boringssl/crypto/x509/x_pubkey.c
David Benjamin 68772b31b0 Implement new SPKI parsers.
Many consumers need SPKI support (X.509, TLS, QUIC, WebCrypto), each
with different ways to set signature parameters. SPKIs themselves can
get complex with id-RSASSA-PSS keys which come with various constraints
in the key parameters. This suggests we want a common in-library
representation of an SPKI.

This adds two new functions EVP_parse_public_key and
EVP_marshal_public_key which converts EVP_PKEY to and from SPKI and
implements X509_PUBKEY functions with them. EVP_PKEY seems to have been
intended to be able to express the supported SPKI types with
full-fidelity, so these APIs will continue this.

This means future support for id-RSASSA-PSS would *not* repurpose
EVP_PKEY_RSA. I'm worried about code assuming EVP_PKEY_RSA implies
acting on the RSA* is legal. Instead, it'd add an EVP_PKEY_RSA_PSS and
the data pointer would be some (exposed, so the caller may still check
key size, etc.) RSA_PSS_KEY struct. Internally, the EVP_PKEY_CTX
implementation would enforce the key constraints. If RSA_PSS_KEY would
later need its own API, that code would move there, but that seems
unlikely.

Ideally we'd have a 1:1 correspondence with key OID, although we may
have to fudge things if mistakes happen in standardization. (Whether or
not X.509 reuses id-ecPublicKey for Ed25519, we'll give it a separate
EVP_PKEY type.)

DSA parsing hooks are still implemented, missing parameters and all for
now. This isn't any worse than before.

Decoupling from the giant crypto/obj OID table will be a later task.

BUG=522228

Change-Id: I0e3964edf20cb795a18b0991d17e5ca8bce3e28c
Reviewed-on: https://boringssl-review.googlesource.com/6861
Reviewed-by: Adam Langley <agl@google.com>
2016-02-17 16:28:07 +00:00

366 lines
10 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <limits.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/thread.h>
#include <openssl/x509.h>
#include "../internal.h"
/* Minor tweak to operation: free up EVP_PKEY */
static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg)
{
if (operation == ASN1_OP_FREE_POST) {
X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval;
EVP_PKEY_free(pubkey->pkey);
}
return 1;
}
ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = {
ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR),
ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING)
} ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY)
IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY)
int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey)
{
X509_PUBKEY *pk = NULL;
uint8_t *spki = NULL;
size_t spki_len;
if (x == NULL)
return (0);
CBB cbb;
if (!CBB_init(&cbb, 0) ||
!EVP_marshal_public_key(&cbb, pkey) ||
!CBB_finish(&cbb, &spki, &spki_len) ||
spki_len > LONG_MAX) {
CBB_cleanup(&cbb);
OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_ENCODE_ERROR);
goto error;
}
const uint8_t *p = spki;
pk = d2i_X509_PUBKEY(NULL, &p, (long)spki_len);
if (pk == NULL || p != spki + spki_len) {
OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_DECODE_ERROR);
goto error;
}
OPENSSL_free(spki);
X509_PUBKEY_free(*x);
*x = pk;
return 1;
error:
X509_PUBKEY_free(pk);
OPENSSL_free(spki);
return 0;
}
/* g_pubkey_lock is used to protect the initialisation of the |pkey| member of
* |X509_PUBKEY| objects. Really |X509_PUBKEY| should have a |CRYPTO_once_t|
* inside it for this, but |CRYPTO_once_t| is private and |X509_PUBKEY| is
* not. */
static struct CRYPTO_STATIC_MUTEX g_pubkey_lock = CRYPTO_STATIC_MUTEX_INIT;
EVP_PKEY *X509_PUBKEY_get(X509_PUBKEY *key)
{
EVP_PKEY *ret = NULL;
uint8_t *spki = NULL;
if (key == NULL)
goto error;
CRYPTO_STATIC_MUTEX_lock_read(&g_pubkey_lock);
if (key->pkey != NULL) {
CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
return EVP_PKEY_up_ref(key->pkey);
}
CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
/* Re-encode the |X509_PUBKEY| to DER and parse it. */
int spki_len = i2d_X509_PUBKEY(key, &spki);
if (spki_len < 0) {
goto error;
}
CBS cbs;
CBS_init(&cbs, spki, (size_t)spki_len);
ret = EVP_parse_public_key(&cbs);
if (ret == NULL || CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(X509, X509_R_PUBLIC_KEY_DECODE_ERROR);
goto error;
}
/* Check to see if another thread set key->pkey first */
CRYPTO_STATIC_MUTEX_lock_write(&g_pubkey_lock);
if (key->pkey) {
CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
EVP_PKEY_free(ret);
ret = key->pkey;
} else {
key->pkey = ret;
CRYPTO_STATIC_MUTEX_unlock(&g_pubkey_lock);
}
OPENSSL_free(spki);
return EVP_PKEY_up_ref(ret);
error:
OPENSSL_free(spki);
EVP_PKEY_free(ret);
return NULL;
}
/*
* Now two pseudo ASN1 routines that take an EVP_PKEY structure and encode or
* decode as X509_PUBKEY
*/
EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length)
{
X509_PUBKEY *xpk;
EVP_PKEY *pktmp;
xpk = d2i_X509_PUBKEY(NULL, pp, length);
if (!xpk)
return NULL;
pktmp = X509_PUBKEY_get(xpk);
X509_PUBKEY_free(xpk);
if (!pktmp)
return NULL;
if (a) {
EVP_PKEY_free(*a);
*a = pktmp;
}
return pktmp;
}
int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp)
{
X509_PUBKEY *xpk = NULL;
int ret;
if (!a)
return 0;
if (!X509_PUBKEY_set(&xpk, (EVP_PKEY *)a))
return 0;
ret = i2d_X509_PUBKEY(xpk, pp);
X509_PUBKEY_free(xpk);
return ret;
}
/*
* The following are equivalents but which return RSA and DSA keys
*/
RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
RSA *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (!pkey)
return NULL;
key = EVP_PKEY_get1_RSA(pkey);
EVP_PKEY_free(pkey);
if (!key)
return NULL;
*pp = q;
if (a) {
RSA_free(*a);
*a = key;
}
return key;
}
int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (!pktmp) {
OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE);
return 0;
}
EVP_PKEY_set1_RSA(pktmp, (RSA *)a);
ret = i2d_PUBKEY(pktmp, pp);
EVP_PKEY_free(pktmp);
return ret;
}
#ifndef OPENSSL_NO_DSA
DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
DSA *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (!pkey)
return NULL;
key = EVP_PKEY_get1_DSA(pkey);
EVP_PKEY_free(pkey);
if (!key)
return NULL;
*pp = q;
if (a) {
DSA_free(*a);
*a = key;
}
return key;
}
int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return 0;
pktmp = EVP_PKEY_new();
if (!pktmp) {
OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE);
return 0;
}
EVP_PKEY_set1_DSA(pktmp, (DSA *)a);
ret = i2d_PUBKEY(pktmp, pp);
EVP_PKEY_free(pktmp);
return ret;
}
#endif
EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length)
{
EVP_PKEY *pkey;
EC_KEY *key;
const unsigned char *q;
q = *pp;
pkey = d2i_PUBKEY(NULL, &q, length);
if (!pkey)
return (NULL);
key = EVP_PKEY_get1_EC_KEY(pkey);
EVP_PKEY_free(pkey);
if (!key)
return (NULL);
*pp = q;
if (a) {
EC_KEY_free(*a);
*a = key;
}
return (key);
}
int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp)
{
EVP_PKEY *pktmp;
int ret;
if (!a)
return (0);
if ((pktmp = EVP_PKEY_new()) == NULL) {
OPENSSL_PUT_ERROR(X509, ERR_R_MALLOC_FAILURE);
return (0);
}
EVP_PKEY_set1_EC_KEY(pktmp, (EC_KEY *)a);
ret = i2d_PUBKEY(pktmp, pp);
EVP_PKEY_free(pktmp);
return (ret);
}
int X509_PUBKEY_set0_param(X509_PUBKEY *pub, const ASN1_OBJECT *aobj,
int ptype, void *pval,
unsigned char *penc, int penclen)
{
if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval))
return 0;
if (penc) {
if (pub->public_key->data)
OPENSSL_free(pub->public_key->data);
pub->public_key->data = penc;
pub->public_key->length = penclen;
/* Set number of unused bits to zero */
pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07);
pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT;
}
return 1;
}
int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg,
const unsigned char **pk, int *ppklen,
X509_ALGOR **pa, X509_PUBKEY *pub)
{
if (ppkalg)
*ppkalg = pub->algor->algorithm;
if (pk) {
*pk = pub->public_key->data;
*ppklen = pub->public_key->length;
}
if (pa)
*pa = pub->algor;
return 1;
}