boringssl/ssl/ssl_lib.c
David Benjamin b4d65fda70 Implement asynchronous private key operations for client auth.
This adds a new API, SSL_set_private_key_method, which allows the consumer to
customize private key operations. For simplicity, it is incompatible with the
multiple slots feature (which will hopefully go away) but does not, for now,
break it.

The new method is only routed up for the client for now. The server will
require a decrypt hook as well for the plain RSA key exchange.

BUG=347404

Change-Id: I35d69095c29134c34c2af88c613ad557d6957614
Reviewed-on: https://boringssl-review.googlesource.com/5049
Reviewed-by: Adam Langley <agl@google.com>
2015-06-18 22:14:51 +00:00

2963 lines
83 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE. */
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/dh.h>
#include <openssl/err.h>
#include <openssl/lhash.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include <openssl/x509v3.h>
#include "internal.h"
#include "../crypto/internal.h"
/* Some error codes are special. Ensure the make_errors.go script never
* regresses this. */
OPENSSL_COMPILE_ASSERT(SSL_R_TLSV1_ALERT_NO_RENEGOTIATION ==
SSL_AD_NO_RENEGOTIATION + SSL_AD_REASON_OFFSET,
ssl_alert_reason_code_mismatch);
/* kMaxHandshakeSize is the maximum size, in bytes, of a handshake message. */
static const size_t kMaxHandshakeSize = (1u << 24) - 1;
static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl = CRYPTO_EX_DATA_CLASS_INIT;
static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl_ctx = CRYPTO_EX_DATA_CLASS_INIT;
int SSL_clear(SSL *ssl) {
if (ssl->method == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_clear, SSL_R_NO_METHOD_SPECIFIED);
return 0;
}
if (ssl_clear_bad_session(ssl)) {
SSL_SESSION_free(ssl->session);
ssl->session = NULL;
}
ssl->hit = 0;
ssl->shutdown = 0;
/* SSL_clear may be called before or after the |ssl| is initialized in either
* accept or connect state. In the latter case, SSL_clear should preserve the
* half and reset |ssl->state| accordingly. */
if (ssl->handshake_func != NULL) {
if (ssl->server) {
SSL_set_accept_state(ssl);
} else {
SSL_set_connect_state(ssl);
}
} else {
assert(ssl->state == 0);
}
/* TODO(davidben): Some state on |ssl| is reset both in |SSL_new| and
* |SSL_clear| because it is per-connection state rather than configuration
* state. Per-connection state should be on |ssl->s3| and |ssl->d1| so it is
* naturally reset at the right points between |SSL_new|, |SSL_clear|, and
* |ssl3_new|. */
ssl->rwstate = SSL_NOTHING;
ssl->rstate = SSL_ST_READ_HEADER;
BUF_MEM_free(ssl->init_buf);
ssl->init_buf = NULL;
ssl->packet = NULL;
ssl->packet_length = 0;
ssl_clear_cipher_ctx(ssl);
OPENSSL_free(ssl->next_proto_negotiated);
ssl->next_proto_negotiated = NULL;
ssl->next_proto_negotiated_len = 0;
/* The ssl->d1->mtu is simultaneously configuration (preserved across
* clear) and connection-specific state (gets reset).
*
* TODO(davidben): Avoid this. */
unsigned mtu = 0;
if (ssl->d1 != NULL) {
mtu = ssl->d1->mtu;
}
ssl->method->ssl_free(ssl);
if (!ssl->method->ssl_new(ssl)) {
return 0;
}
ssl->enc_method = ssl3_get_enc_method(ssl->version);
assert(ssl->enc_method != NULL);
if (SSL_IS_DTLS(ssl) && (SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
ssl->d1->mtu = mtu;
}
ssl->client_version = ssl->version;
return 1;
}
SSL *SSL_new(SSL_CTX *ctx) {
SSL *s;
if (ctx == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_new, SSL_R_NULL_SSL_CTX);
return NULL;
}
if (ctx->method == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_new, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
return NULL;
}
s = (SSL *)OPENSSL_malloc(sizeof(SSL));
if (s == NULL) {
goto err;
}
memset(s, 0, sizeof(SSL));
s->min_version = ctx->min_version;
s->max_version = ctx->max_version;
s->options = ctx->options;
s->mode = ctx->mode;
s->max_cert_list = ctx->max_cert_list;
s->cert = ssl_cert_dup(ctx->cert);
if (s->cert == NULL) {
goto err;
}
s->msg_callback = ctx->msg_callback;
s->msg_callback_arg = ctx->msg_callback_arg;
s->verify_mode = ctx->verify_mode;
s->sid_ctx_length = ctx->sid_ctx_length;
assert(s->sid_ctx_length <= sizeof s->sid_ctx);
memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx));
s->verify_callback = ctx->default_verify_callback;
s->generate_session_id = ctx->generate_session_id;
s->param = X509_VERIFY_PARAM_new();
if (!s->param) {
goto err;
}
X509_VERIFY_PARAM_inherit(s->param, ctx->param);
s->quiet_shutdown = ctx->quiet_shutdown;
s->max_send_fragment = ctx->max_send_fragment;
CRYPTO_refcount_inc(&ctx->references);
s->ctx = ctx;
s->tlsext_ticket_expected = 0;
CRYPTO_refcount_inc(&ctx->references);
s->initial_ctx = ctx;
if (ctx->tlsext_ecpointformatlist) {
s->tlsext_ecpointformatlist = BUF_memdup(
ctx->tlsext_ecpointformatlist, ctx->tlsext_ecpointformatlist_length);
if (!s->tlsext_ecpointformatlist) {
goto err;
}
s->tlsext_ecpointformatlist_length = ctx->tlsext_ecpointformatlist_length;
}
if (ctx->tlsext_ellipticcurvelist) {
s->tlsext_ellipticcurvelist =
BUF_memdup(ctx->tlsext_ellipticcurvelist,
ctx->tlsext_ellipticcurvelist_length * 2);
if (!s->tlsext_ellipticcurvelist) {
goto err;
}
s->tlsext_ellipticcurvelist_length = ctx->tlsext_ellipticcurvelist_length;
}
s->next_proto_negotiated = NULL;
if (s->ctx->alpn_client_proto_list) {
s->alpn_client_proto_list = BUF_memdup(s->ctx->alpn_client_proto_list,
s->ctx->alpn_client_proto_list_len);
if (s->alpn_client_proto_list == NULL) {
goto err;
}
s->alpn_client_proto_list_len = s->ctx->alpn_client_proto_list_len;
}
s->verify_result = X509_V_OK;
s->method = ctx->method;
if (!s->method->ssl_new(s)) {
goto err;
}
s->enc_method = ssl3_get_enc_method(s->version);
assert(s->enc_method != NULL);
s->rwstate = SSL_NOTHING;
s->rstate = SSL_ST_READ_HEADER;
CRYPTO_new_ex_data(&g_ex_data_class_ssl, s, &s->ex_data);
s->psk_identity_hint = NULL;
if (ctx->psk_identity_hint) {
s->psk_identity_hint = BUF_strdup(ctx->psk_identity_hint);
if (s->psk_identity_hint == NULL) {
goto err;
}
}
s->psk_client_callback = ctx->psk_client_callback;
s->psk_server_callback = ctx->psk_server_callback;
s->tlsext_channel_id_enabled = ctx->tlsext_channel_id_enabled;
if (ctx->tlsext_channel_id_private) {
s->tlsext_channel_id_private =
EVP_PKEY_up_ref(ctx->tlsext_channel_id_private);
}
s->signed_cert_timestamps_enabled = s->ctx->signed_cert_timestamps_enabled;
s->ocsp_stapling_enabled = s->ctx->ocsp_stapling_enabled;
return s;
err:
SSL_free(s);
OPENSSL_PUT_ERROR(SSL, SSL_new, ERR_R_MALLOC_FAILURE);
return NULL;
}
int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const uint8_t *sid_ctx,
unsigned int sid_ctx_len) {
if (sid_ctx_len > sizeof ctx->sid_ctx) {
OPENSSL_PUT_ERROR(SSL, SSL_CTX_set_session_id_context,
SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
return 0;
}
ctx->sid_ctx_length = sid_ctx_len;
memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
return 1;
}
int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx,
unsigned int sid_ctx_len) {
if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
OPENSSL_PUT_ERROR(SSL, SSL_set_session_id_context,
SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
return 0;
}
ssl->sid_ctx_length = sid_ctx_len;
memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
return 1;
}
int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) {
ctx->generate_session_id = cb;
return 1;
}
int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) {
ssl->generate_session_id = cb;
return 1;
}
int SSL_has_matching_session_id(const SSL *ssl, const uint8_t *id,
unsigned int id_len) {
/* A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how we
* can "construct" a session to give us the desired check - ie. to find if
* there's a session in the hash table that would conflict with any new
* session built out of this id/id_len and the ssl_version in use by this
* SSL. */
SSL_SESSION r, *p;
if (id_len > sizeof r.session_id) {
return 0;
}
r.ssl_version = ssl->version;
r.session_id_length = id_len;
memcpy(r.session_id, id, id_len);
CRYPTO_MUTEX_lock_read(&ssl->ctx->lock);
p = lh_SSL_SESSION_retrieve(ssl->ctx->sessions, &r);
CRYPTO_MUTEX_unlock(&ssl->ctx->lock);
return p != NULL;
}
int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) {
return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
}
int SSL_set_purpose(SSL *s, int purpose) {
return X509_VERIFY_PARAM_set_purpose(s->param, purpose);
}
int SSL_CTX_set_trust(SSL_CTX *s, int trust) {
return X509_VERIFY_PARAM_set_trust(s->param, trust);
}
int SSL_set_trust(SSL *s, int trust) {
return X509_VERIFY_PARAM_set_trust(s->param, trust);
}
int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) {
return X509_VERIFY_PARAM_set1(ctx->param, vpm);
}
int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) {
return X509_VERIFY_PARAM_set1(ssl->param, vpm);
}
void ssl_cipher_preference_list_free(
struct ssl_cipher_preference_list_st *cipher_list) {
if (cipher_list == NULL) {
return;
}
sk_SSL_CIPHER_free(cipher_list->ciphers);
OPENSSL_free(cipher_list->in_group_flags);
OPENSSL_free(cipher_list);
}
struct ssl_cipher_preference_list_st *ssl_cipher_preference_list_dup(
struct ssl_cipher_preference_list_st *cipher_list) {
struct ssl_cipher_preference_list_st *ret = NULL;
size_t n = sk_SSL_CIPHER_num(cipher_list->ciphers);
ret = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st));
if (!ret) {
goto err;
}
ret->ciphers = NULL;
ret->in_group_flags = NULL;
ret->ciphers = sk_SSL_CIPHER_dup(cipher_list->ciphers);
if (!ret->ciphers) {
goto err;
}
ret->in_group_flags = BUF_memdup(cipher_list->in_group_flags, n);
if (!ret->in_group_flags) {
goto err;
}
return ret;
err:
ssl_cipher_preference_list_free(ret);
return NULL;
}
struct ssl_cipher_preference_list_st *ssl_cipher_preference_list_from_ciphers(
STACK_OF(SSL_CIPHER) *ciphers) {
struct ssl_cipher_preference_list_st *ret = NULL;
size_t n = sk_SSL_CIPHER_num(ciphers);
ret = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st));
if (!ret) {
goto err;
}
ret->ciphers = NULL;
ret->in_group_flags = NULL;
ret->ciphers = sk_SSL_CIPHER_dup(ciphers);
if (!ret->ciphers) {
goto err;
}
ret->in_group_flags = OPENSSL_malloc(n);
if (!ret->in_group_flags) {
goto err;
}
memset(ret->in_group_flags, 0, n);
return ret;
err:
ssl_cipher_preference_list_free(ret);
return NULL;
}
X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) { return ctx->param; }
X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) { return ssl->param; }
void SSL_certs_clear(SSL *s) { ssl_cert_clear_certs(s->cert); }
void SSL_free(SSL *ssl) {
if (ssl == NULL) {
return;
}
X509_VERIFY_PARAM_free(ssl->param);
CRYPTO_free_ex_data(&g_ex_data_class_ssl, ssl, &ssl->ex_data);
if (ssl->bbio != NULL) {
/* If the buffering BIO is in place, pop it off */
if (ssl->bbio == ssl->wbio) {
ssl->wbio = BIO_pop(ssl->wbio);
}
BIO_free(ssl->bbio);
ssl->bbio = NULL;
}
int free_wbio = ssl->wbio != ssl->rbio;
BIO_free_all(ssl->rbio);
if (free_wbio) {
BIO_free_all(ssl->wbio);
}
BUF_MEM_free(ssl->init_buf);
/* add extra stuff */
ssl_cipher_preference_list_free(ssl->cipher_list);
sk_SSL_CIPHER_free(ssl->cipher_list_by_id);
ssl_clear_bad_session(ssl);
SSL_SESSION_free(ssl->session);
ssl_clear_cipher_ctx(ssl);
ssl_cert_free(ssl->cert);
OPENSSL_free(ssl->tlsext_hostname);
SSL_CTX_free(ssl->initial_ctx);
OPENSSL_free(ssl->tlsext_ecpointformatlist);
OPENSSL_free(ssl->tlsext_ellipticcurvelist);
OPENSSL_free(ssl->alpn_client_proto_list);
EVP_PKEY_free(ssl->tlsext_channel_id_private);
OPENSSL_free(ssl->psk_identity_hint);
sk_X509_NAME_pop_free(ssl->client_CA, X509_NAME_free);
OPENSSL_free(ssl->next_proto_negotiated);
sk_SRTP_PROTECTION_PROFILE_free(ssl->srtp_profiles);
if (ssl->method != NULL) {
ssl->method->ssl_free(ssl);
}
SSL_CTX_free(ssl->ctx);
OPENSSL_free(ssl);
}
void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) {
/* If the output buffering BIO is still in place, remove it. */
if (s->bbio != NULL) {
if (s->wbio == s->bbio) {
s->wbio = s->wbio->next_bio;
s->bbio->next_bio = NULL;
}
}
if (s->rbio != rbio) {
BIO_free_all(s->rbio);
}
if (s->wbio != wbio && s->rbio != s->wbio) {
BIO_free_all(s->wbio);
}
s->rbio = rbio;
s->wbio = wbio;
}
BIO *SSL_get_rbio(const SSL *s) { return s->rbio; }
BIO *SSL_get_wbio(const SSL *s) { return s->wbio; }
int SSL_get_fd(const SSL *s) { return SSL_get_rfd(s); }
int SSL_get_rfd(const SSL *s) {
int ret = -1;
BIO *b, *r;
b = SSL_get_rbio(s);
r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
if (r != NULL) {
BIO_get_fd(r, &ret);
}
return ret;
}
int SSL_get_wfd(const SSL *s) {
int ret = -1;
BIO *b, *r;
b = SSL_get_wbio(s);
r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR);
if (r != NULL) {
BIO_get_fd(r, &ret);
}
return ret;
}
int SSL_set_fd(SSL *s, int fd) {
int ret = 0;
BIO *bio = NULL;
bio = BIO_new(BIO_s_fd());
if (bio == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_set_fd, ERR_R_BUF_LIB);
goto err;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set_bio(s, bio, bio);
ret = 1;
err:
return ret;
}
int SSL_set_wfd(SSL *s, int fd) {
int ret = 0;
BIO *bio = NULL;
if (s->rbio == NULL || BIO_method_type(s->rbio) != BIO_TYPE_FD ||
(int)BIO_get_fd(s->rbio, NULL) != fd) {
bio = BIO_new(BIO_s_fd());
if (bio == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_set_wfd, ERR_R_BUF_LIB);
goto err;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set_bio(s, SSL_get_rbio(s), bio);
} else {
SSL_set_bio(s, SSL_get_rbio(s), SSL_get_rbio(s));
}
ret = 1;
err:
return ret;
}
int SSL_set_rfd(SSL *s, int fd) {
int ret = 0;
BIO *bio = NULL;
if (s->wbio == NULL || BIO_method_type(s->wbio) != BIO_TYPE_FD ||
(int)BIO_get_fd(s->wbio, NULL) != fd) {
bio = BIO_new(BIO_s_fd());
if (bio == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_set_rfd, ERR_R_BUF_LIB);
goto err;
}
BIO_set_fd(bio, fd, BIO_NOCLOSE);
SSL_set_bio(s, bio, SSL_get_wbio(s));
} else {
SSL_set_bio(s, SSL_get_wbio(s), SSL_get_wbio(s));
}
ret = 1;
err:
return ret;
}
/* return length of latest Finished message we sent, copy to 'buf' */
size_t SSL_get_finished(const SSL *s, void *buf, size_t count) {
size_t ret = 0;
if (s->s3 != NULL) {
ret = s->s3->tmp.finish_md_len;
if (count > ret) {
count = ret;
}
memcpy(buf, s->s3->tmp.finish_md, count);
}
return ret;
}
/* return length of latest Finished message we expected, copy to 'buf' */
size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) {
size_t ret = 0;
if (s->s3 != NULL) {
ret = s->s3->tmp.peer_finish_md_len;
if (count > ret) {
count = ret;
}
memcpy(buf, s->s3->tmp.peer_finish_md, count);
}
return ret;
}
int SSL_get_verify_mode(const SSL *s) { return s->verify_mode; }
int SSL_get_verify_depth(const SSL *s) {
return X509_VERIFY_PARAM_get_depth(s->param);
}
int (*SSL_get_verify_callback(const SSL *s))(int, X509_STORE_CTX *) {
return s->verify_callback;
}
int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) { return ctx->verify_mode; }
int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) {
return X509_VERIFY_PARAM_get_depth(ctx->param);
}
int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))(int, X509_STORE_CTX *) {
return ctx->default_verify_callback;
}
void SSL_set_verify(SSL *s, int mode,
int (*callback)(int ok, X509_STORE_CTX *ctx)) {
s->verify_mode = mode;
if (callback != NULL) {
s->verify_callback = callback;
}
}
void SSL_set_verify_depth(SSL *s, int depth) {
X509_VERIFY_PARAM_set_depth(s->param, depth);
}
int SSL_CTX_get_read_ahead(const SSL_CTX *ctx) { return 0; }
int SSL_get_read_ahead(const SSL *s) { return 0; }
void SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes) { }
void SSL_set_read_ahead(SSL *s, int yes) { }
int SSL_pending(const SSL *s) {
if (s->rstate == SSL_ST_READ_BODY) {
return 0;
}
return (s->s3->rrec.type == SSL3_RT_APPLICATION_DATA) ? s->s3->rrec.length
: 0;
}
X509 *SSL_get_peer_certificate(const SSL *s) {
X509 *r;
if (s == NULL || s->session == NULL) {
r = NULL;
} else {
r = s->session->peer;
}
if (r == NULL) {
return NULL;
}
return X509_up_ref(r);
}
STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) {
STACK_OF(X509) *r;
if (s == NULL || s->session == NULL || s->session->sess_cert == NULL) {
r = NULL;
} else {
r = s->session->sess_cert->cert_chain;
}
/* If we are a client, cert_chain includes the peer's own certificate; if we
* are a server, it does not. */
return r;
}
/* Fix this so it checks all the valid key/cert options */
int SSL_CTX_check_private_key(const SSL_CTX *ctx) {
if (ctx == NULL || ctx->cert == NULL || ctx->cert->key->x509 == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_CTX_check_private_key,
SSL_R_NO_CERTIFICATE_ASSIGNED);
return 0;
}
if (ctx->cert->key->privatekey == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_CTX_check_private_key,
SSL_R_NO_PRIVATE_KEY_ASSIGNED);
return 0;
}
return X509_check_private_key(ctx->cert->key->x509,
ctx->cert->key->privatekey);
}
/* Fix this function so that it takes an optional type parameter */
int SSL_check_private_key(const SSL *ssl) {
if (ssl == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_check_private_key, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if (ssl->cert == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_check_private_key,
SSL_R_NO_CERTIFICATE_ASSIGNED);
return 0;
}
if (ssl->cert->key->x509 == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_check_private_key,
SSL_R_NO_CERTIFICATE_ASSIGNED);
return 0;
}
if (ssl->cert->key->privatekey == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_check_private_key,
SSL_R_NO_PRIVATE_KEY_ASSIGNED);
return 0;
}
return X509_check_private_key(ssl->cert->key->x509,
ssl->cert->key->privatekey);
}
int SSL_accept(SSL *s) {
if (s->handshake_func == 0) {
/* Not properly initialized yet */
SSL_set_accept_state(s);
}
if (s->handshake_func != s->method->ssl_accept) {
OPENSSL_PUT_ERROR(SSL, SSL_accept, ERR_R_INTERNAL_ERROR);
return -1;
}
return s->handshake_func(s);
}
int SSL_connect(SSL *s) {
if (s->handshake_func == 0) {
/* Not properly initialized yet */
SSL_set_connect_state(s);
}
if (s->handshake_func != s->method->ssl_connect) {
OPENSSL_PUT_ERROR(SSL, SSL_connect, ERR_R_INTERNAL_ERROR);
return -1;
}
return s->handshake_func(s);
}
long SSL_get_default_timeout(const SSL *s) {
return SSL_DEFAULT_SESSION_TIMEOUT;
}
int SSL_read(SSL *s, void *buf, int num) {
if (s->handshake_func == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_read, SSL_R_UNINITIALIZED);
return -1;
}
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
s->rwstate = SSL_NOTHING;
return 0;
}
ERR_clear_system_error();
return s->method->ssl_read_app_data(s, buf, num, 0);
}
int SSL_peek(SSL *s, void *buf, int num) {
if (s->handshake_func == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_peek, SSL_R_UNINITIALIZED);
return -1;
}
if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
return 0;
}
ERR_clear_system_error();
return s->method->ssl_read_app_data(s, buf, num, 1);
}
int SSL_write(SSL *s, const void *buf, int num) {
if (s->handshake_func == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_write, SSL_R_UNINITIALIZED);
return -1;
}
if (s->shutdown & SSL_SENT_SHUTDOWN) {
s->rwstate = SSL_NOTHING;
OPENSSL_PUT_ERROR(SSL, SSL_write, SSL_R_PROTOCOL_IS_SHUTDOWN);
return -1;
}
ERR_clear_system_error();
return s->method->ssl_write_app_data(s, buf, num);
}
int SSL_shutdown(SSL *s) {
/* Note that this function behaves differently from what one might expect.
* Return values are 0 for no success (yet), 1 for success; but calling it
* once is usually not enough, even if blocking I/O is used (see
* ssl3_shutdown). */
if (s->handshake_func == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_shutdown, SSL_R_UNINITIALIZED);
return -1;
}
if (SSL_in_init(s)) {
return 1;
}
/* Do nothing if configured not to send a close_notify. */
if (s->quiet_shutdown) {
s->shutdown = SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN;
return 1;
}
if (!(s->shutdown & SSL_SENT_SHUTDOWN)) {
s->shutdown |= SSL_SENT_SHUTDOWN;
ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY);
/* our shutdown alert has been sent now, and if it still needs to be
* written, s->s3->alert_dispatch will be true */
if (s->s3->alert_dispatch) {
return -1; /* return WANT_WRITE */
}
} else if (s->s3->alert_dispatch) {
/* resend it if not sent */
int ret = s->method->ssl_dispatch_alert(s);
if (ret == -1) {
/* we only get to return -1 here the 2nd/Nth invocation, we must have
* already signalled return 0 upon a previous invoation, return
* WANT_WRITE */
return ret;
}
} else if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) {
/* If we are waiting for a close from our peer, we are closed */
s->method->ssl_read_close_notify(s);
if (!(s->shutdown & SSL_RECEIVED_SHUTDOWN)) {
return -1; /* return WANT_READ */
}
}
if (s->shutdown == (SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN) &&
!s->s3->alert_dispatch) {
return 1;
} else {
return 0;
}
}
int SSL_renegotiate(SSL *ssl) {
/* Caller-initiated renegotiation is not supported. */
OPENSSL_PUT_ERROR(SSL, SSL_renegotiate, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
int SSL_renegotiate_pending(SSL *ssl) {
return SSL_in_init(ssl) && ssl->s3->initial_handshake_complete;
}
uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options) {
ctx->options |= options;
return ctx->options;
}
uint32_t SSL_set_options(SSL *ssl, uint32_t options) {
ssl->options |= options;
return ssl->options;
}
uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options) {
ctx->options &= ~options;
return ctx->options;
}
uint32_t SSL_clear_options(SSL *ssl, uint32_t options) {
ssl->options &= ~options;
return ssl->options;
}
uint32_t SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; }
uint32_t SSL_get_options(const SSL *ssl) { return ssl->options; }
uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode) {
ctx->mode |= mode;
return ctx->mode;
}
uint32_t SSL_set_mode(SSL *ssl, uint32_t mode) {
ssl->mode |= mode;
return ssl->mode;
}
uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode) {
ctx->mode &= ~mode;
return ctx->mode;
}
uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode) {
ssl->mode &= ~mode;
return ssl->mode;
}
uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx) { return ctx->mode; }
uint32_t SSL_get_mode(const SSL *ssl) { return ssl->mode; }
size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx) {
return ctx->max_cert_list;
}
void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, size_t max_cert_list) {
if (max_cert_list > kMaxHandshakeSize) {
max_cert_list = kMaxHandshakeSize;
}
ctx->max_cert_list = (uint32_t)max_cert_list;
}
size_t SSL_get_max_cert_list(const SSL *ssl) {
return ssl->max_cert_list;
}
void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list) {
if (max_cert_list > kMaxHandshakeSize) {
max_cert_list = kMaxHandshakeSize;
}
ssl->max_cert_list = (uint32_t)max_cert_list;
}
void SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, size_t max_send_fragment) {
if (max_send_fragment < 512) {
max_send_fragment = 512;
}
if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) {
max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
}
ctx->max_send_fragment = (uint16_t)max_send_fragment;
}
void SSL_set_max_send_fragment(SSL *ssl, size_t max_send_fragment) {
if (max_send_fragment < 512) {
max_send_fragment = 512;
}
if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) {
max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
}
ssl->max_send_fragment = (uint16_t)max_send_fragment;
}
int SSL_set_mtu(SSL *ssl, unsigned mtu) {
if (!SSL_IS_DTLS(ssl) || mtu < dtls1_min_mtu()) {
return 0;
}
ssl->d1->mtu = mtu;
return 1;
}
int SSL_get_secure_renegotiation_support(const SSL *ssl) {
return ssl->s3->send_connection_binding;
}
long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) {
return s->method->ssl_ctrl(s, cmd, larg, parg);
}
LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) { return ctx->sessions; }
size_t SSL_CTX_sess_number(const SSL_CTX *ctx) {
return lh_SSL_SESSION_num_items(ctx->sessions);
}
unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, unsigned long size) {
unsigned long ret = ctx->session_cache_size;
ctx->session_cache_size = size;
return ret;
}
unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx) {
return ctx->session_cache_size;
}
int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode) {
int ret = ctx->session_cache_mode;
ctx->session_cache_mode = mode;
return ret;
}
int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx) {
return ctx->session_cache_mode;
}
long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) {
return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg);
}
/* return a STACK of the ciphers available for the SSL and in order of
* preference */
STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) {
if (s == NULL) {
return NULL;
}
if (s->cipher_list != NULL) {
return s->cipher_list->ciphers;
}
if (s->version >= TLS1_1_VERSION && s->ctx != NULL &&
s->ctx->cipher_list_tls11 != NULL) {
return s->ctx->cipher_list_tls11->ciphers;
}
if (s->ctx != NULL && s->ctx->cipher_list != NULL) {
return s->ctx->cipher_list->ciphers;
}
return NULL;
}
/* return a STACK of the ciphers available for the SSL and in order of
* algorithm id */
STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s) {
if (s == NULL) {
return NULL;
}
if (s->cipher_list_by_id != NULL) {
return s->cipher_list_by_id;
}
if (s->ctx != NULL && s->ctx->cipher_list_by_id != NULL) {
return s->ctx->cipher_list_by_id;
}
return NULL;
}
/* The old interface to get the same thing as SSL_get_ciphers() */
const char *SSL_get_cipher_list(const SSL *s, int n) {
const SSL_CIPHER *c;
STACK_OF(SSL_CIPHER) *sk;
if (s == NULL) {
return NULL;
}
sk = SSL_get_ciphers(s);
if (sk == NULL || n < 0 || (size_t)n >= sk_SSL_CIPHER_num(sk)) {
return NULL;
}
c = sk_SSL_CIPHER_value(sk, n);
if (c == NULL) {
return NULL;
}
return c->name;
}
/* specify the ciphers to be used by default by the SSL_CTX */
int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) {
STACK_OF(SSL_CIPHER) *sk;
sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list,
&ctx->cipher_list_by_id, str);
/* ssl_create_cipher_list may return an empty stack if it was unable to find
* a cipher matching the given rule string (for example if the rule string
* specifies a cipher which has been disabled). This is not an error as far
* as ssl_create_cipher_list is concerned, and hence ctx->cipher_list and
* ctx->cipher_list_by_id has been updated. */
if (sk == NULL) {
return 0;
} else if (sk_SSL_CIPHER_num(sk) == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_CTX_set_cipher_list, SSL_R_NO_CIPHER_MATCH);
return 0;
}
return 1;
}
int SSL_CTX_set_cipher_list_tls11(SSL_CTX *ctx, const char *str) {
STACK_OF(SSL_CIPHER) *sk;
sk = ssl_create_cipher_list(ctx->method, &ctx->cipher_list_tls11, NULL, str);
if (sk == NULL) {
return 0;
} else if (sk_SSL_CIPHER_num(sk) == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_CTX_set_cipher_list_tls11,
SSL_R_NO_CIPHER_MATCH);
return 0;
}
return 1;
}
/* specify the ciphers to be used by the SSL */
int SSL_set_cipher_list(SSL *s, const char *str) {
STACK_OF(SSL_CIPHER) *sk;
sk = ssl_create_cipher_list(s->ctx->method, &s->cipher_list,
&s->cipher_list_by_id, str);
/* see comment in SSL_CTX_set_cipher_list */
if (sk == NULL) {
return 0;
} else if (sk_SSL_CIPHER_num(sk) == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_set_cipher_list, SSL_R_NO_CIPHER_MATCH);
return 0;
}
return 1;
}
int ssl_cipher_list_to_bytes(SSL *s, STACK_OF(SSL_CIPHER) *sk, uint8_t *p) {
size_t i;
const SSL_CIPHER *c;
CERT *ct = s->cert;
uint8_t *q;
/* Set disabled masks for this session */
ssl_set_client_disabled(s);
if (sk == NULL) {
return 0;
}
q = p;
for (i = 0; i < sk_SSL_CIPHER_num(sk); i++) {
c = sk_SSL_CIPHER_value(sk, i);
/* Skip disabled ciphers */
if (c->algorithm_ssl & ct->mask_ssl ||
c->algorithm_mkey & ct->mask_k ||
c->algorithm_auth & ct->mask_a) {
continue;
}
s2n(ssl_cipher_get_value(c), p);
}
/* If all ciphers were disabled, return the error to the caller. */
if (p == q) {
return 0;
}
/* Add SCSVs. */
if (!s->s3->initial_handshake_complete) {
s2n(SSL3_CK_SCSV & 0xffff, p);
}
if (s->mode & SSL_MODE_SEND_FALLBACK_SCSV) {
s2n(SSL3_CK_FALLBACK_SCSV & 0xffff, p);
}
return p - q;
}
STACK_OF(SSL_CIPHER) *ssl_bytes_to_cipher_list(SSL *s, const CBS *cbs) {
CBS cipher_suites = *cbs;
const SSL_CIPHER *c;
STACK_OF(SSL_CIPHER) *sk;
if (s->s3) {
s->s3->send_connection_binding = 0;
}
if (CBS_len(&cipher_suites) % 2 != 0) {
OPENSSL_PUT_ERROR(SSL, ssl_bytes_to_cipher_list,
SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
return NULL;
}
sk = sk_SSL_CIPHER_new_null();
if (sk == NULL) {
OPENSSL_PUT_ERROR(SSL, ssl_bytes_to_cipher_list, ERR_R_MALLOC_FAILURE);
goto err;
}
while (CBS_len(&cipher_suites) > 0) {
uint16_t cipher_suite;
if (!CBS_get_u16(&cipher_suites, &cipher_suite)) {
OPENSSL_PUT_ERROR(SSL, ssl_bytes_to_cipher_list, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Check for SCSV. */
if (s->s3 && cipher_suite == (SSL3_CK_SCSV & 0xffff)) {
/* SCSV is fatal if renegotiating. */
if (s->s3->initial_handshake_complete) {
OPENSSL_PUT_ERROR(SSL, ssl_bytes_to_cipher_list,
SSL_R_SCSV_RECEIVED_WHEN_RENEGOTIATING);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
goto err;
}
s->s3->send_connection_binding = 1;
continue;
}
/* Check for FALLBACK_SCSV. */
if (s->s3 && cipher_suite == (SSL3_CK_FALLBACK_SCSV & 0xffff)) {
uint16_t max_version = ssl3_get_max_server_version(s);
if (SSL_IS_DTLS(s) ? (uint16_t)s->version > max_version
: (uint16_t)s->version < max_version) {
OPENSSL_PUT_ERROR(SSL, ssl_bytes_to_cipher_list,
SSL_R_INAPPROPRIATE_FALLBACK);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL3_AD_INAPPROPRIATE_FALLBACK);
goto err;
}
continue;
}
c = SSL_get_cipher_by_value(cipher_suite);
if (c != NULL && !sk_SSL_CIPHER_push(sk, c)) {
OPENSSL_PUT_ERROR(SSL, ssl_bytes_to_cipher_list, ERR_R_MALLOC_FAILURE);
goto err;
}
}
return sk;
err:
sk_SSL_CIPHER_free(sk);
return NULL;
}
/* return a servername extension value if provided in Client Hello, or NULL. So
* far, only host_name types are defined (RFC 3546). */
const char *SSL_get_servername(const SSL *s, const int type) {
if (type != TLSEXT_NAMETYPE_host_name) {
return NULL;
}
return s->session && !s->tlsext_hostname ? s->session->tlsext_hostname
: s->tlsext_hostname;
}
int SSL_get_servername_type(const SSL *s) {
if (s->session &&
(!s->tlsext_hostname ? s->session->tlsext_hostname : s->tlsext_hostname)) {
return TLSEXT_NAMETYPE_host_name;
}
return -1;
}
void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx) {
ctx->signed_cert_timestamps_enabled = 1;
}
int SSL_enable_signed_cert_timestamps(SSL *ssl) {
ssl->signed_cert_timestamps_enabled = 1;
return 1;
}
void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx) {
ctx->ocsp_stapling_enabled = 1;
}
int SSL_enable_ocsp_stapling(SSL *ssl) {
ssl->ocsp_stapling_enabled = 1;
return 1;
}
void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, const uint8_t **out,
size_t *out_len) {
SSL_SESSION *session = ssl->session;
*out_len = 0;
*out = NULL;
if (ssl->server || !session || !session->tlsext_signed_cert_timestamp_list) {
return;
}
*out = session->tlsext_signed_cert_timestamp_list;
*out_len = session->tlsext_signed_cert_timestamp_list_length;
}
void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out,
size_t *out_len) {
SSL_SESSION *session = ssl->session;
*out_len = 0;
*out = NULL;
if (ssl->server || !session || !session->ocsp_response) {
return;
}
*out = session->ocsp_response;
*out_len = session->ocsp_response_length;
}
/* SSL_select_next_proto implements the standard protocol selection. It is
* expected that this function is called from the callback set by
* SSL_CTX_set_next_proto_select_cb.
*
* The protocol data is assumed to be a vector of 8-bit, length prefixed byte
* strings. The length byte itself is not included in the length. A byte
* string of length 0 is invalid. No byte string may be truncated.
*
* The current, but experimental algorithm for selecting the protocol is:
*
* 1) If the server doesn't support NPN then this is indicated to the
* callback. In this case, the client application has to abort the connection
* or have a default application level protocol.
*
* 2) If the server supports NPN, but advertises an empty list then the
* client selects the first protcol in its list, but indicates via the
* API that this fallback case was enacted.
*
* 3) Otherwise, the client finds the first protocol in the server's list
* that it supports and selects this protocol. This is because it's
* assumed that the server has better information about which protocol
* a client should use.
*
* 4) If the client doesn't support any of the server's advertised
* protocols, then this is treated the same as case 2.
*
* It returns either
* OPENSSL_NPN_NEGOTIATED if a common protocol was found, or
* OPENSSL_NPN_NO_OVERLAP if the fallback case was reached.
*/
int SSL_select_next_proto(uint8_t **out, uint8_t *outlen, const uint8_t *server,
unsigned int server_len, const uint8_t *client,
unsigned int client_len) {
unsigned int i, j;
const uint8_t *result;
int status = OPENSSL_NPN_UNSUPPORTED;
/* For each protocol in server preference order, see if we support it. */
for (i = 0; i < server_len;) {
for (j = 0; j < client_len;) {
if (server[i] == client[j] &&
memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
/* We found a match */
result = &server[i];
status = OPENSSL_NPN_NEGOTIATED;
goto found;
}
j += client[j];
j++;
}
i += server[i];
i++;
}
/* There's no overlap between our protocols and the server's list. */
result = client;
status = OPENSSL_NPN_NO_OVERLAP;
found:
*out = (uint8_t *)result + 1;
*outlen = result[0];
return status;
}
/* SSL_get0_next_proto_negotiated sets *data and *len to point to the client's
* requested protocol for this connection and returns 0. If the client didn't
* request any protocol, then *data is set to NULL.
*
* Note that the client can request any protocol it chooses. The value returned
* from this function need not be a member of the list of supported protocols
* provided by the callback. */
void SSL_get0_next_proto_negotiated(const SSL *s, const uint8_t **data,
unsigned *len) {
*data = s->next_proto_negotiated;
if (!*data) {
*len = 0;
} else {
*len = s->next_proto_negotiated_len;
}
}
/* SSL_CTX_set_next_protos_advertised_cb sets a callback that is called when a
* TLS server needs a list of supported protocols for Next Protocol
* Negotiation. The returned list must be in wire format. The list is returned
* by setting |out| to point to it and |outlen| to its length. This memory will
* not be modified, but one should assume that the SSL* keeps a reference to
* it.
*
* The callback should return SSL_TLSEXT_ERR_OK if it wishes to advertise.
* Otherwise, no such extension will be included in the ServerHello. */
void SSL_CTX_set_next_protos_advertised_cb(
SSL_CTX *ctx,
int (*cb)(SSL *ssl, const uint8_t **out, unsigned int *outlen, void *arg),
void *arg) {
ctx->next_protos_advertised_cb = cb;
ctx->next_protos_advertised_cb_arg = arg;
}
/* SSL_CTX_set_next_proto_select_cb sets a callback that is called when a
* client needs to select a protocol from the server's provided list. |out|
* must be set to point to the selected protocol (which may be within |in|).
* The length of the protocol name must be written into |outlen|. The server's
* advertised protocols are provided in |in| and |inlen|. The callback can
* assume that |in| is syntactically valid.
*
* The client must select a protocol. It is fatal to the connection if this
* callback returns a value other than SSL_TLSEXT_ERR_OK.
*/
void SSL_CTX_set_next_proto_select_cb(
SSL_CTX *ctx, int (*cb)(SSL *s, uint8_t **out, uint8_t *outlen,
const uint8_t *in, unsigned int inlen, void *arg),
void *arg) {
ctx->next_proto_select_cb = cb;
ctx->next_proto_select_cb_arg = arg;
}
int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos,
unsigned protos_len) {
OPENSSL_free(ctx->alpn_client_proto_list);
ctx->alpn_client_proto_list = BUF_memdup(protos, protos_len);
if (!ctx->alpn_client_proto_list) {
return 1;
}
ctx->alpn_client_proto_list_len = protos_len;
return 0;
}
int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, unsigned protos_len) {
OPENSSL_free(ssl->alpn_client_proto_list);
ssl->alpn_client_proto_list = BUF_memdup(protos, protos_len);
if (!ssl->alpn_client_proto_list) {
return 1;
}
ssl->alpn_client_proto_list_len = protos_len;
return 0;
}
/* SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is called
* during ClientHello processing in order to select an ALPN protocol from the
* client's list of offered protocols. */
void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
int (*cb)(SSL *ssl, const uint8_t **out,
uint8_t *outlen, const uint8_t *in,
unsigned int inlen, void *arg),
void *arg) {
ctx->alpn_select_cb = cb;
ctx->alpn_select_cb_arg = arg;
}
/* SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|.
* On return it sets |*data| to point to |*len| bytes of protocol name (not
* including the leading length-prefix byte). If the server didn't respond with
* a negotiated protocol then |*len| will be zero. */
void SSL_get0_alpn_selected(const SSL *ssl, const uint8_t **data,
unsigned *len) {
*data = NULL;
if (ssl->s3) {
*data = ssl->s3->alpn_selected;
}
if (*data == NULL) {
*len = 0;
} else {
*len = ssl->s3->alpn_selected_len;
}
}
int SSL_export_keying_material(SSL *s, uint8_t *out, size_t out_len,
const char *label, size_t label_len,
const uint8_t *context, size_t context_len,
int use_context) {
if (s->version < TLS1_VERSION) {
return 0;
}
return s->enc_method->export_keying_material(
s, out, out_len, label, label_len, context, context_len, use_context);
}
static uint32_t ssl_session_hash(const SSL_SESSION *a) {
uint32_t hash =
((uint32_t)a->session_id[0]) ||
((uint32_t)a->session_id[1] << 8) ||
((uint32_t)a->session_id[2] << 16) ||
((uint32_t)a->session_id[3] << 24);
return hash;
}
/* NB: If this function (or indeed the hash function which uses a sort of
* coarser function than this one) is changed, ensure
* SSL_CTX_has_matching_session_id() is checked accordingly. It relies on being
* able to construct an SSL_SESSION that will collide with any existing session
* with a matching session ID. */
static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) {
if (a->ssl_version != b->ssl_version) {
return 1;
}
if (a->session_id_length != b->session_id_length) {
return 1;
}
return memcmp(a->session_id, b->session_id, a->session_id_length);
}
SSL_CTX *SSL_CTX_new(const SSL_METHOD *method) {
SSL_CTX *ret = NULL;
if (method == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_CTX_new, SSL_R_NULL_SSL_METHOD_PASSED);
return NULL;
}
if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
OPENSSL_PUT_ERROR(SSL, SSL_CTX_new, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
goto err;
}
ret = (SSL_CTX *)OPENSSL_malloc(sizeof(SSL_CTX));
if (ret == NULL) {
goto err;
}
memset(ret, 0, sizeof(SSL_CTX));
ret->method = method->method;
CRYPTO_MUTEX_init(&ret->lock);
ret->cert_store = NULL;
ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
ret->session_cache_head = NULL;
ret->session_cache_tail = NULL;
/* We take the system default */
ret->session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
ret->new_session_cb = 0;
ret->remove_session_cb = 0;
ret->get_session_cb = 0;
ret->generate_session_id = 0;
ret->references = 1;
ret->quiet_shutdown = 0;
ret->info_callback = NULL;
ret->app_verify_callback = 0;
ret->app_verify_arg = NULL;
ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
ret->msg_callback = 0;
ret->msg_callback_arg = NULL;
ret->verify_mode = SSL_VERIFY_NONE;
ret->sid_ctx_length = 0;
ret->default_verify_callback = NULL;
ret->cert = ssl_cert_new();
if (ret->cert == NULL) {
goto err;
}
ret->default_passwd_callback = 0;
ret->default_passwd_callback_userdata = NULL;
ret->client_cert_cb = 0;
ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
if (ret->sessions == NULL) {
goto err;
}
ret->cert_store = X509_STORE_new();
if (ret->cert_store == NULL) {
goto err;
}
ssl_create_cipher_list(ret->method, &ret->cipher_list,
&ret->cipher_list_by_id, SSL_DEFAULT_CIPHER_LIST);
if (ret->cipher_list == NULL ||
sk_SSL_CIPHER_num(ret->cipher_list->ciphers) <= 0) {
OPENSSL_PUT_ERROR(SSL, SSL_CTX_new, SSL_R_LIBRARY_HAS_NO_CIPHERS);
goto err2;
}
ret->param = X509_VERIFY_PARAM_new();
if (!ret->param) {
goto err;
}
ret->client_CA = sk_X509_NAME_new_null();
if (ret->client_CA == NULL) {
goto err;
}
CRYPTO_new_ex_data(&g_ex_data_class_ssl_ctx, ret, &ret->ex_data);
ret->extra_certs = NULL;
ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
ret->tlsext_servername_callback = 0;
ret->tlsext_servername_arg = NULL;
/* Setup RFC4507 ticket keys */
if (!RAND_bytes(ret->tlsext_tick_key_name, 16) ||
!RAND_bytes(ret->tlsext_tick_hmac_key, 16) ||
!RAND_bytes(ret->tlsext_tick_aes_key, 16)) {
ret->options |= SSL_OP_NO_TICKET;
}
ret->next_protos_advertised_cb = 0;
ret->next_proto_select_cb = 0;
ret->psk_identity_hint = NULL;
ret->psk_client_callback = NULL;
ret->psk_server_callback = NULL;
/* Default is to connect to non-RI servers. When RI is more widely deployed
* might change this. */
ret->options |= SSL_OP_LEGACY_SERVER_CONNECT;
/* Lock the SSL_CTX to the specified version, for compatibility with legacy
* uses of SSL_METHOD. */
if (method->version != 0) {
SSL_CTX_set_max_version(ret, method->version);
SSL_CTX_set_min_version(ret, method->version);
}
return ret;
err:
OPENSSL_PUT_ERROR(SSL, SSL_CTX_new, ERR_R_MALLOC_FAILURE);
err2:
SSL_CTX_free(ret);
return NULL;
}
void SSL_CTX_free(SSL_CTX *ctx) {
if (ctx == NULL ||
!CRYPTO_refcount_dec_and_test_zero(&ctx->references)) {
return;
}
X509_VERIFY_PARAM_free(ctx->param);
/* Free internal session cache. However: the remove_cb() may reference the
* ex_data of SSL_CTX, thus the ex_data store can only be removed after the
* sessions were flushed. As the ex_data handling routines might also touch
* the session cache, the most secure solution seems to be: empty (flush) the
* cache, then free ex_data, then finally free the cache. (See ticket
* [openssl.org #212].) */
SSL_CTX_flush_sessions(ctx, 0);
CRYPTO_free_ex_data(&g_ex_data_class_ssl_ctx, ctx, &ctx->ex_data);
CRYPTO_MUTEX_cleanup(&ctx->lock);
lh_SSL_SESSION_free(ctx->sessions);
X509_STORE_free(ctx->cert_store);
ssl_cipher_preference_list_free(ctx->cipher_list);
sk_SSL_CIPHER_free(ctx->cipher_list_by_id);
ssl_cipher_preference_list_free(ctx->cipher_list_tls11);
ssl_cert_free(ctx->cert);
sk_X509_NAME_pop_free(ctx->client_CA, X509_NAME_free);
sk_X509_pop_free(ctx->extra_certs, X509_free);
sk_SRTP_PROTECTION_PROFILE_free(ctx->srtp_profiles);
OPENSSL_free(ctx->psk_identity_hint);
OPENSSL_free(ctx->tlsext_ecpointformatlist);
OPENSSL_free(ctx->tlsext_ellipticcurvelist);
OPENSSL_free(ctx->alpn_client_proto_list);
EVP_PKEY_free(ctx->tlsext_channel_id_private);
BIO_free(ctx->keylog_bio);
OPENSSL_free(ctx);
}
void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) {
ctx->default_passwd_callback = cb;
}
void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) {
ctx->default_passwd_callback_userdata = u;
}
void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
int (*cb)(X509_STORE_CTX *, void *),
void *arg) {
ctx->app_verify_callback = cb;
ctx->app_verify_arg = arg;
}
void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
int (*cb)(int, X509_STORE_CTX *)) {
ctx->verify_mode = mode;
ctx->default_verify_callback = cb;
}
void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) {
X509_VERIFY_PARAM_set_depth(ctx->param, depth);
}
void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb)(SSL *ssl, void *arg),
void *arg) {
ssl_cert_set_cert_cb(c->cert, cb, arg);
}
void SSL_set_cert_cb(SSL *s, int (*cb)(SSL *ssl, void *arg), void *arg) {
ssl_cert_set_cert_cb(s->cert, cb, arg);
}
static int ssl_has_key(SSL *s, size_t idx) {
CERT_PKEY *cpk = &s->cert->pkeys[idx];
return cpk->x509 && cpk->privatekey;
}
void ssl_get_compatible_server_ciphers(SSL *s, uint32_t *out_mask_k,
uint32_t *out_mask_a) {
CERT *c = s->cert;
int rsa_enc, rsa_sign, dh_tmp;
uint32_t mask_k, mask_a;
int have_ecc_cert, ecdsa_ok;
X509 *x;
if (c == NULL) {
/* TODO(davidben): Is this codepath possible? */
*out_mask_k = 0;
*out_mask_a = 0;
return;
}
dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL);
rsa_enc = ssl_has_key(s, SSL_PKEY_RSA_ENC);
rsa_sign = ssl_has_key(s, SSL_PKEY_RSA_SIGN);
have_ecc_cert = ssl_has_key(s, SSL_PKEY_ECC);
mask_k = 0;
mask_a = 0;
if (rsa_enc) {
mask_k |= SSL_kRSA;
}
if (dh_tmp) {
mask_k |= SSL_kDHE;
}
if (rsa_enc || rsa_sign) {
mask_a |= SSL_aRSA;
}
/* An ECC certificate may be usable for ECDSA cipher suites depending on the
* key usage extension and on the client's curve preferences. */
if (have_ecc_cert) {
x = c->pkeys[SSL_PKEY_ECC].x509;
/* This call populates extension flags (ex_flags). */
X509_check_purpose(x, -1, 0);
ecdsa_ok = (x->ex_flags & EXFLAG_KUSAGE)
? (x->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE)
: 1;
if (!tls1_check_ec_cert(s, x)) {
ecdsa_ok = 0;
}
if (ecdsa_ok) {
mask_a |= SSL_aECDSA;
}
}
/* If we are considering an ECC cipher suite that uses an ephemeral EC
* key, check it. */
if (tls1_check_ec_tmp_key(s)) {
mask_k |= SSL_kECDHE;
}
/* PSK requires a server callback. */
if (s->psk_server_callback != NULL) {
mask_k |= SSL_kPSK;
mask_a |= SSL_aPSK;
}
*out_mask_k = mask_k;
*out_mask_a = mask_a;
}
static int ssl_get_server_cert_index(const SSL *s) {
int idx;
idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
if (idx == SSL_PKEY_RSA_ENC && !s->cert->pkeys[SSL_PKEY_RSA_ENC].x509) {
idx = SSL_PKEY_RSA_SIGN;
}
if (idx == -1) {
OPENSSL_PUT_ERROR(SSL, ssl_get_server_cert_index, ERR_R_INTERNAL_ERROR);
}
return idx;
}
CERT_PKEY *ssl_get_server_send_pkey(const SSL *s) {
int i = ssl_get_server_cert_index(s);
/* This may or may not be an error. */
if (i < 0) {
return NULL;
}
/* May be NULL. */
return &s->cert->pkeys[i];
}
EVP_PKEY *ssl_get_sign_pkey(SSL *s, const SSL_CIPHER *cipher) {
uint32_t alg_a = cipher->algorithm_auth;
CERT *c = s->cert;
int idx = -1;
if (alg_a & SSL_aRSA) {
if (c->pkeys[SSL_PKEY_RSA_SIGN].privatekey != NULL) {
idx = SSL_PKEY_RSA_SIGN;
} else if (c->pkeys[SSL_PKEY_RSA_ENC].privatekey != NULL) {
idx = SSL_PKEY_RSA_ENC;
}
} else if ((alg_a & SSL_aECDSA) &&
(c->pkeys[SSL_PKEY_ECC].privatekey != NULL)) {
idx = SSL_PKEY_ECC;
}
if (idx == -1) {
OPENSSL_PUT_ERROR(SSL, ssl_get_sign_pkey, ERR_R_INTERNAL_ERROR);
return NULL;
}
return c->pkeys[idx].privatekey;
}
void ssl_update_cache(SSL *s, int mode) {
/* Never cache sessions with empty session IDs. */
if (s->session->session_id_length == 0) {
return;
}
int has_new_session = !s->hit;
if (!s->server && s->tlsext_ticket_expected) {
/* A client may see new sessions on abbreviated handshakes if the server
* decides to renew the ticket. Once the handshake is completed, it should
* be inserted into the cache. */
has_new_session = 1;
}
SSL_CTX *ctx = s->initial_ctx;
if ((ctx->session_cache_mode & mode) == mode && has_new_session &&
((ctx->session_cache_mode & SSL_SESS_CACHE_NO_INTERNAL_STORE) ||
SSL_CTX_add_session(ctx, s->session)) &&
ctx->new_session_cb != NULL) {
/* Note: |new_session_cb| is called whether the internal session cache is
* used or not. */
if (!ctx->new_session_cb(s, SSL_SESSION_up_ref(s->session))) {
SSL_SESSION_free(s->session);
}
}
if (!(ctx->session_cache_mode & SSL_SESS_CACHE_NO_AUTO_CLEAR) &&
!(ctx->session_cache_mode & SSL_SESS_CACHE_NO_INTERNAL_STORE) &&
(ctx->session_cache_mode & mode) == mode) {
/* Automatically flush the internal session cache every 255 connections. */
int flush_cache = 0;
CRYPTO_MUTEX_lock_write(&ctx->lock);
ctx->handshakes_since_cache_flush++;
if (ctx->handshakes_since_cache_flush >= 255) {
flush_cache = 1;
ctx->handshakes_since_cache_flush = 0;
}
CRYPTO_MUTEX_unlock(&ctx->lock);
if (flush_cache) {
SSL_CTX_flush_sessions(ctx, (unsigned long)time(NULL));
}
}
}
int SSL_get_error(const SSL *s, int ret_code) {
int reason;
uint32_t err;
BIO *bio;
if (ret_code > 0) {
return SSL_ERROR_NONE;
}
/* Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
* where we do encode the error */
err = ERR_peek_error();
if (err != 0) {
if (ERR_GET_LIB(err) == ERR_LIB_SYS) {
return SSL_ERROR_SYSCALL;
}
return SSL_ERROR_SSL;
}
if (ret_code == 0) {
if ((s->shutdown & SSL_RECEIVED_SHUTDOWN) &&
(s->s3->warn_alert == SSL_AD_CLOSE_NOTIFY)) {
/* The socket was cleanly shut down with a close_notify. */
return SSL_ERROR_ZERO_RETURN;
}
/* An EOF was observed which violates the protocol, and the underlying
* transport does not participate in the error queue. Bubble up to the
* caller. */
return SSL_ERROR_SYSCALL;
}
if (SSL_want_session(s)) {
return SSL_ERROR_PENDING_SESSION;
}
if (SSL_want_certificate(s)) {
return SSL_ERROR_PENDING_CERTIFICATE;
}
if (SSL_want_read(s)) {
bio = SSL_get_rbio(s);
if (BIO_should_read(bio)) {
return SSL_ERROR_WANT_READ;
}
if (BIO_should_write(bio)) {
/* This one doesn't make too much sense ... We never try to write to the
* rbio, and an application program where rbio and wbio are separate
* couldn't even know what it should wait for. However if we ever set
* s->rwstate incorrectly (so that we have SSL_want_read(s) instead of
* SSL_want_write(s)) and rbio and wbio *are* the same, this test works
* around that bug; so it might be safer to keep it. */
return SSL_ERROR_WANT_WRITE;
}
if (BIO_should_io_special(bio)) {
reason = BIO_get_retry_reason(bio);
if (reason == BIO_RR_CONNECT) {
return SSL_ERROR_WANT_CONNECT;
}
if (reason == BIO_RR_ACCEPT) {
return SSL_ERROR_WANT_ACCEPT;
}
return SSL_ERROR_SYSCALL; /* unknown */
}
}
if (SSL_want_write(s)) {
bio = SSL_get_wbio(s);
if (BIO_should_write(bio)) {
return SSL_ERROR_WANT_WRITE;
}
if (BIO_should_read(bio)) {
/* See above (SSL_want_read(s) with BIO_should_write(bio)) */
return SSL_ERROR_WANT_READ;
}
if (BIO_should_io_special(bio)) {
reason = BIO_get_retry_reason(bio);
if (reason == BIO_RR_CONNECT) {
return SSL_ERROR_WANT_CONNECT;
}
if (reason == BIO_RR_ACCEPT) {
return SSL_ERROR_WANT_ACCEPT;
}
return SSL_ERROR_SYSCALL;
}
}
if (SSL_want_x509_lookup(s)) {
return SSL_ERROR_WANT_X509_LOOKUP;
}
if (SSL_want_channel_id_lookup(s)) {
return SSL_ERROR_WANT_CHANNEL_ID_LOOKUP;
}
if (SSL_want_private_key_operation(s)) {
return SSL_ERROR_WANT_PRIVATE_KEY_OPERATION;
}
return SSL_ERROR_SYSCALL;
}
int SSL_do_handshake(SSL *s) {
int ret = 1;
if (s->handshake_func == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_do_handshake, SSL_R_CONNECTION_TYPE_NOT_SET);
return -1;
}
if (SSL_in_init(s)) {
ret = s->handshake_func(s);
}
return ret;
}
void SSL_set_accept_state(SSL *ssl) {
ssl->server = 1;
ssl->shutdown = 0;
ssl->state = SSL_ST_ACCEPT;
ssl->handshake_func = ssl->method->ssl_accept;
/* clear the current cipher */
ssl_clear_cipher_ctx(ssl);
}
void SSL_set_connect_state(SSL *ssl) {
ssl->server = 0;
ssl->shutdown = 0;
ssl->state = SSL_ST_CONNECT;
ssl->handshake_func = ssl->method->ssl_connect;
/* clear the current cipher */
ssl_clear_cipher_ctx(ssl);
}
static const char *ssl_get_version(int version) {
switch (version) {
case TLS1_2_VERSION:
return "TLSv1.2";
case TLS1_1_VERSION:
return "TLSv1.1";
case TLS1_VERSION:
return "TLSv1";
case SSL3_VERSION:
return "SSLv3";
case DTLS1_VERSION:
return "DTLSv1";
case DTLS1_2_VERSION:
return "DTLSv1.2";
default:
return "unknown";
}
}
const char *SSL_get_version(const SSL *s) {
return ssl_get_version(s->version);
}
const char *SSL_SESSION_get_version(const SSL_SESSION *sess) {
return ssl_get_version(sess->ssl_version);
}
void ssl_clear_cipher_ctx(SSL *s) {
SSL_AEAD_CTX_free(s->aead_read_ctx);
s->aead_read_ctx = NULL;
SSL_AEAD_CTX_free(s->aead_write_ctx);
s->aead_write_ctx = NULL;
}
X509 *SSL_get_certificate(const SSL *s) {
if (s->cert != NULL) {
return s->cert->key->x509;
}
return NULL;
}
EVP_PKEY *SSL_get_privatekey(const SSL *s) {
if (s->cert != NULL) {
return s->cert->key->privatekey;
}
return NULL;
}
X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) {
if (ctx->cert != NULL) {
return ctx->cert->key->x509;
}
return NULL;
}
EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) {
if (ctx->cert != NULL) {
return ctx->cert->key->privatekey;
}
return NULL;
}
const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) {
if (s->aead_write_ctx == NULL) {
return NULL;
}
return s->aead_write_ctx->cipher;
}
const void *SSL_get_current_compression(SSL *s) { return NULL; }
const void *SSL_get_current_expansion(SSL *s) { return NULL; }
int ssl_init_wbio_buffer(SSL *s, int push) {
BIO *bbio;
if (s->bbio == NULL) {
bbio = BIO_new(BIO_f_buffer());
if (bbio == NULL) {
return 0;
}
s->bbio = bbio;
} else {
bbio = s->bbio;
if (s->bbio == s->wbio) {
s->wbio = BIO_pop(s->wbio);
}
}
BIO_reset(bbio);
if (!BIO_set_read_buffer_size(bbio, 1)) {
OPENSSL_PUT_ERROR(SSL, ssl_init_wbio_buffer, ERR_R_BUF_LIB);
return 0;
}
if (push) {
if (s->wbio != bbio) {
s->wbio = BIO_push(bbio, s->wbio);
}
} else {
if (s->wbio == bbio) {
s->wbio = BIO_pop(bbio);
}
}
return 1;
}
void ssl_free_wbio_buffer(SSL *s) {
if (s->bbio == NULL) {
return;
}
if (s->bbio == s->wbio) {
/* remove buffering */
s->wbio = BIO_pop(s->wbio);
}
BIO_free(s->bbio);
s->bbio = NULL;
}
void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) {
ctx->quiet_shutdown = mode;
}
int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) {
return ctx->quiet_shutdown;
}
void SSL_set_quiet_shutdown(SSL *s, int mode) { s->quiet_shutdown = mode; }
int SSL_get_quiet_shutdown(const SSL *s) { return s->quiet_shutdown; }
void SSL_set_shutdown(SSL *s, int mode) { s->shutdown = mode; }
int SSL_get_shutdown(const SSL *s) { return s->shutdown; }
int SSL_version(const SSL *s) { return s->version; }
SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx; }
SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) {
if (ssl->ctx == ctx) {
return ssl->ctx;
}
if (ctx == NULL) {
ctx = ssl->initial_ctx;
}
ssl_cert_free(ssl->cert);
ssl->cert = ssl_cert_dup(ctx->cert);
CRYPTO_refcount_inc(&ctx->references);
SSL_CTX_free(ssl->ctx); /* decrement reference count */
ssl->ctx = ctx;
ssl->sid_ctx_length = ctx->sid_ctx_length;
assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx));
memcpy(ssl->sid_ctx, ctx->sid_ctx, sizeof(ssl->sid_ctx));
return ssl->ctx;
}
int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) {
return X509_STORE_set_default_paths(ctx->cert_store);
}
int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
const char *CApath) {
return X509_STORE_load_locations(ctx->cert_store, CAfile, CApath);
}
void SSL_set_info_callback(SSL *ssl,
void (*cb)(const SSL *ssl, int type, int val)) {
ssl->info_callback = cb;
}
void (*SSL_get_info_callback(const SSL *ssl))(const SSL * /*ssl*/, int /*type*/,
int /*val*/) {
return ssl->info_callback;
}
int SSL_state(const SSL *ssl) { return ssl->state; }
void SSL_set_state(SSL *ssl, int state) { }
void SSL_set_verify_result(SSL *ssl, long arg) { ssl->verify_result = arg; }
long SSL_get_verify_result(const SSL *ssl) { return ssl->verify_result; }
int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) {
int index;
if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl, &index, argl, argp,
new_func, dup_func, free_func)) {
return -1;
}
return index;
}
int SSL_set_ex_data(SSL *s, int idx, void *arg) {
return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
}
void *SSL_get_ex_data(const SSL *s, int idx) {
return CRYPTO_get_ex_data(&s->ex_data, idx);
}
int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func,
CRYPTO_EX_free *free_func) {
int index;
if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl_ctx, &index, argl, argp,
new_func, dup_func, free_func)) {
return -1;
}
return index;
}
int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) {
return CRYPTO_set_ex_data(&s->ex_data, idx, arg);
}
void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) {
return CRYPTO_get_ex_data(&s->ex_data, idx);
}
X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) {
return ctx->cert_store;
}
void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) {
X509_STORE_free(ctx->cert_store);
ctx->cert_store = store;
}
int SSL_want(const SSL *s) { return s->rwstate; }
void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
RSA *(*cb)(SSL *ssl, int is_export,
int keylength)) {
}
void SSL_set_tmp_rsa_callback(SSL *ssl, RSA *(*cb)(SSL *ssl, int is_export,
int keylength)) {
}
void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
DH *(*callback)(SSL *ssl, int is_export,
int keylength)) {
ctx->cert->dh_tmp_cb = callback;
}
void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*callback)(SSL *ssl, int is_export,
int keylength)) {
ssl->cert->dh_tmp_cb = callback;
}
void SSL_CTX_set_tmp_ecdh_callback(SSL_CTX *ctx,
EC_KEY *(*callback)(SSL *ssl, int is_export,
int keylength)) {
ctx->cert->ecdh_tmp_cb = callback;
}
void SSL_set_tmp_ecdh_callback(SSL *ssl,
EC_KEY *(*callback)(SSL *ssl, int is_export,
int keylength)) {
ssl->cert->ecdh_tmp_cb = callback;
}
int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) {
if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
OPENSSL_PUT_ERROR(SSL, SSL_CTX_use_psk_identity_hint,
SSL_R_DATA_LENGTH_TOO_LONG);
return 0;
}
OPENSSL_free(ctx->psk_identity_hint);
if (identity_hint != NULL) {
ctx->psk_identity_hint = BUF_strdup(identity_hint);
if (ctx->psk_identity_hint == NULL) {
return 0;
}
} else {
ctx->psk_identity_hint = NULL;
}
return 1;
}
int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) {
if (s == NULL) {
return 0;
}
if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
OPENSSL_PUT_ERROR(SSL, SSL_use_psk_identity_hint,
SSL_R_DATA_LENGTH_TOO_LONG);
return 0;
}
/* Clear currently configured hint, if any. */
OPENSSL_free(s->psk_identity_hint);
s->psk_identity_hint = NULL;
if (identity_hint != NULL) {
s->psk_identity_hint = BUF_strdup(identity_hint);
if (s->psk_identity_hint == NULL) {
return 0;
}
}
return 1;
}
const char *SSL_get_psk_identity_hint(const SSL *s) {
if (s == NULL) {
return NULL;
}
return s->psk_identity_hint;
}
const char *SSL_get_psk_identity(const SSL *s) {
if (s == NULL || s->session == NULL) {
return NULL;
}
return s->session->psk_identity;
}
void SSL_set_psk_client_callback(
SSL *s, unsigned int (*cb)(SSL *ssl, const char *hint, char *identity,
unsigned int max_identity_len, uint8_t *psk,
unsigned int max_psk_len)) {
s->psk_client_callback = cb;
}
void SSL_CTX_set_psk_client_callback(
SSL_CTX *ctx, unsigned int (*cb)(SSL *ssl, const char *hint, char *identity,
unsigned int max_identity_len,
uint8_t *psk, unsigned int max_psk_len)) {
ctx->psk_client_callback = cb;
}
void SSL_set_psk_server_callback(
SSL *s, unsigned int (*cb)(SSL *ssl, const char *identity, uint8_t *psk,
unsigned int max_psk_len)) {
s->psk_server_callback = cb;
}
void SSL_CTX_set_psk_server_callback(
SSL_CTX *ctx, unsigned int (*cb)(SSL *ssl, const char *identity,
uint8_t *psk, unsigned int max_psk_len)) {
ctx->psk_server_callback = cb;
}
void SSL_CTX_set_min_version(SSL_CTX *ctx, uint16_t version) {
ctx->min_version = version;
}
void SSL_CTX_set_max_version(SSL_CTX *ctx, uint16_t version) {
ctx->max_version = version;
}
void SSL_set_min_version(SSL *ssl, uint16_t version) {
ssl->min_version = version;
}
void SSL_set_max_version(SSL *ssl, uint16_t version) {
ssl->max_version = version;
}
void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
void (*cb)(int write_p, int version,
int content_type, const void *buf,
size_t len, SSL *ssl, void *arg)) {
ctx->msg_callback = cb;
}
void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg) {
ctx->msg_callback_arg = arg;
}
void SSL_set_msg_callback(SSL *ssl,
void (*cb)(int write_p, int version, int content_type,
const void *buf, size_t len, SSL *ssl,
void *arg)) {
ssl->msg_callback = cb;
}
void SSL_set_msg_callback_arg(SSL *ssl, void *arg) {
ssl->msg_callback_arg = arg;
}
void SSL_CTX_set_keylog_bio(SSL_CTX *ctx, BIO *keylog_bio) {
BIO_free(ctx->keylog_bio);
ctx->keylog_bio = keylog_bio;
}
static int cbb_add_hex(CBB *cbb, const uint8_t *in, size_t in_len) {
static const char hextable[] = "0123456789abcdef";
uint8_t *out;
size_t i;
if (!CBB_add_space(cbb, &out, in_len * 2)) {
return 0;
}
for (i = 0; i < in_len; i++) {
*(out++) = (uint8_t)hextable[in[i] >> 4];
*(out++) = (uint8_t)hextable[in[i] & 0xf];
}
return 1;
}
int ssl_ctx_log_rsa_client_key_exchange(SSL_CTX *ctx,
const uint8_t *encrypted_premaster,
size_t encrypted_premaster_len,
const uint8_t *premaster,
size_t premaster_len) {
BIO *bio = ctx->keylog_bio;
CBB cbb;
uint8_t *out;
size_t out_len;
int ret;
if (bio == NULL) {
return 1;
}
if (encrypted_premaster_len < 8) {
OPENSSL_PUT_ERROR(SSL, ssl_ctx_log_rsa_client_key_exchange,
ERR_R_INTERNAL_ERROR);
return 0;
}
if (!CBB_init(&cbb, 4 + 16 + 1 + premaster_len * 2 + 1)) {
return 0;
}
if (!CBB_add_bytes(&cbb, (const uint8_t *)"RSA ", 4) ||
/* Only the first 8 bytes of the encrypted premaster secret are
* logged. */
!cbb_add_hex(&cbb, encrypted_premaster, 8) ||
!CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) ||
!cbb_add_hex(&cbb, premaster, premaster_len) ||
!CBB_add_bytes(&cbb, (const uint8_t *)"\n", 1) ||
!CBB_finish(&cbb, &out, &out_len)) {
CBB_cleanup(&cbb);
return 0;
}
CRYPTO_MUTEX_lock_write(&ctx->lock);
ret = BIO_write(bio, out, out_len) >= 0 && BIO_flush(bio);
CRYPTO_MUTEX_unlock(&ctx->lock);
OPENSSL_free(out);
return ret;
}
int ssl_ctx_log_master_secret(SSL_CTX *ctx, const uint8_t *client_random,
size_t client_random_len, const uint8_t *master,
size_t master_len) {
BIO *bio = ctx->keylog_bio;
CBB cbb;
uint8_t *out;
size_t out_len;
int ret;
if (bio == NULL) {
return 1;
}
if (client_random_len != 32) {
OPENSSL_PUT_ERROR(SSL, ssl_ctx_log_master_secret, ERR_R_INTERNAL_ERROR);
return 0;
}
if (!CBB_init(&cbb, 14 + 64 + 1 + master_len * 2 + 1)) {
return 0;
}
if (!CBB_add_bytes(&cbb, (const uint8_t *)"CLIENT_RANDOM ", 14) ||
!cbb_add_hex(&cbb, client_random, 32) ||
!CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) ||
!cbb_add_hex(&cbb, master, master_len) ||
!CBB_add_bytes(&cbb, (const uint8_t *)"\n", 1) ||
!CBB_finish(&cbb, &out, &out_len)) {
CBB_cleanup(&cbb);
return 0;
}
CRYPTO_MUTEX_lock_write(&ctx->lock);
ret = BIO_write(bio, out, out_len) >= 0 && BIO_flush(bio);
CRYPTO_MUTEX_unlock(&ctx->lock);
OPENSSL_free(out);
return ret;
}
int SSL_in_false_start(const SSL *s) {
return s->s3->tmp.in_false_start;
}
int SSL_cutthrough_complete(const SSL *s) {
return SSL_in_false_start(s);
}
void SSL_get_structure_sizes(size_t *ssl_size, size_t *ssl_ctx_size,
size_t *ssl_session_size) {
*ssl_size = sizeof(SSL);
*ssl_ctx_size = sizeof(SSL_CTX);
*ssl_session_size = sizeof(SSL_SESSION);
}
int ssl3_can_false_start(const SSL *s) {
const SSL_CIPHER *const cipher = SSL_get_current_cipher(s);
/* False Start only for TLS 1.2 with an ECDHE+AEAD cipher and ALPN or NPN. */
return !SSL_IS_DTLS(s) &&
SSL_version(s) >= TLS1_2_VERSION &&
(s->s3->alpn_selected || s->s3->next_proto_neg_seen) &&
cipher != NULL &&
cipher->algorithm_mkey == SSL_kECDHE &&
(cipher->algorithm_enc == SSL_AES128GCM ||
cipher->algorithm_enc == SSL_AES256GCM ||
cipher->algorithm_enc == SSL_CHACHA20POLY1305);
}
const SSL3_ENC_METHOD *ssl3_get_enc_method(uint16_t version) {
switch (version) {
case SSL3_VERSION:
return &SSLv3_enc_data;
case TLS1_VERSION:
return &TLSv1_enc_data;
case DTLS1_VERSION:
case TLS1_1_VERSION:
return &TLSv1_1_enc_data;
case DTLS1_2_VERSION:
case TLS1_2_VERSION:
return &TLSv1_2_enc_data;
default:
return NULL;
}
}
uint16_t ssl3_get_max_server_version(const SSL *s) {
uint16_t max_version;
if (SSL_IS_DTLS(s)) {
max_version = (s->max_version != 0) ? s->max_version : DTLS1_2_VERSION;
if (!(s->options & SSL_OP_NO_DTLSv1_2) && DTLS1_2_VERSION >= max_version) {
return DTLS1_2_VERSION;
}
if (!(s->options & SSL_OP_NO_DTLSv1) && DTLS1_VERSION >= max_version) {
return DTLS1_VERSION;
}
return 0;
}
max_version = (s->max_version != 0) ? s->max_version : TLS1_2_VERSION;
if (!(s->options & SSL_OP_NO_TLSv1_2) && TLS1_2_VERSION <= max_version) {
return TLS1_2_VERSION;
}
if (!(s->options & SSL_OP_NO_TLSv1_1) && TLS1_1_VERSION <= max_version) {
return TLS1_1_VERSION;
}
if (!(s->options & SSL_OP_NO_TLSv1) && TLS1_VERSION <= max_version) {
return TLS1_VERSION;
}
if (!(s->options & SSL_OP_NO_SSLv3) && SSL3_VERSION <= max_version) {
return SSL3_VERSION;
}
return 0;
}
uint16_t ssl3_get_mutual_version(SSL *s, uint16_t client_version) {
uint16_t version = 0;
if (SSL_IS_DTLS(s)) {
/* Clamp client_version to max_version. */
if (s->max_version != 0 && client_version < s->max_version) {
client_version = s->max_version;
}
if (client_version <= DTLS1_2_VERSION && !(s->options & SSL_OP_NO_DTLSv1_2)) {
version = DTLS1_2_VERSION;
} else if (client_version <= DTLS1_VERSION &&
!(s->options & SSL_OP_NO_DTLSv1)) {
version = DTLS1_VERSION;
}
/* Check against min_version. */
if (version != 0 && s->min_version != 0 && version > s->min_version) {
return 0;
}
return version;
} else {
/* Clamp client_version to max_version. */
if (s->max_version != 0 && client_version > s->max_version) {
client_version = s->max_version;
}
if (client_version >= TLS1_2_VERSION && !(s->options & SSL_OP_NO_TLSv1_2)) {
version = TLS1_2_VERSION;
} else if (client_version >= TLS1_1_VERSION &&
!(s->options & SSL_OP_NO_TLSv1_1)) {
version = TLS1_1_VERSION;
} else if (client_version >= TLS1_VERSION && !(s->options & SSL_OP_NO_TLSv1)) {
version = TLS1_VERSION;
} else if (client_version >= SSL3_VERSION && !(s->options & SSL_OP_NO_SSLv3)) {
version = SSL3_VERSION;
}
/* Check against min_version. */
if (version != 0 && s->min_version != 0 && version < s->min_version) {
return 0;
}
return version;
}
}
uint16_t ssl3_get_max_client_version(SSL *s) {
uint32_t options = s->options;
uint16_t version = 0;
/* OpenSSL's API for controlling versions entails blacklisting individual
* protocols. This has two problems. First, on the client, the protocol can
* only express a contiguous range of versions. Second, a library consumer
* trying to set a maximum version cannot disable protocol versions that get
* added in a future version of the library.
*
* To account for both of these, OpenSSL interprets the client-side bitmask
* as a min/max range by picking the lowest contiguous non-empty range of
* enabled protocols. Note that this means it is impossible to set a maximum
* version of TLS 1.2 in a future-proof way.
*
* By this scheme, the maximum version is the lowest version V such that V is
* enabled and V+1 is disabled or unimplemented. */
if (SSL_IS_DTLS(s)) {
if (!(options & SSL_OP_NO_DTLSv1_2)) {
version = DTLS1_2_VERSION;
}
if (!(options & SSL_OP_NO_DTLSv1) && (options & SSL_OP_NO_DTLSv1_2)) {
version = DTLS1_VERSION;
}
if (s->max_version != 0 && version < s->max_version) {
version = s->max_version;
}
} else {
if (!(options & SSL_OP_NO_TLSv1_2)) {
version = TLS1_2_VERSION;
}
if (!(options & SSL_OP_NO_TLSv1_1) && (options & SSL_OP_NO_TLSv1_2)) {
version = TLS1_1_VERSION;
}
if (!(options & SSL_OP_NO_TLSv1) && (options & SSL_OP_NO_TLSv1_1)) {
version = TLS1_VERSION;
}
if (!(options & SSL_OP_NO_SSLv3) && (options & SSL_OP_NO_TLSv1)) {
version = SSL3_VERSION;
}
if (s->max_version != 0 && version > s->max_version) {
version = s->max_version;
}
}
return version;
}
int ssl3_is_version_enabled(SSL *s, uint16_t version) {
if (SSL_IS_DTLS(s)) {
if (s->max_version != 0 && version < s->max_version) {
return 0;
}
if (s->min_version != 0 && version > s->min_version) {
return 0;
}
switch (version) {
case DTLS1_VERSION:
return !(s->options & SSL_OP_NO_DTLSv1);
case DTLS1_2_VERSION:
return !(s->options & SSL_OP_NO_DTLSv1_2);
default:
return 0;
}
} else {
if (s->max_version != 0 && version > s->max_version) {
return 0;
}
if (s->min_version != 0 && version < s->min_version) {
return 0;
}
switch (version) {
case SSL3_VERSION:
return !(s->options & SSL_OP_NO_SSLv3);
case TLS1_VERSION:
return !(s->options & SSL_OP_NO_TLSv1);
case TLS1_1_VERSION:
return !(s->options & SSL_OP_NO_TLSv1_1);
case TLS1_2_VERSION:
return !(s->options & SSL_OP_NO_TLSv1_2);
default:
return 0;
}
}
}
uint16_t ssl3_version_from_wire(SSL *s, uint16_t wire_version) {
if (!SSL_IS_DTLS(s)) {
return wire_version;
}
uint16_t tls_version = ~wire_version;
uint16_t version = tls_version + 0x0201;
/* If either component overflowed, clamp it so comparisons still work. */
if ((version >> 8) < (tls_version >> 8)) {
version = 0xff00 | (version & 0xff);
}
if ((version & 0xff) < (tls_version & 0xff)) {
version = (version & 0xff00) | 0xff;
}
/* DTLS 1.0 maps to TLS 1.1, not TLS 1.0. */
if (version == TLS1_VERSION) {
version = TLS1_1_VERSION;
}
return version;
}
int SSL_cache_hit(SSL *s) { return s->hit; }
int SSL_is_server(SSL *s) { return s->server; }
void SSL_CTX_set_dos_protection_cb(
SSL_CTX *ctx, int (*cb)(const struct ssl_early_callback_ctx *)) {
ctx->dos_protection_cb = cb;
}
void SSL_enable_fastradio_padding(SSL *s, char on_off) {
s->fastradio_padding = on_off;
}
void SSL_set_reject_peer_renegotiations(SSL *s, int reject) {
s->accept_peer_renegotiations = !reject;
}
int SSL_get_rc4_state(const SSL *ssl, const RC4_KEY **read_key,
const RC4_KEY **write_key) {
if (ssl->aead_read_ctx == NULL || ssl->aead_write_ctx == NULL) {
return 0;
}
return EVP_AEAD_CTX_get_rc4_state(&ssl->aead_read_ctx->ctx, read_key) &&
EVP_AEAD_CTX_get_rc4_state(&ssl->aead_write_ctx->ctx, write_key);
}
int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, size_t *out_len,
size_t max_out) {
/* The tls-unique value is the first Finished message in the handshake, which
* is the client's in a full handshake and the server's for a resumption. See
* https://tools.ietf.org/html/rfc5929#section-3.1. */
const uint8_t *finished = ssl->s3->previous_client_finished;
size_t finished_len = ssl->s3->previous_client_finished_len;
if (ssl->hit) {
/* tls-unique is broken for resumed sessions unless EMS is used. */
if (!ssl->session->extended_master_secret) {
goto err;
}
finished = ssl->s3->previous_server_finished;
finished_len = ssl->s3->previous_server_finished_len;
}
if (!ssl->s3->initial_handshake_complete ||
ssl->version < TLS1_VERSION) {
goto err;
}
*out_len = finished_len;
if (finished_len > max_out) {
*out_len = max_out;
}
memcpy(out, finished, *out_len);
return 1;
err:
*out_len = 0;
memset(out, 0, max_out);
return 0;
}
int SSL_initial_handshake_complete(const SSL *ssl) {
return ssl->s3->initial_handshake_complete;
}
int SSL_CTX_sess_connect(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_connect_good(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_accept(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_accept_good(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_hits(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_misses(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_timeouts(const SSL_CTX *ctx) { return 0; }
int SSL_CTX_sess_cache_full(const SSL_CTX *ctx) { return 0; }