _MSC_VER < 1910
  228. #define CONSTEXPR_ARRAY const
  229. #else
  230. #define CONSTEXPR_ARRAY constexpr
  231. #endif
  232. // Array<T> is an owning array of elements of |T|.
  233. template <typename T>
  234. class Array {
  235. public:
  236. // Array's default constructor creates an empty array.
  237. Array() {}
  238. Array(const Array &) = delete;
  239. Array(Array &&other) { *this = std::move(other); }
  240. ~Array() { Reset(); }
  241. Array &operator=(const Array &) = delete;
  242. Array &operator=(Array &&other) {
  243. Reset();
  244. other.Release(&data_, &size_);
  245. return *this;
  246. }
  247. const T *data() const { return data_; }
  248. T *data() { return data_; }
  249. size_t size() const { return size_; }
  250. bool empty() const { return size_ == 0; }
  251. const T &operator[](size_t i) const { return data_[i]; }
  252. T &operator[](size_t i) { return data_[i]; }
  253. T *begin() { return data_; }
  254. const T *cbegin() const { return data_; }
  255. T *end() { return data_ + size_; }
  256. const T *cend() const { return data_ + size_; }
  257. void Reset() { Reset(nullptr, 0); }
  258. // Reset releases the current contents of the array and takes ownership of the
  259. // raw pointer supplied by the caller.
  260. void Reset(T *new_data, size_t new_size) {
  261. for (size_t i = 0; i < size_; i++) {
  262. data_[i].~T();
  263. }
  264. OPENSSL_free(data_);
  265. data_ = new_data;
  266. size_ = new_size;
  267. }
  268. // Release releases ownership of the array to a raw pointer supplied by the
  269. // caller.
  270. void Release(T **out, size_t *out_size) {
  271. *out = data_;
  272. *out_size = size_;
  273. data_ = nullptr;
  274. size_ = 0;
  275. }
  276. // Init replaces the array with a newly-allocated array of |new_size|
  277. // default-constructed copies of |T|. It returns true on success and false on
  278. // error.
  279. //
  280. // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized.
  281. bool Init(size_t new_size) {
  282. Reset();
  283. if (new_size == 0) {
  284. return true;
  285. }
  286. if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
  287. OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
  288. return false;
  289. }
  290. data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
  291. if (data_ == nullptr) {
  292. OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
  293. return false;
  294. }
  295. size_ = new_size;
  296. for (size_t i = 0; i < size_; i++) {
  297. new (&data_[i]) T;
  298. }
  299. return true;
  300. }
  301. // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns
  302. // true on success and false on error.
  303. bool CopyFrom(Span<const T> in) {
  304. if (!Init(in.size())) {
  305. return false;
  306. }
  307. OPENSSL_memcpy(data_, in.data(), sizeof(T) * in.size());
  308. return true;
  309. }
  310. // Shrink shrinks the stored size of the array to |new_size|. It crashes if
  311. // the new size is larger. Note this does not shrink the allocation itself.
  312. void Shrink(size_t new_size) {
  313. if (new_size > size_) {
  314. abort();
  315. }
  316. size_ = new_size;
  317. }
  318. private:
  319. T *data_ = nullptr;
  320. size_t size_ = 0;
  321. };
  322. // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array.
  323. OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out);
  324. // Protocol versions.
  325. //
  326. // Due to DTLS's historical wire version differences and to support multiple
  327. // variants of the same protocol during development, we maintain two notions of
  328. // version.
  329. //
  330. // The "version" or "wire version" is the actual 16-bit value that appears on
  331. // the wire. It uniquely identifies a version and is also used at API
  332. // boundaries. The set of supported versions differs between TLS and DTLS. Wire
  333. // versions are opaque values and may not be compared numerically.
  334. //
  335. // The "protocol version" identifies the high-level handshake variant being
  336. // used. DTLS versions map to the corresponding TLS versions. Draft TLS 1.3
  337. // variants all map to TLS 1.3. Protocol versions are sequential and may be
  338. // compared numerically.
  339. // ssl_protocol_version_from_wire sets |*out| to the protocol version
  340. // corresponding to wire version |version| and returns true. If |version| is not
  341. // a valid TLS or DTLS version, it returns false.
  342. //
  343. // Note this simultaneously handles both DTLS and TLS. Use one of the
  344. // higher-level functions below for most operations.
  345. bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version);
  346. // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
  347. // minimum and maximum enabled protocol versions, respectively.
  348. bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version,
  349. uint16_t *out_max_version);
  350. // ssl_supports_version returns whether |hs| supports |version|.
  351. bool ssl_supports_version(SSL_HANDSHAKE *hs, uint16_t version);
  352. // ssl_method_supports_version returns whether |method| supports |version|.
  353. bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method,
  354. uint16_t version);
  355. // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in
  356. // decreasing preference order.
  357. bool ssl_add_supported_versions(SSL_HANDSHAKE *hs, CBB *cbb);
  358. // ssl_negotiate_version negotiates a common version based on |hs|'s preferences
  359. // and the peer preference list in |peer_versions|. On success, it returns true
  360. // and sets |*out_version| to the selected version. Otherwise, it returns false
  361. // and sets |*out_alert| to an alert to send.
  362. bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
  363. uint16_t *out_version, const CBS *peer_versions);
  364. // ssl_protocol_version returns |ssl|'s protocol version. It is an error to
  365. // call this function before the version is determined.
  366. uint16_t ssl_protocol_version(const SSL *ssl);
  367. // ssl_is_draft28 returns whether the version corresponds to a draft28 TLS 1.3
  368. // variant.
  369. bool ssl_is_draft28(uint16_t version);
  370. // Cipher suites.
  371. } // namespace bssl
  372. struct ssl_cipher_st {
  373. // name is the OpenSSL name for the cipher.
  374. const char *name;
  375. // standard_name is the IETF name for the cipher.
  376. const char *standard_name;
  377. // id is the cipher suite value bitwise OR-d with 0x03000000.
  378. uint32_t id;
  379. // algorithm_* determine the cipher suite. See constants below for the values.
  380. uint32_t algorithm_mkey;
  381. uint32_t algorithm_auth;
  382. uint32_t algorithm_enc;
  383. uint32_t algorithm_mac;
  384. uint32_t algorithm_prf;
  385. };
  386. namespace bssl {
  387. // Bits for |algorithm_mkey| (key exchange algorithm).
  388. #define SSL_kRSA 0x00000001u
  389. #define SSL_kECDHE 0x00000002u
  390. // SSL_kPSK is only set for plain PSK, not ECDHE_PSK.
  391. #define SSL_kPSK 0x00000004u
  392. #define SSL_kGENERIC 0x00000008u
  393. // Bits for |algorithm_auth| (server authentication).
  394. #define SSL_aRSA 0x00000001u
  395. #define SSL_aECDSA 0x00000002u
  396. // SSL_aPSK is set for both PSK and ECDHE_PSK.
  397. #define SSL_aPSK 0x00000004u
  398. #define SSL_aGENERIC 0x00000008u
  399. #define SSL_aCERT (SSL_aRSA | SSL_aECDSA)
  400. // Bits for |algorithm_enc| (symmetric encryption).
  401. #define SSL_3DES 0x00000001u
  402. #define SSL_AES128 0x00000002u
  403. #define SSL_AES256 0x00000004u
  404. #define SSL_AES128GCM 0x00000008u
  405. #define SSL_AES256GCM 0x00000010u
  406. #define SSL_eNULL 0x00000020u
  407. #define SSL_CHACHA20POLY1305 0x00000040u
  408. #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
  409. // Bits for |algorithm_mac| (symmetric authentication).
  410. #define SSL_SHA1 0x00000001u
  411. // SSL_AEAD is set for all AEADs.
  412. #define SSL_AEAD 0x00000002u
  413. // Bits for |algorithm_prf| (handshake digest).
  414. #define SSL_HANDSHAKE_MAC_DEFAULT 0x1
  415. #define SSL_HANDSHAKE_MAC_SHA256 0x2
  416. #define SSL_HANDSHAKE_MAC_SHA384 0x4
  417. // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal-
  418. // preference groups. For TLS clients, the groups are moot because the server
  419. // picks the cipher and groups cannot be expressed on the wire. However, for
  420. // servers, the equal-preference groups allow the client's preferences to be
  421. // partially respected. (This only has an effect with
  422. // SSL_OP_CIPHER_SERVER_PREFERENCE).
  423. //
  424. // The equal-preference groups are expressed by grouping SSL_CIPHERs together.
  425. // All elements of a group have the same priority: no ordering is expressed
  426. // within a group.
  427. //
  428. // The values in |ciphers| are in one-to-one correspondence with
  429. // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of
  430. // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to
  431. // indicate that the corresponding SSL_CIPHER is not the last element of a
  432. // group, or 0 to indicate that it is.
  433. //
  434. // For example, if |in_group_flags| contains all zeros then that indicates a
  435. // traditional, fully-ordered preference. Every SSL_CIPHER is the last element
  436. // of the group (i.e. they are all in a one-element group).
  437. //
  438. // For a more complex example, consider:
  439. // ciphers: A B C D E F
  440. // in_group_flags: 1 1 0 0 1 0
  441. //
  442. // That would express the following, order:
  443. //
  444. // A E
  445. // B -> D -> F
  446. // C
  447. struct SSLCipherPreferenceList {
  448. static constexpr bool kAllowUniquePtr = true;
  449. SSLCipherPreferenceList() = default;
  450. ~SSLCipherPreferenceList();
  451. bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers,
  452. Span<const bool> in_group_flags);
  453. UniquePtr<STACK_OF(SSL_CIPHER)> ciphers;
  454. bool *in_group_flags = nullptr;
  455. };
  456. // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
  457. // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
  458. // and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
  459. // respectively. The MAC key length is zero except for legacy block and stream
  460. // ciphers. It returns true on success and false on error.
  461. bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
  462. size_t *out_mac_secret_len,
  463. size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
  464. uint16_t version, int is_dtls);
  465. // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and
  466. // |cipher|.
  467. const EVP_MD *ssl_get_handshake_digest(uint16_t version,
  468. const SSL_CIPHER *cipher);
  469. // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a
  470. // newly-allocated |SSLCipherPreferenceList| containing the result. It returns
  471. // true on success and false on failure. If |strict| is true, nonsense will be
  472. // rejected. If false, nonsense will be silently ignored. An empty result is
  473. // considered an error regardless of |strict|.
  474. bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
  475. const char *rule_str, bool strict);
  476. // ssl_cipher_get_value returns the cipher suite id of |cipher|.
  477. uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher);
  478. // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth|
  479. // values suitable for use with |key| in TLS 1.2 and below.
  480. uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key);
  481. // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the
  482. // server and, optionally, the client with a certificate.
  483. bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
  484. // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a
  485. // ServerKeyExchange message.
  486. //
  487. // This function may return false while still allowing |cipher| an optional
  488. // ServerKeyExchange. This is the case for plain PSK ciphers.
  489. bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
  490. // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
  491. // length of an encrypted 1-byte record, for use in record-splitting. Otherwise
  492. // it returns zero.
  493. size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
  494. // Transcript layer.
  495. // SSLTranscript maintains the handshake transcript as a combination of a
  496. // buffer and running hash.
  497. class SSLTranscript {
  498. public:
  499. SSLTranscript();
  500. ~SSLTranscript();
  501. // Init initializes the handshake transcript. If called on an existing
  502. // transcript, it resets the transcript and hash. It returns true on success
  503. // and false on failure.
  504. bool Init();
  505. // InitHash initializes the handshake hash based on the PRF and contents of
  506. // the handshake transcript. Subsequent calls to |Update| will update the
  507. // rolling hash. It returns one on success and zero on failure. It is an error
  508. // to call this function after the handshake buffer is released.
  509. bool InitHash(uint16_t version, const SSL_CIPHER *cipher);
  510. // UpdateForHelloRetryRequest resets the rolling hash with the
  511. // HelloRetryRequest construction. It returns true on success and false on
  512. // failure. It is an error to call this function before the handshake buffer
  513. // is released.
  514. bool UpdateForHelloRetryRequest();
  515. // CopyHashContext copies the hash context into |ctx| and returns true on
  516. // success.
  517. bool CopyHashContext(EVP_MD_CTX *ctx);
  518. Span<const uint8_t> buffer() {
  519. return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data),
  520. buffer_->length);
  521. }
  522. // FreeBuffer releases the handshake buffer. Subsequent calls to
  523. // |Update| will not update the handshake buffer.
  524. void FreeBuffer();
  525. // DigestLen returns the length of the PRF hash.
  526. size_t DigestLen() const;
  527. // Digest returns the PRF hash. For TLS 1.1 and below, this is
  528. // |EVP_md5_sha1|.
  529. const EVP_MD *Digest() const;
  530. // Update adds |in| to the handshake buffer and handshake hash, whichever is
  531. // enabled. It returns true on success and false on failure.
  532. bool Update(Span<const uint8_t> in);
  533. // GetHash writes the handshake hash to |out| which must have room for at
  534. // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to
  535. // the number of bytes written. Otherwise, it returns false.
  536. bool GetHash(uint8_t *out, size_t *out_len);
  537. // GetFinishedMAC computes the MAC for the Finished message into the bytes
  538. // pointed by |out| and writes the number of bytes to |*out_len|. |out| must
  539. // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false
  540. // on failure.
  541. bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session,
  542. bool from_server);
  543. private:
  544. // buffer_, if non-null, contains the handshake transcript.
  545. UniquePtr<BUF_MEM> buffer_;
  546. // hash, if initialized with an |EVP_MD|, maintains the handshake hash.
  547. ScopedEVP_MD_CTX hash_;
  548. };
  549. // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret|
  550. // as the secret and |label| as the label. |seed1| and |seed2| are concatenated
  551. // to form the seed parameter. It returns true on success and false on failure.
  552. bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
  553. Span<const uint8_t> secret, Span<const char> label,
  554. Span<const uint8_t> seed1, Span<const uint8_t> seed2);
  555. // Encryption layer.
  556. // SSLAEADContext contains information about an AEAD that is being used to
  557. // encrypt an SSL connection.
  558. class SSLAEADContext {
  559. public:
  560. SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher);
  561. ~SSLAEADContext();
  562. static constexpr bool kAllowUniquePtr = true;
  563. SSLAEADContext(const SSLAEADContext &&) = delete;
  564. SSLAEADContext &operator=(const SSLAEADContext &&) = delete;
  565. // CreateNullCipher creates an |SSLAEADContext| for the null cipher.
  566. static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls);
  567. // Create creates an |SSLAEADContext| using the supplied key material. It
  568. // returns nullptr on error. Only one of |Open| or |Seal| may be used with the
  569. // resulting object, depending on |direction|. |version| is the normalized
  570. // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef.
  571. static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction,
  572. uint16_t version, int is_dtls,
  573. const SSL_CIPHER *cipher,
  574. Span<const uint8_t> enc_key,
  575. Span<const uint8_t> mac_key,
  576. Span<const uint8_t> fixed_iv);
  577. // SetVersionIfNullCipher sets the version the SSLAEADContext for the null
  578. // cipher, to make version-specific determinations in the record layer prior
  579. // to a cipher being selected.
  580. void SetVersionIfNullCipher(uint16_t version);
  581. // ProtocolVersion returns the protocol version associated with this
  582. // SSLAEADContext. It can only be called once |version_| has been set to a
  583. // valid value.
  584. uint16_t ProtocolVersion() const;
  585. // RecordVersion returns the record version that should be used with this
  586. // SSLAEADContext for record construction and crypto.
  587. uint16_t RecordVersion() const;
  588. const SSL_CIPHER *cipher() const { return cipher_; }
  589. // is_null_cipher returns true if this is the null cipher.
  590. bool is_null_cipher() const { return !cipher_; }
  591. // ExplicitNonceLen returns the length of the explicit nonce.
  592. size_t ExplicitNonceLen() const;
  593. // MaxOverhead returns the maximum overhead of calling |Seal|.
  594. size_t MaxOverhead() const;
  595. // SuffixLen calculates the suffix length written by |SealScatter| and writes
  596. // it to |*out_suffix_len|. It returns true on success and false on error.
  597. // |in_len| and |extra_in_len| should equal the argument of the same names
  598. // passed to |SealScatter|.
  599. bool SuffixLen(size_t *out_suffix_len, size_t in_len,
  600. size_t extra_in_len) const;
  601. // CiphertextLen calculates the total ciphertext length written by
  602. // |SealScatter| and writes it to |*out_len|. It returns true on success and
  603. // false on error. |in_len| and |extra_in_len| should equal the argument of
  604. // the same names passed to |SealScatter|.
  605. bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const;
  606. // Open authenticates and decrypts |in| in-place. On success, it sets |*out|
  607. // to the plaintext in |in| and returns true. Otherwise, it returns
  608. // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|.
  609. bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version,
  610. const uint8_t seqnum[8], Span<const uint8_t> header,
  611. Span<uint8_t> in);
  612. // Seal encrypts and authenticates |in_len| bytes from |in| and writes the
  613. // result to |out|. It returns true on success and false on error.
  614. //
  615. // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|.
  616. bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type,
  617. uint16_t record_version, const uint8_t seqnum[8],
  618. Span<const uint8_t> header, const uint8_t *in, size_t in_len);
  619. // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits
  620. // the result between |out_prefix|, |out| and |out_suffix|. It returns one on
  621. // success and zero on error.
  622. //
  623. // On successful return, exactly |ExplicitNonceLen| bytes are written to
  624. // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to
  625. // |out_suffix|.
  626. //
  627. // |extra_in| may point to an additional plaintext buffer. If present,
  628. // |extra_in_len| additional bytes are encrypted and authenticated, and the
  629. // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should
  630. // be used to size |out_suffix| accordingly.
  631. //
  632. // If |in| and |out| alias then |out| must be == |in|. Other arguments may not
  633. // alias anything.
  634. bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix,
  635. uint8_t type, uint16_t record_version,
  636. const uint8_t seqnum[8], Span<const uint8_t> header,
  637. const uint8_t *in, size_t in_len, const uint8_t *extra_in,
  638. size_t extra_in_len);
  639. bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const;
  640. private:
  641. // GetAdditionalData returns the additional data, writing into |storage| if
  642. // necessary.
  643. Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type,
  644. uint16_t record_version,
  645. const uint8_t seqnum[8],
  646. size_t plaintext_len,
  647. Span<const uint8_t> header);
  648. const SSL_CIPHER *cipher_;
  649. ScopedEVP_AEAD_CTX ctx_;
  650. // fixed_nonce_ contains any bytes of the nonce that are fixed for all
  651. // records.
  652. uint8_t fixed_nonce_[12];
  653. uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0;
  654. // version_ is the wire version that should be used with this AEAD.
  655. uint16_t version_;
  656. // is_dtls_ is whether DTLS is being used with this AEAD.
  657. bool is_dtls_;
  658. // variable_nonce_included_in_record_ is true if the variable nonce
  659. // for a record is included as a prefix before the ciphertext.
  660. bool variable_nonce_included_in_record_ : 1;
  661. // random_variable_nonce_ is true if the variable nonce is
  662. // randomly generated, rather than derived from the sequence
  663. // number.
  664. bool random_variable_nonce_ : 1;
  665. // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the
  666. // variable nonce rather than prepended.
  667. bool xor_fixed_nonce_ : 1;
  668. // omit_length_in_ad_ is true if the length should be omitted in the
  669. // AEAD's ad parameter.
  670. bool omit_length_in_ad_ : 1;
  671. // omit_ad_ is true if the AEAD's ad parameter should be omitted.
  672. bool omit_ad_ : 1;
  673. // ad_is_header_ is true if the AEAD's ad parameter is the record header.
  674. bool ad_is_header_ : 1;
  675. };
  676. // DTLS replay bitmap.
  677. // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
  678. // replayed packets. It should be initialized by zeroing every field.
  679. struct DTLS1_BITMAP {
  680. // map is a bit mask of the last 64 sequence numbers. Bit
  681. // |1<<i| corresponds to |max_seq_num - i|.
  682. uint64_t map = 0;
  683. // max_seq_num is the largest sequence number seen so far as a 64-bit
  684. // integer.
  685. uint64_t max_seq_num = 0;
  686. };
  687. // Record layer.
  688. // ssl_record_sequence_update increments the sequence number in |seq|. It
  689. // returns one on success and zero on wraparound.
  690. int ssl_record_sequence_update(uint8_t *seq, size_t seq_len);
  691. // ssl_record_prefix_len returns the length of the prefix before the ciphertext
  692. // of a record for |ssl|.
  693. //
  694. // TODO(davidben): Expose this as part of public API once the high-level
  695. // buffer-free APIs are available.
  696. size_t ssl_record_prefix_len(const SSL *ssl);
  697. enum ssl_open_record_t {
  698. ssl_open_record_success,
  699. ssl_open_record_discard,
  700. ssl_open_record_partial,
  701. ssl_open_record_close_notify,
  702. ssl_open_record_error,
  703. };
  704. // tls_open_record decrypts a record from |in| in-place.
  705. //
  706. // If the input did not contain a complete record, it returns
  707. // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
  708. // bytes necessary. It is guaranteed that a successful call to |tls_open_record|
  709. // will consume at least that many bytes.
  710. //
  711. // Otherwise, it sets |*out_consumed| to the number of bytes of input
  712. // consumed. Note that input may be consumed on all return codes if a record was
  713. // decrypted.
  714. //
  715. // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
  716. // record type and |*out| to the record body in |in|. Note that |*out| may be
  717. // empty.
  718. //
  719. // If a record was successfully processed but should be discarded, it returns
  720. // |ssl_open_record_discard|.
  721. //
  722. // If a record was successfully processed but is a close_notify, it returns
  723. // |ssl_open_record_close_notify|.
  724. //
  725. // On failure or fatal alert, it returns |ssl_open_record_error| and sets
  726. // |*out_alert| to an alert to emit, or zero if no alert should be emitted.
  727. enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
  728. Span<uint8_t> *out, size_t *out_consumed,
  729. uint8_t *out_alert, Span<uint8_t> in);
  730. // dtls_open_record implements |tls_open_record| for DTLS. It only returns
  731. // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to
  732. // zero. The caller should read one packet and try again.
  733. enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
  734. Span<uint8_t> *out,
  735. size_t *out_consumed,
  736. uint8_t *out_alert, Span<uint8_t> in);
  737. // ssl_seal_align_prefix_len returns the length of the prefix before the start
  738. // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may
  739. // use this to align buffers.
  740. //
  741. // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte
  742. // record and is the offset into second record's ciphertext. Thus sealing a
  743. // small record may result in a smaller output than this value.
  744. //
  745. // TODO(davidben): Is this alignment valuable? Record-splitting makes this a
  746. // mess.
  747. size_t ssl_seal_align_prefix_len(const SSL *ssl);
  748. // tls_seal_record seals a new record of type |type| and body |in| and writes it
  749. // to |out|. At most |max_out| bytes will be written. It returns one on success
  750. // and zero on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC 1/n-1
  751. // record splitting and may write two records concatenated.
  752. //
  753. // For a large record, the bulk of the ciphertext will begin
  754. // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
  755. // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
  756. // bytes to |out|.
  757. //
  758. // |in| and |out| may not alias.
  759. int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
  760. uint8_t type, const uint8_t *in, size_t in_len);
  761. enum dtls1_use_epoch_t {
  762. dtls1_use_previous_epoch,
  763. dtls1_use_current_epoch,
  764. };
  765. // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
  766. // record.
  767. size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
  768. // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
  769. // front of the plaintext when sealing a record in-place.
  770. size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
  771. // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
  772. // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out|
  773. // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
  774. // ahead of |out|.
  775. int dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
  776. uint8_t type, const uint8_t *in, size_t in_len,
  777. enum dtls1_use_epoch_t use_epoch);
  778. // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
  779. // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
  780. // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
  781. // appropriate.
  782. enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
  783. Span<const uint8_t> in);
  784. // Private key operations.
  785. // ssl_has_private_key returns one if |cfg| has a private key configured and
  786. // zero otherwise.
  787. int ssl_has_private_key(const SSL_CONFIG *cfg);
  788. // ssl_private_key_* perform the corresponding operation on
  789. // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they
  790. // call the corresponding function or |complete| depending on whether there is a
  791. // pending operation. Otherwise, they implement the operation with
  792. // |EVP_PKEY|.
  793. enum ssl_private_key_result_t ssl_private_key_sign(
  794. SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
  795. uint16_t sigalg, Span<const uint8_t> in);
  796. enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
  797. uint8_t *out,
  798. size_t *out_len,
  799. size_t max_out,
  800. Span<const uint8_t> in);
  801. // ssl_private_key_supports_signature_algorithm returns whether |hs|'s private
  802. // key supports |sigalg|.
  803. bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
  804. uint16_t sigalg);
  805. // ssl_public_key_verify verifies that the |signature| is valid for the public
  806. // key |pkey| and input |in|, using the signature algorithm |sigalg|.
  807. bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
  808. uint16_t sigalg, EVP_PKEY *pkey,
  809. Span<const uint8_t> in);
  810. // Key shares.
  811. // SSLKeyShare abstracts over Diffie-Hellman-like key exchanges.
  812. class SSLKeyShare {
  813. public:
  814. virtual ~SSLKeyShare() {}
  815. static constexpr bool kAllowUniquePtr = true;
  816. HAS_VIRTUAL_DESTRUCTOR
  817. // Create returns a SSLKeyShare instance for use with group |group_id| or
  818. // nullptr on error.
  819. static UniquePtr<SSLKeyShare> Create(uint16_t group_id);
  820. // Create deserializes an SSLKeyShare instance previously serialized by
  821. // |Serialize|.
  822. static UniquePtr<SSLKeyShare> Create(CBS *in);
  823. // GroupID returns the group ID.
  824. virtual uint16_t GroupID() const PURE_VIRTUAL;
  825. // Offer generates a keypair and writes the public value to
  826. // |out_public_key|. It returns true on success and false on error.
  827. virtual bool Offer(CBB *out_public_key) PURE_VIRTUAL;
  828. // Accept performs a key exchange against the |peer_key| generated by |offer|.
  829. // On success, it returns true, writes the public value to |out_public_key|,
  830. // and sets |*out_secret| the shared secret. On failure, it returns false and
  831. // sets |*out_alert| to an alert to send to the peer.
  832. //
  833. // The default implementation calls |Offer| and then |Finish|, assuming a key
  834. // exchange protocol where the peers are symmetric.
  835. virtual bool Accept(CBB *out_public_key, Array<uint8_t> *out_secret,
  836. uint8_t *out_alert, Span<const uint8_t> peer_key);
  837. // Finish performs a key exchange against the |peer_key| generated by
  838. // |Accept|. On success, it returns true and sets |*out_secret| to the shared
  839. // secret. On failure, it returns zero and sets |*out_alert| to an alert to
  840. // send to the peer.
  841. virtual bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert,
  842. Span<const uint8_t> peer_key) PURE_VIRTUAL;
  843. // Serialize writes the state of the key exchange to |out|, returning true if
  844. // successful and false otherwise.
  845. virtual bool Serialize(CBB *out) { return false; }
  846. // Deserialize initializes the state of the key exchange from |in|, returning
  847. // true if successful and false otherwise. It is called by |Create|.
  848. virtual bool Deserialize(CBS *in) { return false; }
  849. };
  850. // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
  851. // sets |*out_group_id| to the group ID and returns one. Otherwise, it returns
  852. // zero.
  853. int ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
  854. // ssl_name_to_group_id looks up the group corresponding to the |name| string
  855. // of length |len|. On success, it sets |*out_group_id| to the group ID and
  856. // returns one. Otherwise, it returns zero.
  857. int ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
  858. // Handshake messages.
  859. struct SSLMessage {
  860. bool is_v2_hello;
  861. uint8_t type;
  862. CBS body;
  863. // raw is the entire serialized handshake message, including the TLS or DTLS
  864. // message header.
  865. CBS raw;
  866. };
  867. // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
  868. // ChangeCipherSpec, in the longest handshake flight. Currently this is the
  869. // client's second leg in a full handshake when client certificates, NPN, and
  870. // Channel ID, are all enabled.
  871. #define SSL_MAX_HANDSHAKE_FLIGHT 7
  872. extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE];
  873. extern const uint8_t kTLS12DowngradeRandom[8];
  874. extern const uint8_t kTLS13DowngradeRandom[8];
  875. // ssl_max_handshake_message_len returns the maximum number of bytes permitted
  876. // in a handshake message for |ssl|.
  877. size_t ssl_max_handshake_message_len(const SSL *ssl);
  878. // tls_can_accept_handshake_data returns whether |ssl| is able to accept more
  879. // data into handshake buffer.
  880. bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert);
  881. // tls_has_unprocessed_handshake_data returns whether there is buffered
  882. // handshake data that has not been consumed by |get_message|.
  883. bool tls_has_unprocessed_handshake_data(const SSL *ssl);
  884. // dtls_has_unprocessed_handshake_data behaves like
  885. // |tls_has_unprocessed_handshake_data| for DTLS.
  886. bool dtls_has_unprocessed_handshake_data(const SSL *ssl);
  887. // tls_flush_pending_hs_data flushes any handshake plaintext data.
  888. bool tls_flush_pending_hs_data(SSL *ssl);
  889. struct DTLS_OUTGOING_MESSAGE {
  890. DTLS_OUTGOING_MESSAGE() {}
  891. DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete;
  892. DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete;
  893. ~DTLS_OUTGOING_MESSAGE() { Clear(); }
  894. void Clear();
  895. uint8_t *data = nullptr;
  896. uint32_t len = 0;
  897. uint16_t epoch = 0;
  898. bool is_ccs = false;
  899. };
  900. // dtls_clear_outgoing_messages releases all buffered outgoing messages.
  901. void dtls_clear_outgoing_messages(SSL *ssl);
  902. // Callbacks.
  903. // ssl_do_info_callback calls |ssl|'s info callback, if set.
  904. void ssl_do_info_callback(const SSL *ssl, int type, int value);
  905. // ssl_do_msg_callback calls |ssl|'s message callback, if set.
  906. void ssl_do_msg_callback(SSL *ssl, int is_write, int content_type,
  907. Span<const uint8_t> in);
  908. // Transport buffers.
  909. class SSLBuffer {
  910. public:
  911. SSLBuffer() {}
  912. ~SSLBuffer() { Clear(); }
  913. SSLBuffer(const SSLBuffer &) = delete;
  914. SSLBuffer &operator=(const SSLBuffer &) = delete;
  915. uint8_t *data() { return buf_ + offset_; }
  916. size_t size() const { return size_; }
  917. bool empty() const { return size_ == 0; }
  918. size_t cap() const { return cap_; }
  919. Span<uint8_t> span() { return MakeSpan(data(), size()); }
  920. Span<uint8_t> remaining() {
  921. return MakeSpan(data() + size(), cap() - size());
  922. }
  923. // Clear releases the buffer.
  924. void Clear();
  925. // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such
  926. // that data written after |header_len| is aligned to a
  927. // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false
  928. // on error.
  929. bool EnsureCap(size_t header_len, size_t new_cap);
  930. // DidWrite extends the buffer by |len|. The caller must have filled in to
  931. // this point.
  932. void DidWrite(size_t len);
  933. // Consume consumes |len| bytes from the front of the buffer. The memory
  934. // consumed will remain valid until the next call to |DiscardConsumed| or
  935. // |Clear|.
  936. void Consume(size_t len);
  937. // DiscardConsumed discards the consumed bytes from the buffer. If the buffer
  938. // is now empty, it releases memory used by it.
  939. void DiscardConsumed();
  940. private:
  941. // buf_ is the memory allocated for this buffer.
  942. uint8_t *buf_ = nullptr;
  943. // offset_ is the offset into |buf_| which the buffer contents start at.
  944. uint16_t offset_ = 0;
  945. // size_ is the size of the buffer contents from |buf_| + |offset_|.
  946. uint16_t size_ = 0;
  947. // cap_ is how much memory beyond |buf_| + |offset_| is available.
  948. uint16_t cap_ = 0;
  949. };
  950. // ssl_read_buffer_extend_to extends the read buffer to the desired length. For
  951. // TLS, it reads to the end of the buffer until the buffer is |len| bytes
  952. // long. For DTLS, it reads a new packet and ignores |len|. It returns one on
  953. // success, zero on EOF, and a negative number on error.
  954. //
  955. // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
  956. // non-empty.
  957. int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
  958. // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer|
  959. // to a record-processing function. If |ret| is a success or if the caller
  960. // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <=
  961. // 0.
  962. int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret,
  963. size_t consumed, uint8_t alert);
  964. // ssl_write_buffer_flush flushes the write buffer to the transport. It returns
  965. // one on success and <= 0 on error. For DTLS, whether or not the write
  966. // succeeds, the write buffer will be cleared.
  967. int ssl_write_buffer_flush(SSL *ssl);
  968. // Certificate functions.
  969. // ssl_has_certificate returns one if a certificate and private key are
  970. // configured and zero otherwise.
  971. int ssl_has_certificate(const SSL_CONFIG *cfg);
  972. // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
  973. // by a TLS Certificate message. On success, it advances |cbs| and returns
  974. // true. Otherwise, it returns false and sets |*out_alert| to an alert to send
  975. // to the peer.
  976. //
  977. // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to
  978. // the certificate chain and the leaf certificate's public key
  979. // respectively. Otherwise, both will be set to nullptr.
  980. //
  981. // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
  982. // SHA-256 hash of the leaf to |out_leaf_sha256|.
  983. bool ssl_parse_cert_chain(uint8_t *out_alert,
  984. UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
  985. UniquePtr<EVP_PKEY> *out_pubkey,
  986. uint8_t *out_leaf_sha256, CBS *cbs,
  987. CRYPTO_BUFFER_POOL *pool);
  988. // ssl_add_cert_chain adds |hs->ssl|'s certificate chain to |cbb| in the format
  989. // used by a TLS Certificate message. If there is no certificate chain, it emits
  990. // an empty certificate list. It returns one on success and zero on error.
  991. int ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb);
  992. // ssl_cert_check_digital_signature_key_usage parses the DER-encoded, X.509
  993. // certificate in |in| and returns one if doesn't specify a key usage or, if it
  994. // does, if it includes digitalSignature. Otherwise it pushes to the error
  995. // queue and returns zero.
  996. int ssl_cert_check_digital_signature_key_usage(const CBS *in);
  997. // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
  998. // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns
  999. // nullptr and pushes to the error queue.
  1000. UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in);
  1001. // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
  1002. // TLS CertificateRequest message. On success, it returns a newly-allocated
  1003. // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and
  1004. // sets |*out_alert| to an alert to send to the peer.
  1005. UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
  1006. uint8_t *out_alert,
  1007. CBS *cbs);
  1008. // ssl_has_client_CAs returns there are configured CAs.
  1009. bool ssl_has_client_CAs(const SSL_CONFIG *cfg);
  1010. // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
  1011. // used by a TLS CertificateRequest message. It returns one on success and zero
  1012. // on error.
  1013. int ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb);
  1014. // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
  1015. // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes
  1016. // an error on the error queue.
  1017. int ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
  1018. const CRYPTO_BUFFER *leaf);
  1019. // ssl_on_certificate_selected is called once the certificate has been selected.
  1020. // It finalizes the certificate and initializes |hs->local_pubkey|. It returns
  1021. // one on success and zero on error.
  1022. int ssl_on_certificate_selected(SSL_HANDSHAKE *hs);
  1023. // TLS 1.3 key derivation.
  1024. // tls13_init_key_schedule initializes the handshake hash and key derivation
  1025. // state, and incorporates the PSK. The cipher suite and PRF hash must have been
  1026. // selected at this point. It returns one on success and zero on error.
  1027. int tls13_init_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk,
  1028. size_t psk_len);
  1029. // tls13_init_early_key_schedule initializes the handshake hash and key
  1030. // derivation state from the resumption secret and incorporates the PSK to
  1031. // derive the early secrets. It returns one on success and zero on error.
  1032. int tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk,
  1033. size_t psk_len);
  1034. // tls13_advance_key_schedule incorporates |in| into the key schedule with
  1035. // HKDF-Extract. It returns one on success and zero on error.
  1036. int tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in,
  1037. size_t len);
  1038. // tls13_set_traffic_key sets the read or write traffic keys to
  1039. // |traffic_secret|. It returns one on success and zero on error.
  1040. int tls13_set_traffic_key(SSL *ssl, enum evp_aead_direction_t direction,
  1041. const uint8_t *traffic_secret,
  1042. size_t traffic_secret_len);
  1043. // tls13_derive_early_secrets derives the early traffic secret. It returns one
  1044. // on success and zero on error.
  1045. int tls13_derive_early_secrets(SSL_HANDSHAKE *hs);
  1046. // tls13_derive_handshake_secrets derives the handshake traffic secret. It
  1047. // returns one on success and zero on error.
  1048. int tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
  1049. // tls13_rotate_traffic_key derives the next read or write traffic secret. It
  1050. // returns one on success and zero on error.
  1051. int tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
  1052. // tls13_derive_application_secrets derives the initial application data traffic
  1053. // and exporter secrets based on the handshake transcripts and |master_secret|.
  1054. // It returns one on success and zero on error.
  1055. int tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
  1056. // tls13_derive_resumption_secret derives the |resumption_secret|.
  1057. int tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
  1058. // tls13_export_keying_material provides an exporter interface to use the
  1059. // |exporter_secret|.
  1060. int tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
  1061. Span<const uint8_t> secret,
  1062. Span<const char> label,
  1063. Span<const uint8_t> context);
  1064. // tls13_finished_mac calculates the MAC of the handshake transcript to verify
  1065. // the integrity of the Finished message, and stores the result in |out| and
  1066. // length in |out_len|. |is_server| is 1 if this is for the Server Finished and
  1067. // 0 for the Client Finished.
  1068. int tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
  1069. int is_server);
  1070. // tls13_derive_session_psk calculates the PSK for this session based on the
  1071. // resumption master secret and |nonce|. It returns true on success, and false
  1072. // on failure.
  1073. bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce);
  1074. // tls13_write_psk_binder calculates the PSK binder value and replaces the last
  1075. // bytes of |msg| with the resulting value. It returns 1 on success, and 0 on
  1076. // failure.
  1077. int tls13_write_psk_binder(SSL_HANDSHAKE *hs, uint8_t *msg, size_t len);
  1078. // tls13_verify_psk_binder verifies that the handshake transcript, truncated
  1079. // up to the binders has a valid signature using the value of |session|'s
  1080. // resumption secret. It returns 1 on success, and 0 on failure.
  1081. int tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session,
  1082. const SSLMessage &msg, CBS *binders);
  1083. // Handshake functions.
  1084. enum ssl_hs_wait_t {
  1085. ssl_hs_error,
  1086. ssl_hs_ok,
  1087. ssl_hs_read_server_hello,
  1088. ssl_hs_read_message,
  1089. ssl_hs_flush,
  1090. ssl_hs_certificate_selection_pending,
  1091. ssl_hs_handoff,
  1092. ssl_hs_handback,
  1093. ssl_hs_x509_lookup,
  1094. ssl_hs_channel_id_lookup,
  1095. ssl_hs_private_key_operation,
  1096. ssl_hs_pending_session,
  1097. ssl_hs_pending_ticket,
  1098. ssl_hs_early_return,
  1099. ssl_hs_early_data_rejected,
  1100. ssl_hs_read_end_of_early_data,
  1101. ssl_hs_read_change_cipher_spec,
  1102. ssl_hs_certificate_verify,
  1103. };
  1104. enum ssl_grease_index_t {
  1105. ssl_grease_cipher = 0,
  1106. ssl_grease_group,
  1107. ssl_grease_extension1,
  1108. ssl_grease_extension2,
  1109. ssl_grease_version,
  1110. ssl_grease_ticket_extension,
  1111. ssl_grease_last_index = ssl_grease_ticket_extension,
  1112. };
  1113. enum tls12_server_hs_state_t {
  1114. state12_start_accept = 0,
  1115. state12_read_client_hello,
  1116. state12_select_certificate,
  1117. state12_tls13,
  1118. state12_select_parameters,
  1119. state12_send_server_hello,
  1120. state12_send_server_certificate,
  1121. state12_send_server_key_exchange,
  1122. state12_send_server_hello_done,
  1123. state12_read_client_certificate,
  1124. state12_verify_client_certificate,
  1125. state12_read_client_key_exchange,
  1126. state12_read_client_certificate_verify,
  1127. state12_read_change_cipher_spec,
  1128. state12_process_change_cipher_spec,
  1129. state12_read_next_proto,
  1130. state12_read_channel_id,
  1131. state12_read_client_finished,
  1132. state12_send_server_finished,
  1133. state12_finish_server_handshake,
  1134. state12_done,
  1135. };
  1136. // handback_t lists the points in the state machine where a handback can occur.
  1137. // These are the different points at which key material is no longer needed.
  1138. enum handback_t {
  1139. handback_after_session_resumption,
  1140. handback_after_ecdhe,
  1141. handback_after_handshake,
  1142. };
  1143. struct SSL_HANDSHAKE {
  1144. explicit SSL_HANDSHAKE(SSL *ssl);
  1145. ~SSL_HANDSHAKE();
  1146. static constexpr bool kAllowUniquePtr = true;
  1147. // ssl is a non-owning pointer to the parent |SSL| object.
  1148. SSL *ssl;
  1149. // config is a non-owning pointer to the handshake configuration.
  1150. SSL_CONFIG *config;
  1151. // wait contains the operation the handshake is currently blocking on or
  1152. // |ssl_hs_ok| if none.
  1153. enum ssl_hs_wait_t wait = ssl_hs_ok;
  1154. // state is the internal state for the TLS 1.2 and below handshake. Its
  1155. // values depend on |do_handshake| but the starting state is always zero.
  1156. int state = 0;
  1157. // tls13_state is the internal state for the TLS 1.3 handshake. Its values
  1158. // depend on |do_handshake| but the starting state is always zero.
  1159. int tls13_state = 0;
  1160. // min_version is the minimum accepted protocol version, taking account both
  1161. // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs.
  1162. uint16_t min_version = 0;
  1163. // max_version is the maximum accepted protocol version, taking account both
  1164. // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs.
  1165. uint16_t max_version = 0;
  1166. size_t hash_len = 0;
  1167. uint8_t secret[EVP_MAX_MD_SIZE] = {0};
  1168. uint8_t early_traffic_secret[EVP_MAX_MD_SIZE] = {0};
  1169. uint8_t client_handshake_secret[EVP_MAX_MD_SIZE] = {0};
  1170. uint8_t server_handshake_secret[EVP_MAX_MD_SIZE] = {0};
  1171. uint8_t client_traffic_secret_0[EVP_MAX_MD_SIZE] = {0};
  1172. uint8_t server_traffic_secret_0[EVP_MAX_MD_SIZE] = {0};
  1173. uint8_t expected_client_finished[EVP_MAX_MD_SIZE] = {0};
  1174. union {
  1175. // sent is a bitset where the bits correspond to elements of kExtensions
  1176. // in t1_lib.c. Each bit is set if that extension was sent in a
  1177. // ClientHello. It's not used by servers.
  1178. uint32_t sent = 0;
  1179. // received is a bitset, like |sent|, but is used by servers to record
  1180. // which extensions were received from a client.
  1181. uint32_t received;
  1182. } extensions;
  1183. // retry_group is the group ID selected by the server in HelloRetryRequest in
  1184. // TLS 1.3.
  1185. uint16_t retry_group = 0;
  1186. // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on.
  1187. UniquePtr<ERR_SAVE_STATE> error;
  1188. // key_share is the current key exchange instance.
  1189. UniquePtr<SSLKeyShare> key_share;
  1190. // transcript is the current handshake transcript.
  1191. SSLTranscript transcript;
  1192. // cookie is the value of the cookie received from the server, if any.
  1193. Array<uint8_t> cookie;
  1194. // key_share_bytes is the value of the previously sent KeyShare extension by
  1195. // the client in TLS 1.3.
  1196. Array<uint8_t> key_share_bytes;
  1197. // ecdh_public_key, for servers, is the key share to be sent to the client in
  1198. // TLS 1.3.
  1199. Array<uint8_t> ecdh_public_key;
  1200. // peer_sigalgs are the signature algorithms that the peer supports. These are
  1201. // taken from the contents of the signature algorithms extension for a server
  1202. // or from the CertificateRequest for a client.
  1203. Array<uint16_t> peer_sigalgs;
  1204. // peer_supported_group_list contains the supported group IDs advertised by
  1205. // the peer. This is only set on the server's end. The server does not
  1206. // advertise this extension to the client.
  1207. Array<uint16_t> peer_supported_group_list;
  1208. // peer_key is the peer's ECDH key for a TLS 1.2 client.
  1209. Array<uint8_t> peer_key;
  1210. // negotiated_token_binding_version is used by a server to store the
  1211. // on-the-wire encoding of the Token Binding protocol version to advertise in
  1212. // the ServerHello/EncryptedExtensions if the Token Binding extension is to be
  1213. // sent.
  1214. uint16_t negotiated_token_binding_version;
  1215. // cert_compression_alg_id, for a server, contains the negotiated certificate
  1216. // compression algorithm for this client. It is only valid if
  1217. // |cert_compression_negotiated| is true.
  1218. uint16_t cert_compression_alg_id;
  1219. // server_params, in a TLS 1.2 server, stores the ServerKeyExchange
  1220. // parameters. It has client and server randoms prepended for signing
  1221. // convenience.
  1222. Array<uint8_t> server_params;
  1223. // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
  1224. // server when using a TLS 1.2 PSK key exchange.
  1225. UniquePtr<char> peer_psk_identity_hint;
  1226. // ca_names, on the client, contains the list of CAs received in a
  1227. // CertificateRequest message.
  1228. UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names;
  1229. // cached_x509_ca_names contains a cache of parsed versions of the elements of
  1230. // |ca_names|. This pointer is left non-owning so only
  1231. // |ssl_crypto_x509_method| needs to link against crypto/x509.
  1232. STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr;
  1233. // certificate_types, on the client, contains the set of certificate types
  1234. // received in a CertificateRequest message.
  1235. Array<uint8_t> certificate_types;
  1236. // local_pubkey is the public key we are authenticating as.
  1237. UniquePtr<EVP_PKEY> local_pubkey;
  1238. // peer_pubkey is the public key parsed from the peer's leaf certificate.
  1239. UniquePtr<EVP_PKEY> peer_pubkey;
  1240. // new_session is the new mutable session being established by the current
  1241. // handshake. It should not be cached.
  1242. UniquePtr<SSL_SESSION> new_session;
  1243. // early_session is the session corresponding to the current 0-RTT state on
  1244. // the client if |in_early_data| is true.
  1245. UniquePtr<SSL_SESSION> early_session;
  1246. // new_cipher is the cipher being negotiated in this handshake.
  1247. const SSL_CIPHER *new_cipher = nullptr;
  1248. // key_block is the record-layer key block for TLS 1.2 and earlier.
  1249. Array<uint8_t> key_block;
  1250. // scts_requested is true if the SCT extension is in the ClientHello.
  1251. bool scts_requested : 1;
  1252. // needs_psk_binder is true if the ClientHello has a placeholder PSK binder to
  1253. // be filled in.
  1254. bool needs_psk_binder : 1;
  1255. bool received_hello_retry_request : 1;
  1256. bool sent_hello_retry_request : 1;
  1257. // handshake_finalized is true once the handshake has completed, at which
  1258. // point accessors should use the established state.
  1259. bool handshake_finalized : 1;
  1260. // accept_psk_mode stores whether the client's PSK mode is compatible with our
  1261. // preferences.
  1262. bool accept_psk_mode : 1;
  1263. // cert_request is true if a client certificate was requested.
  1264. bool cert_request : 1;
  1265. // certificate_status_expected is true if OCSP stapling was negotiated and the
  1266. // server is expected to send a CertificateStatus message. (This is used on
  1267. // both the client and server sides.)
  1268. bool certificate_status_expected : 1;
  1269. // ocsp_stapling_requested is true if a client requested OCSP stapling.
  1270. bool ocsp_stapling_requested : 1;
  1271. // should_ack_sni is used by a server and indicates that the SNI extension
  1272. // should be echoed in the ServerHello.
  1273. bool should_ack_sni : 1;
  1274. // in_false_start is true if there is a pending client handshake in False
  1275. // Start. The client may write data at this point.
  1276. bool in_false_start : 1;
  1277. // in_early_data is true if there is a pending handshake that has progressed
  1278. // enough to send and receive early data.
  1279. bool in_early_data : 1;
  1280. // early_data_offered is true if the client sent the early_data extension.
  1281. bool early_data_offered : 1;
  1282. // can_early_read is true if application data may be read at this point in the
  1283. // handshake.
  1284. bool can_early_read : 1;
  1285. // can_early_write is true if application data may be written at this point in
  1286. // the handshake.
  1287. bool can_early_write : 1;
  1288. // next_proto_neg_seen is one of NPN was negotiated.
  1289. bool next_proto_neg_seen : 1;
  1290. // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent
  1291. // or received.
  1292. bool ticket_expected : 1;
  1293. // extended_master_secret is true if the extended master secret extension is
  1294. // negotiated in this handshake.
  1295. bool extended_master_secret : 1;
  1296. // pending_private_key_op is true if there is a pending private key operation
  1297. // in progress.
  1298. bool pending_private_key_op : 1;
  1299. // grease_seeded is true if |grease_seed| has been initialized.
  1300. bool grease_seeded : 1;
  1301. // handback indicates that a server should pause the handshake after
  1302. // finishing operations that require private key material, in such a way that
  1303. // |SSL_get_error| returns |SSL_HANDBACK|. It is set by |SSL_apply_handoff|.
  1304. bool handback : 1;
  1305. // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid.
  1306. bool cert_compression_negotiated : 1;
  1307. // client_version is the value sent or received in the ClientHello version.
  1308. uint16_t client_version = 0;
  1309. // early_data_read is the amount of early data that has been read by the
  1310. // record layer.
  1311. uint16_t early_data_read = 0;
  1312. // early_data_written is the amount of early data that has been written by the
  1313. // record layer.
  1314. uint16_t early_data_written = 0;
  1315. // session_id is the session ID in the ClientHello, used for the experimental
  1316. // TLS 1.3 variant.
  1317. uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
  1318. uint8_t session_id_len = 0;
  1319. // grease_seed is the entropy for GREASE values. It is valid if
  1320. // |grease_seeded| is true.
  1321. uint8_t grease_seed[ssl_grease_last_index + 1] = {0};
  1322. };
  1323. UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl);
  1324. // ssl_check_message_type checks if |msg| has type |type|. If so it returns
  1325. // one. Otherwise, it sends an alert and returns zero.
  1326. bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type);
  1327. // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0
  1328. // on error. It sets |out_early_return| to one if we've completed the handshake
  1329. // early.
  1330. int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return);
  1331. // The following are implementations of |do_handshake| for the client and
  1332. // server.
  1333. enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs);
  1334. enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs);
  1335. enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
  1336. enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
  1337. // The following functions return human-readable representations of the TLS
  1338. // handshake states for debugging.
  1339. const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs);
  1340. const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs);
  1341. const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs);
  1342. const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs);
  1343. // tls13_post_handshake processes a post-handshake message. It returns one on
  1344. // success and zero on failure.
  1345. int tls13_post_handshake(SSL *ssl, const SSLMessage &msg);
  1346. int tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg,
  1347. int allow_anonymous);
  1348. int tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg);
  1349. // tls13_process_finished processes |msg| as a Finished message from the
  1350. // peer. If |use_saved_value| is one, the verify_data is compared against
  1351. // |hs->expected_client_finished| rather than computed fresh.
  1352. int tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg,
  1353. int use_saved_value);
  1354. int tls13_add_certificate(SSL_HANDSHAKE *hs);
  1355. // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the
  1356. // handshake. If it returns |ssl_private_key_retry|, it should be called again
  1357. // to retry when the signing operation is completed.
  1358. enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs);
  1359. int tls13_add_finished(SSL_HANDSHAKE *hs);
  1360. int tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg);
  1361. bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
  1362. Array<uint8_t> *out_secret,
  1363. uint8_t *out_alert, CBS *contents);
  1364. bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
  1365. Array<uint8_t> *out_secret,
  1366. uint8_t *out_alert, CBS *contents);
  1367. bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
  1368. bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
  1369. uint8_t *out_alert,
  1370. CBS *contents);
  1371. bool ssl_ext_pre_shared_key_parse_clienthello(
  1372. SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
  1373. uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, CBS *contents);
  1374. bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
  1375. // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
  1376. // returns whether it's valid.
  1377. bool ssl_is_sct_list_valid(const CBS *contents);
  1378. int ssl_write_client_hello(SSL_HANDSHAKE *hs);
  1379. enum ssl_cert_verify_context_t {
  1380. ssl_cert_verify_server,
  1381. ssl_cert_verify_client,
  1382. ssl_cert_verify_channel_id,
  1383. };
  1384. // tls13_get_cert_verify_signature_input generates the message to be signed for
  1385. // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
  1386. // type of signature. It sets |*out| to a newly allocated buffer containing the
  1387. // result. This function returns true on success and false on failure.
  1388. bool tls13_get_cert_verify_signature_input(
  1389. SSL_HANDSHAKE *hs, Array<uint8_t> *out,
  1390. enum ssl_cert_verify_context_t cert_verify_context);
  1391. // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server
  1392. // selection for |hs->ssl|'s client preferences.
  1393. bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs,
  1394. Span<const uint8_t> protocol);
  1395. // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
  1396. // true on successful negotiation or if nothing was negotiated. It returns false
  1397. // and sets |*out_alert| to an alert on error.
  1398. bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
  1399. const SSL_CLIENT_HELLO *client_hello);
  1400. struct SSL_EXTENSION_TYPE {
  1401. uint16_t type;
  1402. bool *out_present;
  1403. CBS *out_data;
  1404. };
  1405. // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
  1406. // it. It writes the parsed extensions to pointers denoted by |ext_types|. On
  1407. // success, it fills in the |out_present| and |out_data| fields and returns one.
  1408. // Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown
  1409. // extensions are rejected unless |ignore_unknown| is 1.
  1410. int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
  1411. const SSL_EXTENSION_TYPE *ext_types,
  1412. size_t num_ext_types, int ignore_unknown);
  1413. // ssl_verify_peer_cert verifies the peer certificate for |hs|.
  1414. enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs);
  1415. // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a
  1416. // session.
  1417. enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs);
  1418. enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs);
  1419. bool ssl_send_finished(SSL_HANDSHAKE *hs);
  1420. bool ssl_output_cert_chain(SSL_HANDSHAKE *hs);
  1421. // SSLKEYLOGFILE functions.
  1422. // ssl_log_secret logs |secret| with label |label|, if logging is enabled for
  1423. // |ssl|. It returns one on success and zero on failure.
  1424. int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret,
  1425. size_t secret_len);
  1426. // ClientHello functions.
  1427. bool ssl_client_hello_init(SSL *ssl, SSL_CLIENT_HELLO *out,
  1428. const SSLMessage &msg);
  1429. bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
  1430. CBS *out, uint16_t extension_type);
  1431. bool ssl_client_cipher_list_contains_cipher(
  1432. const SSL_CLIENT_HELLO *client_hello, uint16_t id);
  1433. // GREASE.
  1434. // ssl_get_grease_value returns a GREASE value for |hs|. For a given
  1435. // connection, the values for each index will be deterministic. This allows the
  1436. // same ClientHello be sent twice for a HelloRetryRequest or the same group be
  1437. // advertised in both supported_groups and key_shares.
  1438. uint16_t ssl_get_grease_value(SSL_HANDSHAKE *hs, enum ssl_grease_index_t index);
  1439. // Signature algorithms.
  1440. // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
  1441. // algorithms and saves them on |hs|. It returns true on success and false on
  1442. // error.
  1443. bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
  1444. // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm
  1445. // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on
  1446. // success and false if |pkey| may not be used at those versions.
  1447. bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey);
  1448. // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
  1449. // with |hs|'s private key based on the peer's preferences and the algorithms
  1450. // supported. It returns true on success and false on error.
  1451. bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out);
  1452. // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the
  1453. // peer signature to |out|. It returns true on success and false on error. If
  1454. // |for_certs| is true, the potentially more restrictive list of algorithms for
  1455. // certificates is used. Otherwise, the online signature one is used.
  1456. bool tls12_add_verify_sigalgs(const SSL *ssl, CBB *out, bool for_certs);
  1457. // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
  1458. // signature. It returns true on success and false on error, setting
  1459. // |*out_alert| to an alert to send.
  1460. bool tls12_check_peer_sigalg(const SSL *ssl, uint8_t *out_alert,
  1461. uint16_t sigalg);
  1462. // tls12_has_different_verify_sigalgs_for_certs returns whether |ssl| has a
  1463. // different, more restrictive, list of signature algorithms acceptable for the
  1464. // certificate than the online signature.
  1465. bool tls12_has_different_verify_sigalgs_for_certs(const SSL *ssl);
  1466. // Underdocumented functions.
  1467. //
  1468. // Functions below here haven't been touched up and may be underdocumented.
  1469. #define TLSEXT_CHANNEL_ID_SIZE 128
  1470. // From RFC4492, used in encoding the curve type in ECParameters
  1471. #define NAMED_CURVE_TYPE 3
  1472. struct CERT {
  1473. static constexpr bool kAllowUniquePtr = true;
  1474. explicit CERT(const SSL_X509_METHOD *x509_method);
  1475. ~CERT();
  1476. UniquePtr<EVP_PKEY> privatekey;
  1477. // chain contains the certificate chain, with the leaf at the beginning. The
  1478. // first element of |chain| may be NULL to indicate that the leaf certificate
  1479. // has not yet been set.
  1480. // If |chain| != NULL -> len(chain) >= 1
  1481. // If |chain[0]| == NULL -> len(chain) >= 2.
  1482. // |chain[1..]| != NULL
  1483. UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain;
  1484. // x509_chain may contain a parsed copy of |chain[1..]|. This is only used as
  1485. // a cache in order to implement “get0” functions that return a non-owning
  1486. // pointer to the certificate chain.
  1487. STACK_OF(X509) *x509_chain = nullptr;
  1488. // x509_leaf may contain a parsed copy of the first element of |chain|. This
  1489. // is only used as a cache in order to implement “get0” functions that return
  1490. // a non-owning pointer to the certificate chain.
  1491. X509 *x509_leaf = nullptr;
  1492. // x509_stash contains the last |X509| object append to the chain. This is a
  1493. // workaround for some third-party code that continue to use an |X509| object
  1494. // even after passing ownership with an “add0” function.
  1495. X509 *x509_stash = nullptr;
  1496. // key_method, if non-NULL, is a set of callbacks to call for private key
  1497. // operations.
  1498. const SSL_PRIVATE_KEY_METHOD *key_method = nullptr;
  1499. // x509_method contains pointers to functions that might deal with |X509|
  1500. // compatibility, or might be a no-op, depending on the application.
  1501. const SSL_X509_METHOD *x509_method = nullptr;
  1502. // sigalgs, if non-empty, is the set of signature algorithms supported by
  1503. // |privatekey| in decreasing order of preference.
  1504. Array<uint16_t> sigalgs;
  1505. // Certificate setup callback: if set is called whenever a
  1506. // certificate may be required (client or server). the callback
  1507. // can then examine any appropriate parameters and setup any
  1508. // certificates required. This allows advanced applications
  1509. // to select certificates on the fly: for example based on
  1510. // supported signature algorithms or curves.
  1511. int (*cert_cb)(SSL *ssl, void *arg) = nullptr;
  1512. void *cert_cb_arg = nullptr;
  1513. // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
  1514. // store is used instead.
  1515. X509_STORE *verify_store = nullptr;
  1516. // Signed certificate timestamp list to be sent to the client, if requested
  1517. UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
  1518. // OCSP response to be sent to the client, if requested.
  1519. UniquePtr<CRYPTO_BUFFER> ocsp_response;
  1520. // sid_ctx partitions the session space within a shared session cache or
  1521. // ticket key. Only sessions with a matching value will be accepted.
  1522. uint8_t sid_ctx_length = 0;
  1523. uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
  1524. };
  1525. // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS.
  1526. struct SSL_PROTOCOL_METHOD {
  1527. bool is_dtls;
  1528. bool (*ssl_new)(SSL *ssl);
  1529. void (*ssl_free)(SSL *ssl);
  1530. // get_message sets |*out| to the current handshake message and returns true
  1531. // if one has been received. It returns false if more input is needed.
  1532. bool (*get_message)(SSL *ssl, SSLMessage *out);
  1533. // next_message is called to release the current handshake message.
  1534. void (*next_message)(SSL *ssl);
  1535. // Use the |ssl_open_handshake| wrapper.
  1536. ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed,
  1537. uint8_t *out_alert, Span<uint8_t> in);
  1538. // Use the |ssl_open_change_cipher_spec| wrapper.
  1539. ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed,
  1540. uint8_t *out_alert,
  1541. Span<uint8_t> in);
  1542. // Use the |ssl_open_app_data| wrapper.
  1543. ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out,
  1544. size_t *out_consumed, uint8_t *out_alert,
  1545. Span<uint8_t> in);
  1546. int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
  1547. int len);
  1548. int (*dispatch_alert)(SSL *ssl);
  1549. // init_message begins a new handshake message of type |type|. |cbb| is the
  1550. // root CBB to be passed into |finish_message|. |*body| is set to a child CBB
  1551. // the caller should write to. It returns true on success and false on error.
  1552. bool (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
  1553. // finish_message finishes a handshake message. It sets |*out_msg| to the
  1554. // serialized message. It returns true on success and false on error.
  1555. bool (*finish_message)(SSL *ssl, CBB *cbb, bssl::Array<uint8_t> *out_msg);
  1556. // add_message adds a handshake message to the pending flight. It returns
  1557. // true on success and false on error.
  1558. bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg);
  1559. // add_change_cipher_spec adds a ChangeCipherSpec record to the pending
  1560. // flight. It returns true on success and false on error.
  1561. bool (*add_change_cipher_spec)(SSL *ssl);
  1562. // add_alert adds an alert to the pending flight. It returns true on success
  1563. // and false on error.
  1564. bool (*add_alert)(SSL *ssl, uint8_t level, uint8_t desc);
  1565. // flush_flight flushes the pending flight to the transport. It returns one on
  1566. // success and <= 0 on error.
  1567. int (*flush_flight)(SSL *ssl);
  1568. // on_handshake_complete is called when the handshake is complete.
  1569. void (*on_handshake_complete)(SSL *ssl);
  1570. // set_read_state sets |ssl|'s read cipher state to |aead_ctx|. It returns
  1571. // true on success and false if changing the read state is forbidden at this
  1572. // point.
  1573. bool (*set_read_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx);
  1574. // set_write_state sets |ssl|'s write cipher state to |aead_ctx|. It returns
  1575. // true on success and false if changing the write state is forbidden at this
  1576. // point.
  1577. bool (*set_write_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx);
  1578. };
  1579. // The following wrappers call |open_*| but handle |read_shutdown| correctly.
  1580. // ssl_open_handshake processes a record from |in| for reading a handshake
  1581. // message.
  1582. ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
  1583. uint8_t *out_alert, Span<uint8_t> in);
  1584. // ssl_open_change_cipher_spec processes a record from |in| for reading a
  1585. // ChangeCipherSpec.
  1586. ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
  1587. uint8_t *out_alert,
  1588. Span<uint8_t> in);
  1589. // ssl_open_app_data processes a record from |in| for reading application data.
  1590. // On success, it returns |ssl_open_record_success| and sets |*out| to the
  1591. // input. If it encounters a post-handshake message, it returns
  1592. // |ssl_open_record_discard|. The caller should then retry, after processing any
  1593. // messages received with |get_message|.
  1594. ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
  1595. size_t *out_consumed, uint8_t *out_alert,
  1596. Span<uint8_t> in);
  1597. struct SSL_X509_METHOD {
  1598. // check_client_CA_list returns one if |names| is a good list of X.509
  1599. // distinguished names and zero otherwise. This is used to ensure that we can
  1600. // reject unparsable values at handshake time when using crypto/x509.
  1601. int (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names);
  1602. // cert_clear frees and NULLs all X509 certificate-related state.
  1603. void (*cert_clear)(CERT *cert);
  1604. // cert_free frees all X509-related state.
  1605. void (*cert_free)(CERT *cert);
  1606. // cert_flush_cached_chain drops any cached |X509|-based certificate chain
  1607. // from |cert|.
  1608. // cert_dup duplicates any needed fields from |cert| to |new_cert|.
  1609. void (*cert_dup)(CERT *new_cert, const CERT *cert);
  1610. void (*cert_flush_cached_chain)(CERT *cert);
  1611. // cert_flush_cached_chain drops any cached |X509|-based leaf certificate
  1612. // from |cert|.
  1613. void (*cert_flush_cached_leaf)(CERT *cert);
  1614. // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain|
  1615. // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns
  1616. // one on success or zero on error.
  1617. int (*session_cache_objects)(SSL_SESSION *session);
  1618. // session_dup duplicates any needed fields from |session| to |new_session|.
  1619. // It returns one on success or zero on error.
  1620. int (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session);
  1621. // session_clear frees any X509-related state from |session|.
  1622. void (*session_clear)(SSL_SESSION *session);
  1623. // session_verify_cert_chain verifies the certificate chain in |session|,
  1624. // sets |session->verify_result| and returns one on success or zero on
  1625. // error.
  1626. int (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl,
  1627. uint8_t *out_alert);
  1628. // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|.
  1629. void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs);
  1630. // ssl_new does any neccessary initialisation of |hs|. It returns one on
  1631. // success or zero on error.
  1632. int (*ssl_new)(SSL_HANDSHAKE *hs);
  1633. // ssl_free frees anything created by |ssl_new|.
  1634. void (*ssl_config_free)(SSL_CONFIG *cfg);
  1635. // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|.
  1636. void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg);
  1637. // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
  1638. // necessary. On success, it updates |ssl|'s certificate configuration as
  1639. // needed and returns one. Otherwise, it returns zero.
  1640. int (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs);
  1641. // ssl_ctx_new does any neccessary initialisation of |ctx|. It returns one on
  1642. // success or zero on error.
  1643. int (*ssl_ctx_new)(SSL_CTX *ctx);
  1644. // ssl_ctx_free frees anything created by |ssl_ctx_new|.
  1645. void (*ssl_ctx_free)(SSL_CTX *ctx);
  1646. // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|.
  1647. void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl);
  1648. };
  1649. // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using
  1650. // crypto/x509.
  1651. extern const SSL_X509_METHOD ssl_crypto_x509_method;
  1652. // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid
  1653. // crypto/x509.
  1654. extern const SSL_X509_METHOD ssl_noop_x509_method;
  1655. struct TicketKey {
  1656. static constexpr bool kAllowUniquePtr = true;
  1657. uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0};
  1658. uint8_t hmac_key[16] = {0};
  1659. uint8_t aes_key[16] = {0};
  1660. // next_rotation_tv_sec is the time (in seconds from the epoch) when the
  1661. // current key should be superseded by a new key, or the time when a previous
  1662. // key should be dropped. If zero, then the key should not be automatically
  1663. // rotated.
  1664. uint64_t next_rotation_tv_sec = 0;
  1665. };
  1666. struct CertCompressionAlg {
  1667. static constexpr bool kAllowUniquePtr = true;
  1668. ssl_cert_compression_func_t compress = nullptr;
  1669. ssl_cert_decompression_func_t decompress = nullptr;
  1670. uint16_t alg_id = 0;
  1671. };
  1672. } // namespace bssl
  1673. DECLARE_LHASH_OF(SSL_SESSION)
  1674. DEFINE_NAMED_STACK_OF(CertCompressionAlg, bssl::CertCompressionAlg);
  1675. namespace bssl {
  1676. // An ssl_shutdown_t describes the shutdown state of one end of the connection,
  1677. // whether it is alive or has been shutdown via close_notify or fatal alert.
  1678. enum ssl_shutdown_t {
  1679. ssl_shutdown_none = 0,
  1680. ssl_shutdown_close_notify = 1,
  1681. ssl_shutdown_error = 2,
  1682. };
  1683. struct SSL3_STATE {
  1684. static constexpr bool kAllowUniquePtr = true;
  1685. SSL3_STATE();
  1686. ~SSL3_STATE();
  1687. uint8_t read_sequence[8] = {0};
  1688. uint8_t write_sequence[8] = {0};
  1689. uint8_t server_random[SSL3_RANDOM_SIZE] = {0};
  1690. uint8_t client_random[SSL3_RANDOM_SIZE] = {0};
  1691. // read_buffer holds data from the transport to be processed.
  1692. SSLBuffer read_buffer;
  1693. // write_buffer holds data to be written to the transport.
  1694. SSLBuffer write_buffer;
  1695. // pending_app_data is the unconsumed application data. It points into
  1696. // |read_buffer|.
  1697. Span<uint8_t> pending_app_data;
  1698. // partial write - check the numbers match
  1699. unsigned int wnum = 0; // number of bytes sent so far
  1700. int wpend_tot = 0; // number bytes written
  1701. int wpend_type = 0;
  1702. int wpend_ret = 0; // number of bytes submitted
  1703. const uint8_t *wpend_buf = nullptr;
  1704. // read_shutdown is the shutdown state for the read half of the connection.
  1705. enum ssl_shutdown_t read_shutdown = ssl_shutdown_none;
  1706. // write_shutdown is the shutdown state for the write half of the connection.
  1707. enum ssl_shutdown_t write_shutdown = ssl_shutdown_none;
  1708. // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for
  1709. // the receive half of the connection.
  1710. UniquePtr<ERR_SAVE_STATE> read_error;
  1711. int alert_dispatch = 0;
  1712. int total_renegotiations = 0;
  1713. // This holds a variable that indicates what we were doing when a 0 or -1 is
  1714. // returned. This is needed for non-blocking IO so we know what request
  1715. // needs re-doing when in SSL_accept or SSL_connect
  1716. int rwstate = SSL_NOTHING;
  1717. // early_data_skipped is the amount of early data that has been skipped by the
  1718. // record layer.
  1719. uint16_t early_data_skipped = 0;
  1720. // empty_record_count is the number of consecutive empty records received.
  1721. uint8_t empty_record_count = 0;
  1722. // warning_alert_count is the number of consecutive warning alerts
  1723. // received.
  1724. uint8_t warning_alert_count = 0;
  1725. // key_update_count is the number of consecutive KeyUpdates received.
  1726. uint8_t key_update_count = 0;
  1727. // The negotiated Token Binding key parameter. Only valid if
  1728. // |token_binding_negotiated| is set.
  1729. uint8_t negotiated_token_binding_param = 0;
  1730. // skip_early_data instructs the record layer to skip unexpected early data
  1731. // messages when 0RTT is rejected.
  1732. bool skip_early_data : 1;
  1733. // have_version is true if the connection's final version is known. Otherwise
  1734. // the version has not been negotiated yet.
  1735. bool have_version : 1;
  1736. // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
  1737. // and future messages should use the record layer.
  1738. bool v2_hello_done : 1;
  1739. // is_v2_hello is true if the current handshake message was derived from a
  1740. // V2ClientHello rather than received from the peer directly.
  1741. bool is_v2_hello : 1;
  1742. // has_message is true if the current handshake message has been returned
  1743. // at least once by |get_message| and false otherwise.
  1744. bool has_message : 1;
  1745. // initial_handshake_complete is true if the initial handshake has
  1746. // completed.
  1747. bool initial_handshake_complete : 1;
  1748. // session_reused indicates whether a session was resumed.
  1749. bool session_reused : 1;
  1750. bool send_connection_binding : 1;
  1751. // In a client, this means that the server supported Channel ID and that a
  1752. // Channel ID was sent. In a server it means that we echoed support for
  1753. // Channel IDs and that |channel_id| will be valid after the handshake.
  1754. bool channel_id_valid : 1;
  1755. // key_update_pending is true if we have a KeyUpdate acknowledgment
  1756. // outstanding.
  1757. bool key_update_pending : 1;
  1758. // wpend_pending is true if we have a pending write outstanding.
  1759. bool wpend_pending : 1;
  1760. // early_data_accepted is true if early data was accepted by the server.
  1761. bool early_data_accepted : 1;
  1762. // tls13_downgrade is whether the TLS 1.3 anti-downgrade logic fired.
  1763. bool tls13_downgrade : 1;
  1764. // token_binding_negotiated is set if Token Binding was negotiated.
  1765. bool token_binding_negotiated : 1;
  1766. // hs_buf is the buffer of handshake data to process.
  1767. UniquePtr<BUF_MEM> hs_buf;
  1768. // pending_hs_data contains the pending handshake data that has not yet
  1769. // been encrypted to |pending_flight|. This allows packing the handshake into
  1770. // fewer records.
  1771. UniquePtr<BUF_MEM> pending_hs_data;
  1772. // pending_flight is the pending outgoing flight. This is used to flush each
  1773. // handshake flight in a single write. |write_buffer| must be written out
  1774. // before this data.
  1775. UniquePtr<BUF_MEM> pending_flight;
  1776. // pending_flight_offset is the number of bytes of |pending_flight| which have
  1777. // been successfully written.
  1778. uint32_t pending_flight_offset = 0;
  1779. // ticket_age_skew is the difference, in seconds, between the client-sent
  1780. // ticket age and the server-computed value in TLS 1.3 server connections
  1781. // which resumed a session.
  1782. int32_t ticket_age_skew = 0;
  1783. // aead_read_ctx is the current read cipher state.
  1784. UniquePtr<SSLAEADContext> aead_read_ctx;
  1785. // aead_write_ctx is the current write cipher state.
  1786. UniquePtr<SSLAEADContext> aead_write_ctx;
  1787. // hs is the handshake state for the current handshake or NULL if there isn't
  1788. // one.
  1789. UniquePtr<SSL_HANDSHAKE> hs;
  1790. uint8_t write_traffic_secret[EVP_MAX_MD_SIZE] = {0};
  1791. uint8_t read_traffic_secret[EVP_MAX_MD_SIZE] = {0};
  1792. uint8_t exporter_secret[EVP_MAX_MD_SIZE] = {0};
  1793. uint8_t early_exporter_secret[EVP_MAX_MD_SIZE] = {0};
  1794. uint8_t write_traffic_secret_len = 0;
  1795. uint8_t read_traffic_secret_len = 0;
  1796. uint8_t exporter_secret_len = 0;
  1797. uint8_t early_exporter_secret_len = 0;
  1798. // Connection binding to prevent renegotiation attacks
  1799. uint8_t previous_client_finished[12] = {0};
  1800. uint8_t previous_client_finished_len = 0;
  1801. uint8_t previous_server_finished_len = 0;
  1802. uint8_t previous_server_finished[12] = {0};
  1803. uint8_t send_alert[2] = {0};
  1804. // established_session is the session established by the connection. This
  1805. // session is only filled upon the completion of the handshake and is
  1806. // immutable.
  1807. UniquePtr<SSL_SESSION> established_session;
  1808. // Next protocol negotiation. For the client, this is the protocol that we
  1809. // sent in NextProtocol and is set when handling ServerHello extensions.
  1810. //
  1811. // For a server, this is the client's selected_protocol from NextProtocol and
  1812. // is set when handling the NextProtocol message, before the Finished
  1813. // message.
  1814. Array<uint8_t> next_proto_negotiated;
  1815. // ALPN information
  1816. // (we are in the process of transitioning from NPN to ALPN.)
  1817. // In a server these point to the selected ALPN protocol after the
  1818. // ClientHello has been processed. In a client these contain the protocol
  1819. // that the server selected once the ServerHello has been processed.
  1820. Array<uint8_t> alpn_selected;
  1821. // hostname, on the server, is the value of the SNI extension.
  1822. UniquePtr<char> hostname;
  1823. // For a server:
  1824. // If |channel_id_valid| is true, then this contains the
  1825. // verified Channel ID from the client: a P256 point, (x,y), where
  1826. // each are big-endian values.
  1827. uint8_t channel_id[64] = {0};
  1828. // Contains the QUIC transport params received by the peer.
  1829. Array<uint8_t> peer_quic_transport_params;
  1830. // srtp_profile is the selected SRTP protection profile for
  1831. // DTLS-SRTP.
  1832. const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr;
  1833. };
  1834. // lengths of messages
  1835. #define DTLS1_COOKIE_LENGTH 256
  1836. #define DTLS1_RT_HEADER_LENGTH 13
  1837. #define DTLS1_HM_HEADER_LENGTH 12
  1838. #define DTLS1_CCS_HEADER_LENGTH 1
  1839. #define DTLS1_AL_HEADER_LENGTH 2
  1840. struct hm_header_st {
  1841. uint8_t type;
  1842. uint32_t msg_len;
  1843. uint16_t seq;
  1844. uint32_t frag_off;
  1845. uint32_t frag_len;
  1846. };
  1847. // An hm_fragment is an incoming DTLS message, possibly not yet assembled.
  1848. struct hm_fragment {
  1849. static constexpr bool kAllowUniquePtr = true;
  1850. hm_fragment() {}
  1851. hm_fragment(const hm_fragment &) = delete;
  1852. hm_fragment &operator=(const hm_fragment &) = delete;
  1853. ~hm_fragment();
  1854. // type is the type of the message.
  1855. uint8_t type = 0;
  1856. // seq is the sequence number of this message.
  1857. uint16_t seq = 0;
  1858. // msg_len is the length of the message body.
  1859. uint32_t msg_len = 0;
  1860. // data is a pointer to the message, including message header. It has length
  1861. // |DTLS1_HM_HEADER_LENGTH| + |msg_len|.
  1862. uint8_t *data = nullptr;
  1863. // reassembly is a bitmask of |msg_len| bits corresponding to which parts of
  1864. // the message have been received. It is NULL if the message is complete.
  1865. uint8_t *reassembly = nullptr;
  1866. };
  1867. struct OPENSSL_timeval {
  1868. uint64_t tv_sec;
  1869. uint32_t tv_usec;
  1870. };
  1871. struct DTLS1_STATE {
  1872. static constexpr bool kAllowUniquePtr = true;
  1873. DTLS1_STATE();
  1874. ~DTLS1_STATE();
  1875. // has_change_cipher_spec is true if we have received a ChangeCipherSpec from
  1876. // the peer in this epoch.
  1877. bool has_change_cipher_spec : 1;
  1878. // outgoing_messages_complete is true if |outgoing_messages| has been
  1879. // completed by an attempt to flush it. Future calls to |add_message| and
  1880. // |add_change_cipher_spec| will start a new flight.
  1881. bool outgoing_messages_complete : 1;
  1882. // flight_has_reply is true if the current outgoing flight is complete and has
  1883. // processed at least one message. This is used to detect whether we or the
  1884. // peer sent the final flight.
  1885. bool flight_has_reply : 1;
  1886. uint8_t cookie[DTLS1_COOKIE_LENGTH] = {0};
  1887. size_t cookie_len = 0;
  1888. // The current data and handshake epoch. This is initially undefined, and
  1889. // starts at zero once the initial handshake is completed.
  1890. uint16_t r_epoch = 0;
  1891. uint16_t w_epoch = 0;
  1892. // records being received in the current epoch
  1893. DTLS1_BITMAP bitmap;
  1894. uint16_t handshake_write_seq = 0;
  1895. uint16_t handshake_read_seq = 0;
  1896. // save last sequence number for retransmissions
  1897. uint8_t last_write_sequence[8] = {0};
  1898. UniquePtr<SSLAEADContext> last_aead_write_ctx;
  1899. // incoming_messages is a ring buffer of incoming handshake messages that have
  1900. // yet to be processed. The front of the ring buffer is message number
  1901. // |handshake_read_seq|, at position |handshake_read_seq| %
  1902. // |SSL_MAX_HANDSHAKE_FLIGHT|.
  1903. UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
  1904. // outgoing_messages is the queue of outgoing messages from the last handshake
  1905. // flight.
  1906. DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
  1907. uint8_t outgoing_messages_len = 0;
  1908. // outgoing_written is the number of outgoing messages that have been
  1909. // written.
  1910. uint8_t outgoing_written = 0;
  1911. // outgoing_offset is the number of bytes of the next outgoing message have
  1912. // been written.
  1913. uint32_t outgoing_offset = 0;
  1914. unsigned mtu = 0; // max DTLS packet size
  1915. // num_timeouts is the number of times the retransmit timer has fired since
  1916. // the last time it was reset.
  1917. unsigned num_timeouts = 0;
  1918. // Indicates when the last handshake msg or heartbeat sent will
  1919. // timeout.
  1920. struct OPENSSL_timeval next_timeout = {0, 0};
  1921. // timeout_duration_ms is the timeout duration in milliseconds.
  1922. unsigned timeout_duration_ms = 0;
  1923. };
  1924. // SSL_CONFIG contains configuration bits that can be shed after the handshake
  1925. // completes. Objects of this type are not shared; they are unique to a
  1926. // particular |SSL|.
  1927. //
  1928. // See SSL_shed_handshake_config() for more about the conditions under which
  1929. // configuration can be shed.
  1930. struct SSL_CONFIG {
  1931. static constexpr bool kAllowUniquePtr = true;
  1932. explicit SSL_CONFIG(SSL *ssl_arg);
  1933. ~SSL_CONFIG();
  1934. // ssl is a non-owning pointer to the parent |SSL| object.
  1935. SSL *const ssl = nullptr;
  1936. // conf_max_version is the maximum acceptable protocol version configured by
  1937. // |SSL_set_max_proto_version|. Note this version is normalized in DTLS and is
  1938. // further constrainted by |SSL_OP_NO_*|.
  1939. uint16_t conf_max_version = 0;
  1940. // conf_min_version is the minimum acceptable protocol version configured by
  1941. // |SSL_set_min_proto_version|. Note this version is normalized in DTLS and is
  1942. // further constrainted by |SSL_OP_NO_*|.
  1943. uint16_t conf_min_version = 0;
  1944. X509_VERIFY_PARAM *param = nullptr;
  1945. // crypto
  1946. UniquePtr<SSLCipherPreferenceList> cipher_list;
  1947. // This is used to hold the local certificate used (i.e. the server
  1948. // certificate for a server or the client certificate for a client).
  1949. UniquePtr<CERT> cert;
  1950. int (*verify_callback)(int ok,
  1951. X509_STORE_CTX *ctx) =
  1952. nullptr; // fail if callback returns 0
  1953. enum ssl_verify_result_t (*custom_verify_callback)(
  1954. SSL *ssl, uint8_t *out_alert) = nullptr;
  1955. // Server-only: psk_identity_hint is the identity hint to send in
  1956. // PSK-based key exchanges.
  1957. UniquePtr<char> psk_identity_hint;
  1958. unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
  1959. unsigned max_identity_len, uint8_t *psk,
  1960. unsigned max_psk_len) = nullptr;
  1961. unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
  1962. unsigned max_psk_len) = nullptr;
  1963. // for server side, keep the list of CA_dn we can use
  1964. UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
  1965. // cached_x509_client_CA is a cache of parsed versions of the elements of
  1966. // |client_CA|.
  1967. STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
  1968. Array<uint16_t> supported_group_list; // our list
  1969. // The client's Channel ID private key.
  1970. UniquePtr<EVP_PKEY> channel_id_private;
  1971. // For a client, this contains the list of supported protocols in wire
  1972. // format.
  1973. Array<uint8_t> alpn_client_proto_list;
  1974. // Contains a list of supported Token Binding key parameters.
  1975. Array<uint8_t> token_binding_params;
  1976. // Contains the QUIC transport params that this endpoint will send.
  1977. Array<uint8_t> quic_transport_params;
  1978. // verify_sigalgs, if not empty, is the set of signature algorithms
  1979. // accepted from the peer in decreasing order of preference.
  1980. Array<uint16_t> verify_sigalgs;
  1981. // srtp_profiles is the list of configured SRTP protection profiles for
  1982. // DTLS-SRTP.
  1983. UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
  1984. // verify_mode is a bitmask of |SSL_VERIFY_*| values.
  1985. uint8_t verify_mode = SSL_VERIFY_NONE;
  1986. // Enable signed certificate time stamps. Currently client only.
  1987. bool signed_cert_timestamps_enabled : 1;
  1988. // ocsp_stapling_enabled is only used by client connections and indicates
  1989. // whether OCSP stapling will be requested.
  1990. bool ocsp_stapling_enabled : 1;
  1991. // channel_id_enabled is copied from the |SSL_CTX|. For a server, means that
  1992. // we'll accept Channel IDs from clients. For a client, means that we'll
  1993. // advertise support.
  1994. bool channel_id_enabled : 1;
  1995. // retain_only_sha256_of_client_certs is true if we should compute the SHA256
  1996. // hash of the peer's certificate and then discard it to save memory and
  1997. // session space. Only effective on the server side.
  1998. bool retain_only_sha256_of_client_certs : 1;
  1999. // handoff indicates that a server should stop after receiving the
  2000. // ClientHello and pause the handshake in such a way that |SSL_get_error|
  2001. // returns |SSL_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX|
  2002. // element of the same name and may be cleared if the handoff is declined.
  2003. bool handoff : 1;
  2004. // shed_handshake_config indicates that the handshake config (this object!)
  2005. // should be freed after the handshake completes.
  2006. bool shed_handshake_config : 1;
  2007. };
  2008. // From RFC 8446, used in determining PSK modes.
  2009. #define SSL_PSK_DHE_KE 0x1
  2010. // From RFC 8446, used in determining whether to respond with a KeyUpdate.
  2011. #define SSL_KEY_UPDATE_NOT_REQUESTED 0
  2012. #define SSL_KEY_UPDATE_REQUESTED 1
  2013. // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early
  2014. // data that will be accepted. This value should be slightly below
  2015. // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext.
  2016. static const size_t kMaxEarlyDataAccepted = 14336;
  2017. UniquePtr<CERT> ssl_cert_dup(CERT *cert);
  2018. void ssl_cert_clear_certs(CERT *cert);
  2019. int ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer);
  2020. int ssl_is_key_type_supported(int key_type);
  2021. // ssl_compare_public_and_private_key returns one if |pubkey| is the public
  2022. // counterpart to |privkey|. Otherwise it returns zero and pushes a helpful
  2023. // message on the error queue.
  2024. int ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
  2025. const EVP_PKEY *privkey);
  2026. int ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey);
  2027. int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server);
  2028. int ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, const SSL_SESSION *session);
  2029. int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx);
  2030. // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on
  2031. // error.
  2032. UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method);
  2033. // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table
  2034. // keyed on session IDs.
  2035. uint32_t ssl_hash_session_id(Span<const uint8_t> session_id);
  2036. // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over
  2037. // the parsed data.
  2038. OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse(
  2039. CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool);
  2040. // ssl_session_serialize writes |in| to |cbb| as if it were serialising a
  2041. // session for Session-ID resumption. It returns one on success and zero on
  2042. // error.
  2043. OPENSSL_EXPORT int ssl_session_serialize(const SSL_SESSION *in, CBB *cbb);
  2044. // ssl_session_is_context_valid returns one if |session|'s session ID context
  2045. // matches the one set on |hs| and zero otherwise.
  2046. int ssl_session_is_context_valid(const SSL_HANDSHAKE *hs,
  2047. const SSL_SESSION *session);
  2048. // ssl_session_is_time_valid returns one if |session| is still valid and zero if
  2049. // it has expired.
  2050. int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
  2051. // ssl_session_is_resumable returns one if |session| is resumable for |hs| and
  2052. // zero otherwise.
  2053. int ssl_session_is_resumable(const SSL_HANDSHAKE *hs,
  2054. const SSL_SESSION *session);
  2055. // ssl_session_protocol_version returns the protocol version associated with
  2056. // |session|. Note that despite the name, this is not the same as
  2057. // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name.
  2058. uint16_t ssl_session_protocol_version(const SSL_SESSION *session);
  2059. // ssl_session_get_digest returns the digest used in |session|.
  2060. const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session);
  2061. void ssl_set_session(SSL *ssl, SSL_SESSION *session);
  2062. // ssl_get_prev_session looks up the previous session based on |client_hello|.
  2063. // On success, it sets |*out_session| to the session or nullptr if none was
  2064. // found. If the session could not be looked up synchronously, it returns
  2065. // |ssl_hs_pending_session| and should be called again. If a ticket could not be
  2066. // decrypted immediately it returns |ssl_hs_pending_ticket| and should also
  2067. // be called again. Otherwise, it returns |ssl_hs_error|.
  2068. enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs,
  2069. UniquePtr<SSL_SESSION> *out_session,
  2070. bool *out_tickets_supported,
  2071. bool *out_renew_ticket,
  2072. const SSL_CLIENT_HELLO *client_hello);
  2073. // The following flags determine which parts of the session are duplicated.
  2074. #define SSL_SESSION_DUP_AUTH_ONLY 0x0
  2075. #define SSL_SESSION_INCLUDE_TICKET 0x1
  2076. #define SSL_SESSION_INCLUDE_NONAUTH 0x2
  2077. #define SSL_SESSION_DUP_ALL \
  2078. (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
  2079. // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
  2080. // fields in |session| or nullptr on error. The new session is non-resumable and
  2081. // must be explicitly marked resumable once it has been filled in.
  2082. OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session,
  2083. int dup_flags);
  2084. // ssl_session_rebase_time updates |session|'s start time to the current time,
  2085. // adjusting the timeout so the expiration time is unchanged.
  2086. void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
  2087. // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
  2088. // |session|'s timeout to |timeout| (measured from the current time). The
  2089. // renewal is clamped to the session's auth_timeout.
  2090. void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session,
  2091. uint32_t timeout);
  2092. void ssl_update_cache(SSL_HANDSHAKE *hs, int mode);
  2093. int ssl_send_alert(SSL *ssl, int level, int desc);
  2094. bool ssl3_get_message(SSL *ssl, SSLMessage *out);
  2095. ssl_open_record_t ssl3_open_handshake(SSL *ssl, size_t *out_consumed,
  2096. uint8_t *out_alert, Span<uint8_t> in);
  2097. void ssl3_next_message(SSL *ssl);
  2098. int ssl3_dispatch_alert(SSL *ssl);
  2099. ssl_open_record_t ssl3_open_app_data(SSL *ssl, Span<uint8_t> *out,
  2100. size_t *out_consumed, uint8_t *out_alert,
  2101. Span<uint8_t> in);
  2102. ssl_open_record_t ssl3_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
  2103. uint8_t *out_alert,
  2104. Span<uint8_t> in);
  2105. int ssl3_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
  2106. int len);
  2107. bool ssl3_new(SSL *ssl);
  2108. void ssl3_free(SSL *ssl);
  2109. bool ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
  2110. bool ssl3_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
  2111. bool ssl3_add_message(SSL *ssl, Array<uint8_t> msg);
  2112. bool ssl3_add_change_cipher_spec(SSL *ssl);
  2113. bool ssl3_add_alert(SSL *ssl, uint8_t level, uint8_t desc);
  2114. int ssl3_flush_flight(SSL *ssl);
  2115. bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
  2116. bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
  2117. bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg);
  2118. bool dtls1_add_change_cipher_spec(SSL *ssl);
  2119. bool dtls1_add_alert(SSL *ssl, uint8_t level, uint8_t desc);
  2120. int dtls1_flush_flight(SSL *ssl);
  2121. // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
  2122. // the pending flight. It returns true on success and false on error.
  2123. bool ssl_add_message_cbb(SSL *ssl, CBB *cbb);
  2124. // ssl_hash_message incorporates |msg| into the handshake hash. It returns true
  2125. // on success and false on allocation failure.
  2126. bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg);
  2127. ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out,
  2128. size_t *out_consumed, uint8_t *out_alert,
  2129. Span<uint8_t> in);
  2130. ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
  2131. uint8_t *out_alert,
  2132. Span<uint8_t> in);
  2133. int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake,
  2134. const uint8_t *buf, int len);
  2135. // dtls1_write_record sends a record. It returns one on success and <= 0 on
  2136. // error.
  2137. int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len,
  2138. enum dtls1_use_epoch_t use_epoch);
  2139. int dtls1_retransmit_outgoing_messages(SSL *ssl);
  2140. bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
  2141. CBS *out_body);
  2142. bool dtls1_check_timeout_num(SSL *ssl);
  2143. void dtls1_start_timer(SSL *ssl);
  2144. void dtls1_stop_timer(SSL *ssl);
  2145. bool dtls1_is_timer_expired(SSL *ssl);
  2146. unsigned int dtls1_min_mtu(void);
  2147. bool dtls1_new(SSL *ssl);
  2148. void dtls1_free(SSL *ssl);
  2149. bool dtls1_get_message(SSL *ssl, SSLMessage *out);
  2150. ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
  2151. uint8_t *out_alert, Span<uint8_t> in);
  2152. void dtls1_next_message(SSL *ssl);
  2153. int dtls1_dispatch_alert(SSL *ssl);
  2154. // tls1_configure_aead configures either the read or write direction AEAD (as
  2155. // determined by |direction|) using the keys generated by the TLS KDF. The
  2156. // |key_block_cache| argument is used to store the generated key block, if
  2157. // empty. Otherwise it's assumed that the key block is already contained within
  2158. // it. Returns one on success or zero on error.
  2159. int tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
  2160. Array<uint8_t> *key_block_cache,
  2161. const SSL_CIPHER *cipher,
  2162. Span<const uint8_t> iv_override);
  2163. int tls1_change_cipher_state(SSL_HANDSHAKE *hs, evp_aead_direction_t direction);
  2164. int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
  2165. Span<const uint8_t> premaster);
  2166. // tls1_get_grouplist returns the locally-configured group preference list.
  2167. Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl);
  2168. // tls1_check_group_id returns whether |group_id| is consistent with locally-
  2169. // configured group preferences.
  2170. bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id);
  2171. // tls1_get_shared_group sets |*out_group_id| to the first preferred shared
  2172. // group between client and server preferences and returns true. If none may be
  2173. // found, it returns false.
  2174. bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
  2175. // tls1_set_curves converts the array of NIDs in |curves| into a newly allocated
  2176. // array of TLS group IDs. On success, the function returns true and writes the
  2177. // array to |*out_group_ids|. Otherwise, it returns false.
  2178. bool tls1_set_curves(Array<uint16_t> *out_group_ids, Span<const int> curves);
  2179. // tls1_set_curves_list converts the string of curves pointed to by |curves|
  2180. // into a newly allocated array of TLS group IDs. On success, the function
  2181. // returns true and writes the array to |*out_group_ids|. Otherwise, it returns
  2182. // false.
  2183. bool tls1_set_curves_list(Array<uint16_t> *out_group_ids, const char *curves);
  2184. // ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It returns
  2185. // true on success and false on failure. The |header_len| argument is the length
  2186. // of the ClientHello written so far and is used to compute the padding length.
  2187. // (It does not include the record header.)
  2188. bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len);
  2189. bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
  2190. bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
  2191. const SSL_CLIENT_HELLO *client_hello);
  2192. bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs);
  2193. #define tlsext_tick_md EVP_sha256
  2194. // ssl_process_ticket processes a session ticket from the client. It returns
  2195. // one of:
  2196. // |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and
  2197. // |*out_renew_ticket| is set to whether the ticket should be renewed.
  2198. // |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a
  2199. // fresh ticket should be sent, but the given ticket cannot be used.
  2200. // |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted.
  2201. // Retry later.
  2202. // |ssl_ticket_aead_error|: an error occured that is fatal to the connection.
  2203. enum ssl_ticket_aead_result_t ssl_process_ticket(
  2204. SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session,
  2205. bool *out_renew_ticket, Span<const uint8_t> ticket,
  2206. Span<const uint8_t> session_id);
  2207. // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies
  2208. // the signature. If the key is valid, it saves the Channel ID and returns true.
  2209. // Otherwise, it returns false.
  2210. bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg);
  2211. // tls1_write_channel_id generates a Channel ID message and puts the output in
  2212. // |cbb|. |ssl->channel_id_private| must already be set before calling. This
  2213. // function returns true on success and false on error.
  2214. bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb);
  2215. // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
  2216. // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
  2217. // true on success and false on failure.
  2218. bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len);
  2219. // tls1_record_handshake_hashes_for_channel_id records the current handshake
  2220. // hashes in |hs->new_session| so that Channel ID resumptions can sign that
  2221. // data.
  2222. bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs);
  2223. // ssl_do_channel_id_callback checks runs |hs->ssl->ctx->channel_id_cb| if
  2224. // necessary. It returns true on success and false on fatal error. Note that, on
  2225. // success, |hs->ssl->channel_id_private| may be unset, in which case the
  2226. // operation should be retried later.
  2227. bool ssl_do_channel_id_callback(SSL_HANDSHAKE *hs);
  2228. // ssl_can_write returns whether |ssl| is allowed to write.
  2229. bool ssl_can_write(const SSL *ssl);
  2230. // ssl_can_read returns wheter |ssl| is allowed to read.
  2231. bool ssl_can_read(const SSL *ssl);
  2232. void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock);
  2233. void ssl_ctx_get_current_time(const SSL_CTX *ctx,
  2234. struct OPENSSL_timeval *out_clock);
  2235. // ssl_reset_error_state resets state for |SSL_get_error|.
  2236. void ssl_reset_error_state(SSL *ssl);
  2237. // ssl_set_read_error sets |ssl|'s read half into an error state, saving the
  2238. // current state of the error queue.
  2239. void ssl_set_read_error(SSL *ssl);
  2240. } // namespace bssl
  2241. // Opaque C types.
  2242. //
  2243. // The following types are exported to C code as public typedefs, so they must
  2244. // be defined outside of the namespace.
  2245. // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility
  2246. // structure to support the legacy version-locked methods.
  2247. struct ssl_method_st {
  2248. // version, if non-zero, is the only protocol version acceptable to an
  2249. // SSL_CTX initialized from this method.
  2250. uint16_t version;
  2251. // method is the underlying SSL_PROTOCOL_METHOD that initializes the
  2252. // SSL_CTX.
  2253. const bssl::SSL_PROTOCOL_METHOD *method;
  2254. // x509_method contains pointers to functions that might deal with |X509|
  2255. // compatibility, or might be a no-op, depending on the application.
  2256. const bssl::SSL_X509_METHOD *x509_method;
  2257. };
  2258. struct ssl_ctx_st {
  2259. explicit ssl_ctx_st(const SSL_METHOD *ssl_method);
  2260. ssl_ctx_st(const ssl_ctx_st &) = delete;
  2261. ssl_ctx_st &operator=(const ssl_ctx_st &) = delete;
  2262. const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
  2263. const bssl::SSL_X509_METHOD *x509_method = nullptr;
  2264. // lock is used to protect various operations on this object.
  2265. CRYPTO_MUTEX lock;
  2266. // conf_max_version is the maximum acceptable protocol version configured by
  2267. // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS
  2268. // and is further constrainted by |SSL_OP_NO_*|.
  2269. uint16_t conf_max_version = 0;
  2270. // conf_min_version is the minimum acceptable protocol version configured by
  2271. // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS
  2272. // and is further constrainted by |SSL_OP_NO_*|.
  2273. uint16_t conf_min_version = 0;
  2274. // tls13_variant is the variant of TLS 1.3 we are using for this
  2275. // configuration.
  2276. tls13_variant_t tls13_variant = tls13_rfc;
  2277. bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list;
  2278. X509_STORE *cert_store = nullptr;
  2279. LHASH_OF(SSL_SESSION) *sessions = nullptr;
  2280. // Most session-ids that will be cached, default is
  2281. // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited.
  2282. unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
  2283. SSL_SESSION *session_cache_head = nullptr;
  2284. SSL_SESSION *session_cache_tail = nullptr;
  2285. // handshakes_since_cache_flush is the number of successful handshakes since
  2286. // the last cache flush.
  2287. int handshakes_since_cache_flush = 0;
  2288. // This can have one of 2 values, ored together,
  2289. // SSL_SESS_CACHE_CLIENT,
  2290. // SSL_SESS_CACHE_SERVER,
  2291. // Default is SSL_SESSION_CACHE_SERVER, which means only
  2292. // SSL_accept which cache SSL_SESSIONS.
  2293. int session_cache_mode = SSL_SESS_CACHE_SERVER;
  2294. // session_timeout is the default lifetime for new sessions in TLS 1.2 and
  2295. // earlier, in seconds.
  2296. uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
  2297. // session_psk_dhe_timeout is the default lifetime for new sessions in TLS
  2298. // 1.3, in seconds.
  2299. uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT;
  2300. // If this callback is not null, it will be called each time a session id is
  2301. // added to the cache. If this function returns 1, it means that the
  2302. // callback will do a SSL_SESSION_free() when it has finished using it.
  2303. // Otherwise, on 0, it means the callback has finished with it. If
  2304. // remove_session_cb is not null, it will be called when a session-id is
  2305. // removed from the cache. After the call, OpenSSL will SSL_SESSION_free()
  2306. // it.
  2307. int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr;
  2308. void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr;
  2309. SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len,
  2310. int *copy) = nullptr;
  2311. CRYPTO_refcount_t references = 1;
  2312. // if defined, these override the X509_verify_cert() calls
  2313. int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr;
  2314. void *app_verify_arg = nullptr;
  2315. ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
  2316. uint8_t *out_alert) = nullptr;
  2317. // Default password callback.
  2318. pem_password_cb *default_passwd_callback = nullptr;
  2319. // Default password callback user data.
  2320. void *default_passwd_callback_userdata = nullptr;
  2321. // get client cert callback
  2322. int (*client_cert_cb)(SSL *ssl, X509 **out_x509,
  2323. EVP_PKEY **out_pkey) = nullptr;
  2324. // get channel id callback
  2325. void (*channel_id_cb)(SSL *ssl, EVP_PKEY **out_pkey) = nullptr;
  2326. CRYPTO_EX_DATA ex_data;
  2327. // Default values used when no per-SSL value is defined follow
  2328. void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
  2329. // what we put in client cert requests
  2330. bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
  2331. // cached_x509_client_CA is a cache of parsed versions of the elements of
  2332. // |client_CA|.
  2333. STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
  2334. // Default values to use in SSL structures follow (these are copied by
  2335. // SSL_new)
  2336. uint32_t options = 0;
  2337. // Disable the auto-chaining feature by default. wpa_supplicant relies on this
  2338. // feature, but require callers opt into it.
  2339. uint32_t mode = SSL_MODE_NO_AUTO_CHAIN;
  2340. uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
  2341. bssl::UniquePtr<bssl::CERT> cert;
  2342. // callback that allows applications to peek at protocol messages
  2343. void (*msg_callback)(int write_p, int version, int content_type,
  2344. const void *buf, size_t len, SSL *ssl,
  2345. void *arg) = nullptr;
  2346. void *msg_callback_arg = nullptr;
  2347. int verify_mode = SSL_VERIFY_NONE;
  2348. int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) =
  2349. nullptr; // called 'verify_callback' in the SSL
  2350. X509_VERIFY_PARAM *param = nullptr;
  2351. // select_certificate_cb is called before most ClientHello processing and
  2352. // before the decision whether to resume a session is made. See
  2353. // |ssl_select_cert_result_t| for details of the return values.
  2354. ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) =
  2355. nullptr;
  2356. // dos_protection_cb is called once the resumption decision for a ClientHello
  2357. // has been made. It returns one to continue the handshake or zero to
  2358. // abort.
  2359. int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr;
  2360. // Controls whether to verify certificates when resuming connections. They
  2361. // were already verified when the connection was first made, so the default is
  2362. // false. For now, this is only respected on clients, not servers.
  2363. bool reverify_on_resume = false;
  2364. // Maximum amount of data to send in one fragment. actual record size can be
  2365. // more than this due to padding and MAC overheads.
  2366. uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
  2367. // TLS extensions servername callback
  2368. int (*servername_callback)(SSL *, int *, void *) = nullptr;
  2369. void *servername_arg = nullptr;
  2370. // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the
  2371. // first handshake and |ticket_key_prev| may be NULL at any time.
  2372. // Automatically generated ticket keys are rotated as needed at handshake
  2373. // time. Hence, all access must be synchronized through |lock|.
  2374. bssl::UniquePtr<bssl::TicketKey> ticket_key_current;
  2375. bssl::UniquePtr<bssl::TicketKey> ticket_key_prev;
  2376. // Callback to support customisation of ticket key setting
  2377. int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv,
  2378. EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr;
  2379. // Server-only: psk_identity_hint is the default identity hint to send in
  2380. // PSK-based key exchanges.
  2381. bssl::UniquePtr<char> psk_identity_hint;
  2382. unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
  2383. unsigned max_identity_len, uint8_t *psk,
  2384. unsigned max_psk_len) = nullptr;
  2385. unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
  2386. unsigned max_psk_len) = nullptr;
  2387. // Next protocol negotiation information
  2388. // (for experimental NPN extension).
  2389. // For a server, this contains a callback function by which the set of
  2390. // advertised protocols can be provided.
  2391. int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out,
  2392. unsigned *out_len, void *arg) = nullptr;
  2393. void *next_protos_advertised_cb_arg = nullptr;
  2394. // For a client, this contains a callback function that selects the
  2395. // next protocol from the list provided by the server.
  2396. int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
  2397. const uint8_t *in, unsigned in_len,
  2398. void *arg) = nullptr;
  2399. void *next_proto_select_cb_arg = nullptr;
  2400. // ALPN information
  2401. // (we are in the process of transitioning from NPN to ALPN.)
  2402. // For a server, this contains a callback function that allows the
  2403. // server to select the protocol for the connection.
  2404. // out: on successful return, this must point to the raw protocol
  2405. // name (without the length prefix).
  2406. // outlen: on successful return, this contains the length of |*out|.
  2407. // in: points to the client's list of supported protocols in
  2408. // wire-format.
  2409. // inlen: the length of |in|.
  2410. int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len,
  2411. const uint8_t *in, unsigned in_len,
  2412. void *arg) = nullptr;
  2413. void *alpn_select_cb_arg = nullptr;
  2414. // For a client, this contains the list of supported protocols in wire
  2415. // format.
  2416. bssl::Array<uint8_t> alpn_client_proto_list;
  2417. // SRTP profiles we are willing to do from RFC 5764
  2418. bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
  2419. // Defined compression algorithms for certificates.
  2420. bssl::UniquePtr<STACK_OF(CertCompressionAlg)> cert_compression_algs;
  2421. // Supported group values inherited by SSL structure
  2422. bssl::Array<uint16_t> supported_group_list;
  2423. // The client's Channel ID private key.
  2424. bssl::UniquePtr<EVP_PKEY> channel_id_private;
  2425. // keylog_callback, if not NULL, is the key logging callback. See
  2426. // |SSL_CTX_set_keylog_callback|.
  2427. void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr;
  2428. // current_time_cb, if not NULL, is the function to use to get the current
  2429. // time. It sets |*out_clock| to the current time. The |ssl| argument is
  2430. // always NULL. See |SSL_CTX_set_current_time_cb|.
  2431. void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr;
  2432. // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate
  2433. // memory.
  2434. CRYPTO_BUFFER_POOL *pool = nullptr;
  2435. // ticket_aead_method contains function pointers for opening and sealing
  2436. // session tickets.
  2437. const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr;
  2438. // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL
  2439. // compatibility.
  2440. int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr;
  2441. void *legacy_ocsp_callback_arg = nullptr;
  2442. // verify_sigalgs, if not empty, is the set of signature algorithms
  2443. // accepted from the peer in decreasing order of preference.
  2444. bssl::Array<uint16_t> verify_sigalgs;
  2445. // retain_only_sha256_of_client_certs is true if we should compute the SHA256
  2446. // hash of the peer's certificate and then discard it to save memory and
  2447. // session space. Only effective on the server side.
  2448. bool retain_only_sha256_of_client_certs : 1;
  2449. // quiet_shutdown is true if the connection should not send a close_notify on
  2450. // shutdown.
  2451. bool quiet_shutdown : 1;
  2452. // ocsp_stapling_enabled is only used by client connections and indicates
  2453. // whether OCSP stapling will be requested.
  2454. bool ocsp_stapling_enabled : 1;
  2455. // If true, a client will request certificate timestamps.
  2456. bool signed_cert_timestamps_enabled : 1;
  2457. // channel_id_enabled is whether Channel ID is enabled. For a server, means
  2458. // that we'll accept Channel IDs from clients. For a client, means that we'll
  2459. // advertise support.
  2460. bool channel_id_enabled : 1;
  2461. // grease_enabled is whether draft-davidben-tls-grease-01 is enabled.
  2462. bool grease_enabled : 1;
  2463. // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN
  2464. // protocols from the peer.
  2465. bool allow_unknown_alpn_protos : 1;
  2466. // ed25519_enabled is whether Ed25519 is advertised in the handshake.
  2467. bool ed25519_enabled : 1;
  2468. // rsa_pss_rsae_certs_enabled is whether rsa_pss_rsae_* are supported by the
  2469. // certificate verifier.
  2470. bool rsa_pss_rsae_certs_enabled : 1;
  2471. // false_start_allowed_without_alpn is whether False Start (if
  2472. // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN.
  2473. bool false_start_allowed_without_alpn : 1;
  2474. // ignore_tls13_downgrade is whether a connection should continue when the
  2475. // server random signals a downgrade.
  2476. bool ignore_tls13_downgrade:1;
  2477. // handoff indicates that a server should stop after receiving the
  2478. // ClientHello and pause the handshake in such a way that |SSL_get_error|
  2479. // returns |SSL_HANDOFF|.
  2480. bool handoff : 1;
  2481. // If enable_early_data is true, early data can be sent and accepted.
  2482. bool enable_early_data : 1;
  2483. private:
  2484. ~ssl_ctx_st();
  2485. friend void SSL_CTX_free(SSL_CTX *);
  2486. };
  2487. struct ssl_st {
  2488. explicit ssl_st(SSL_CTX *ctx_arg);
  2489. ssl_st(const ssl_st &) = delete;
  2490. ssl_st &operator=(const ssl_st &) = delete;
  2491. ~ssl_st();
  2492. // method is the method table corresponding to the current protocol (DTLS or
  2493. // TLS).
  2494. const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
  2495. // config is a container for handshake configuration. Accesses to this field
  2496. // should check for nullptr, since configuration may be shed after the
  2497. // handshake completes. (If you have the |SSL_HANDSHAKE| object at hand, use
  2498. // that instead, and skip the null check.)
  2499. bssl::UniquePtr<bssl::SSL_CONFIG> config;
  2500. // version is the protocol version.
  2501. uint16_t version = 0;
  2502. uint16_t max_send_fragment = 0;
  2503. // There are 2 BIO's even though they are normally both the same. This is so
  2504. // data can be read and written to different handlers
  2505. bssl::UniquePtr<BIO> rbio; // used by SSL_read
  2506. bssl::UniquePtr<BIO> wbio; // used by SSL_write
  2507. // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|.
  2508. // Otherwise, it returns a value corresponding to what operation is needed to
  2509. // progress.
  2510. bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr;
  2511. bssl::SSL3_STATE *s3 = nullptr; // TLS variables
  2512. bssl::DTLS1_STATE *d1 = nullptr; // DTLS variables
  2513. // callback that allows applications to peek at protocol messages
  2514. void (*msg_callback)(int write_p, int version, int content_type,
  2515. const void *buf, size_t len, SSL *ssl,
  2516. void *arg) = nullptr;
  2517. void *msg_callback_arg = nullptr;
  2518. // session info
  2519. // initial_timeout_duration_ms is the default DTLS timeout duration in
  2520. // milliseconds. It's used to initialize the timer any time it's restarted.
  2521. //
  2522. // RFC 6347 states that implementations SHOULD use an initial timer value of 1
  2523. // second.
  2524. unsigned initial_timeout_duration_ms = 1000;
  2525. // tls13_variant is the variant of TLS 1.3 we are using for this
  2526. // configuration.
  2527. tls13_variant_t tls13_variant = tls13_rfc;
  2528. // session is the configured session to be offered by the client. This session
  2529. // is immutable.
  2530. bssl::UniquePtr<SSL_SESSION> session;
  2531. void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
  2532. bssl::UniquePtr<SSL_CTX> ctx;
  2533. // session_ctx is the |SSL_CTX| used for the session cache and related
  2534. // settings.
  2535. bssl::UniquePtr<SSL_CTX> session_ctx;
  2536. // extra application data
  2537. CRYPTO_EX_DATA ex_data;
  2538. uint32_t options = 0; // protocol behaviour
  2539. uint32_t mode = 0; // API behaviour
  2540. uint32_t max_cert_list = 0;
  2541. bssl::UniquePtr<char> hostname;
  2542. // renegotiate_mode controls how peer renegotiation attempts are handled.
  2543. ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never;
  2544. // server is true iff the this SSL* is the server half. Note: before the SSL*
  2545. // is initialized by either SSL_set_accept_state or SSL_set_connect_state,
  2546. // the side is not determined. In this state, server is always false.
  2547. bool server : 1;
  2548. // quiet_shutdown is true if the connection should not send a close_notify on
  2549. // shutdown.
  2550. bool quiet_shutdown : 1;
  2551. // If enable_early_data is true, early data can be sent and accepted.
  2552. bool enable_early_data : 1;
  2553. };
  2554. struct ssl_session_st {
  2555. explicit ssl_session_st(const bssl::SSL_X509_METHOD *method);
  2556. ssl_session_st(const ssl_session_st &) = delete;
  2557. ssl_session_st &operator=(const ssl_session_st &) = delete;
  2558. CRYPTO_refcount_t references = 1;
  2559. // ssl_version is the (D)TLS version that established the session.
  2560. uint16_t ssl_version = 0;
  2561. // group_id is the ID of the ECDH group used to establish this session or zero
  2562. // if not applicable or unknown.
  2563. uint16_t group_id = 0;
  2564. // peer_signature_algorithm is the signature algorithm used to authenticate
  2565. // the peer, or zero if not applicable or unknown.
  2566. uint16_t peer_signature_algorithm = 0;
  2567. // master_key, in TLS 1.2 and below, is the master secret associated with the
  2568. // session. In TLS 1.3 and up, it is the resumption secret.
  2569. int master_key_length = 0;
  2570. uint8_t master_key[SSL_MAX_MASTER_KEY_LENGTH] = {0};
  2571. // session_id - valid?
  2572. unsigned session_id_length = 0;
  2573. uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
  2574. // this is used to determine whether the session is being reused in
  2575. // the appropriate context. It is up to the application to set this,
  2576. // via SSL_new
  2577. uint8_t sid_ctx_length = 0;
  2578. uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
  2579. bssl::UniquePtr<char> psk_identity;
  2580. // certs contains the certificate chain from the peer, starting with the leaf
  2581. // certificate.
  2582. bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs;
  2583. const bssl::SSL_X509_METHOD *x509_method = nullptr;
  2584. // x509_peer is the peer's certificate.
  2585. X509 *x509_peer = nullptr;
  2586. // x509_chain is the certificate chain sent by the peer. NOTE: for historical
  2587. // reasons, when a client (so the peer is a server), the chain includes
  2588. // |peer|, but when a server it does not.
  2589. STACK_OF(X509) *x509_chain = nullptr;
  2590. // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that
  2591. // omits the leaf certificate. This exists because OpenSSL, historically,
  2592. // didn't include the leaf certificate in the chain for a server, but did for
  2593. // a client. The |x509_chain| always includes it and, if an API call requires
  2594. // a chain without, it is stored here.
  2595. STACK_OF(X509) *x509_chain_without_leaf = nullptr;
  2596. // verify_result is the result of certificate verification in the case of
  2597. // non-fatal certificate errors.
  2598. long verify_result = X509_V_ERR_INVALID_CALL;
  2599. // timeout is the lifetime of the session in seconds, measured from |time|.
  2600. // This is renewable up to |auth_timeout|.
  2601. uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT;
  2602. // auth_timeout is the non-renewable lifetime of the session in seconds,
  2603. // measured from |time|.
  2604. uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
  2605. // time is the time the session was issued, measured in seconds from the UNIX
  2606. // epoch.
  2607. uint64_t time = 0;
  2608. const SSL_CIPHER *cipher = nullptr;
  2609. CRYPTO_EX_DATA ex_data; // application specific data
  2610. // These are used to make removal of session-ids more efficient and to
  2611. // implement a maximum cache size.
  2612. SSL_SESSION *prev = nullptr, *next = nullptr;
  2613. bssl::Array<uint8_t> ticket;
  2614. bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
  2615. // The OCSP response that came with the session.
  2616. bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
  2617. // peer_sha256 contains the SHA-256 hash of the peer's certificate if
  2618. // |peer_sha256_valid| is true.
  2619. uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0};
  2620. // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or
  2621. // SHA-2, depending on TLS version) for the original, full handshake that
  2622. // created a session. This is used by Channel IDs during resumption.
  2623. uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0};
  2624. uint8_t original_handshake_hash_len = 0;
  2625. uint32_t ticket_lifetime_hint = 0; // Session lifetime hint in seconds
  2626. uint32_t ticket_age_add = 0;
  2627. // ticket_max_early_data is the maximum amount of data allowed to be sent as
  2628. // early data. If zero, 0-RTT is disallowed.
  2629. uint32_t ticket_max_early_data = 0;
  2630. // early_alpn is the ALPN protocol from the initial handshake. This is only
  2631. // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT
  2632. // resumptions.
  2633. bssl::Array<uint8_t> early_alpn;
  2634. // extended_master_secret is whether the master secret in this session was
  2635. // generated using EMS and thus isn't vulnerable to the Triple Handshake
  2636. // attack.
  2637. bool extended_master_secret : 1;
  2638. // peer_sha256_valid is whether |peer_sha256| is valid.
  2639. bool peer_sha256_valid : 1; // Non-zero if peer_sha256 is valid
  2640. // not_resumable is used to indicate that session resumption is disallowed.
  2641. bool not_resumable : 1;
  2642. // ticket_age_add_valid is whether |ticket_age_add| is valid.
  2643. bool ticket_age_add_valid : 1;
  2644. // is_server is whether this session was created by a server.
  2645. bool is_server : 1;
  2646. private:
  2647. ~ssl_session_st();
  2648. friend void SSL_SESSION_free(SSL_SESSION *);
  2649. };
  2650. #endif // OPENSSL_HEADER_SSL_INTERNAL_H