boringssl/crypto/bn/asm/modexp512-x86_64.pl
Adam Langley 95c29f3cd1 Inital import.
Initial fork from f2d678e6e89b6508147086610e985d4e8416e867 (1.0.2 beta).

(This change contains substantial changes from the original and
effectively starts a new history.)
2014-06-20 13:17:32 -07:00

1498 lines
34 KiB
Perl

#!/usr/bin/env perl
#
# Copyright (c) 2010-2011 Intel Corp.
# Author: Vinodh.Gopal@intel.com
# Jim Guilford
# Erdinc.Ozturk@intel.com
# Maxim.Perminov@intel.com
#
# More information about algorithm used can be found at:
# http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
#
# ====================================================================
# Copyright (c) 2011 The OpenSSL Project. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# 3. All advertising materials mentioning features or use of this
# software must display the following acknowledgment:
# "This product includes software developed by the OpenSSL Project
# for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
#
# 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
# endorse or promote products derived from this software without
# prior written permission. For written permission, please contact
# licensing@OpenSSL.org.
#
# 5. Products derived from this software may not be called "OpenSSL"
# nor may "OpenSSL" appear in their names without prior written
# permission of the OpenSSL Project.
#
# 6. Redistributions of any form whatsoever must retain the following
# acknowledgment:
# "This product includes software developed by the OpenSSL Project
# for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
#
# THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
# EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
# ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
# OF THE POSSIBILITY OF SUCH DAMAGE.
# ====================================================================
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
use strict;
my $code=".text\n\n";
my $m=0;
#
# Define x512 macros
#
#MULSTEP_512_ADD MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src1, src2, add_src, tmp1, tmp2
#
# uses rax, rdx, and args
sub MULSTEP_512_ADD
{
my ($x, $DST, $SRC2, $ASRC, $OP, $TMP)=@_;
my @X=@$x; # make a copy
$code.=<<___;
mov (+8*0)($SRC2), %rax
mul $OP # rdx:rax = %OP * [0]
mov ($ASRC), $X[0]
add %rax, $X[0]
adc \$0, %rdx
mov $X[0], $DST
___
for(my $i=1;$i<8;$i++) {
$code.=<<___;
mov %rdx, $TMP
mov (+8*$i)($SRC2), %rax
mul $OP # rdx:rax = %OP * [$i]
mov (+8*$i)($ASRC), $X[$i]
add %rax, $X[$i]
adc \$0, %rdx
add $TMP, $X[$i]
adc \$0, %rdx
___
}
$code.=<<___;
mov %rdx, $X[0]
___
}
#MULSTEP_512 MACRO x7, x6, x5, x4, x3, x2, x1, x0, dst, src2, src1_val, tmp
#
# uses rax, rdx, and args
sub MULSTEP_512
{
my ($x, $DST, $SRC2, $OP, $TMP)=@_;
my @X=@$x; # make a copy
$code.=<<___;
mov (+8*0)($SRC2), %rax
mul $OP # rdx:rax = %OP * [0]
add %rax, $X[0]
adc \$0, %rdx
mov $X[0], $DST
___
for(my $i=1;$i<8;$i++) {
$code.=<<___;
mov %rdx, $TMP
mov (+8*$i)($SRC2), %rax
mul $OP # rdx:rax = %OP * [$i]
add %rax, $X[$i]
adc \$0, %rdx
add $TMP, $X[$i]
adc \$0, %rdx
___
}
$code.=<<___;
mov %rdx, $X[0]
___
}
#
# Swizzle Macros
#
# macro to copy data from flat space to swizzled table
#MACRO swizzle pDst, pSrc, tmp1, tmp2
# pDst and pSrc are modified
sub swizzle
{
my ($pDst, $pSrc, $cnt, $d0)=@_;
$code.=<<___;
mov \$8, $cnt
loop_$m:
mov ($pSrc), $d0
mov $d0#w, ($pDst)
shr \$16, $d0
mov $d0#w, (+64*1)($pDst)
shr \$16, $d0
mov $d0#w, (+64*2)($pDst)
shr \$16, $d0
mov $d0#w, (+64*3)($pDst)
lea 8($pSrc), $pSrc
lea 64*4($pDst), $pDst
dec $cnt
jnz loop_$m
___
$m++;
}
# macro to copy data from swizzled table to flat space
#MACRO unswizzle pDst, pSrc, tmp*3
sub unswizzle
{
my ($pDst, $pSrc, $cnt, $d0, $d1)=@_;
$code.=<<___;
mov \$4, $cnt
loop_$m:
movzxw (+64*3+256*0)($pSrc), $d0
movzxw (+64*3+256*1)($pSrc), $d1
shl \$16, $d0
shl \$16, $d1
mov (+64*2+256*0)($pSrc), $d0#w
mov (+64*2+256*1)($pSrc), $d1#w
shl \$16, $d0
shl \$16, $d1
mov (+64*1+256*0)($pSrc), $d0#w
mov (+64*1+256*1)($pSrc), $d1#w
shl \$16, $d0
shl \$16, $d1
mov (+64*0+256*0)($pSrc), $d0#w
mov (+64*0+256*1)($pSrc), $d1#w
mov $d0, (+8*0)($pDst)
mov $d1, (+8*1)($pDst)
lea 256*2($pSrc), $pSrc
lea 8*2($pDst), $pDst
sub \$1, $cnt
jnz loop_$m
___
$m++;
}
#
# Data Structures
#
# Reduce Data
#
#
# Offset Value
# 0C0 Carries
# 0B8 X2[10]
# 0B0 X2[9]
# 0A8 X2[8]
# 0A0 X2[7]
# 098 X2[6]
# 090 X2[5]
# 088 X2[4]
# 080 X2[3]
# 078 X2[2]
# 070 X2[1]
# 068 X2[0]
# 060 X1[12] P[10]
# 058 X1[11] P[9] Z[8]
# 050 X1[10] P[8] Z[7]
# 048 X1[9] P[7] Z[6]
# 040 X1[8] P[6] Z[5]
# 038 X1[7] P[5] Z[4]
# 030 X1[6] P[4] Z[3]
# 028 X1[5] P[3] Z[2]
# 020 X1[4] P[2] Z[1]
# 018 X1[3] P[1] Z[0]
# 010 X1[2] P[0] Y[2]
# 008 X1[1] Q[1] Y[1]
# 000 X1[0] Q[0] Y[0]
my $X1_offset = 0; # 13 qwords
my $X2_offset = $X1_offset + 13*8; # 11 qwords
my $Carries_offset = $X2_offset + 11*8; # 1 qword
my $Q_offset = 0; # 2 qwords
my $P_offset = $Q_offset + 2*8; # 11 qwords
my $Y_offset = 0; # 3 qwords
my $Z_offset = $Y_offset + 3*8; # 9 qwords
my $Red_Data_Size = $Carries_offset + 1*8; # (25 qwords)
#
# Stack Frame
#
#
# offset value
# ... <old stack contents>
# ...
# 280 Garray
# 278 tmp16[15]
# ... ...
# 200 tmp16[0]
# 1F8 tmp[7]
# ... ...
# 1C0 tmp[0]
# 1B8 GT[7]
# ... ...
# 180 GT[0]
# 178 Reduce Data
# ... ...
# 0B8 Reduce Data
# 0B0 reserved
# 0A8 reserved
# 0A0 reserved
# 098 reserved
# 090 reserved
# 088 reduce result addr
# 080 exp[8]
# ...
# 048 exp[1]
# 040 exp[0]
# 038 reserved
# 030 loop_idx
# 028 pg
# 020 i
# 018 pData ; arg 4
# 010 pG ; arg 2
# 008 pResult ; arg 1
# 000 rsp ; stack pointer before subtract
my $rsp_offset = 0;
my $pResult_offset = 8*1 + $rsp_offset;
my $pG_offset = 8*1 + $pResult_offset;
my $pData_offset = 8*1 + $pG_offset;
my $i_offset = 8*1 + $pData_offset;
my $pg_offset = 8*1 + $i_offset;
my $loop_idx_offset = 8*1 + $pg_offset;
my $reserved1_offset = 8*1 + $loop_idx_offset;
my $exp_offset = 8*1 + $reserved1_offset;
my $red_result_addr_offset= 8*9 + $exp_offset;
my $reserved2_offset = 8*1 + $red_result_addr_offset;
my $Reduce_Data_offset = 8*5 + $reserved2_offset;
my $GT_offset = $Red_Data_Size + $Reduce_Data_offset;
my $tmp_offset = 8*8 + $GT_offset;
my $tmp16_offset = 8*8 + $tmp_offset;
my $garray_offset = 8*16 + $tmp16_offset;
my $mem_size = 8*8*32 + $garray_offset;
#
# Offsets within Reduce Data
#
#
# struct MODF_2FOLD_MONT_512_C1_DATA {
# UINT64 t[8][8];
# UINT64 m[8];
# UINT64 m1[8]; /* 2^768 % m */
# UINT64 m2[8]; /* 2^640 % m */
# UINT64 k1[2]; /* (- 1/m) % 2^128 */
# };
my $T = 0;
my $M = 512; # = 8 * 8 * 8
my $M1 = 576; # = 8 * 8 * 9 /* += 8 * 8 */
my $M2 = 640; # = 8 * 8 * 10 /* += 8 * 8 */
my $K1 = 704; # = 8 * 8 * 11 /* += 8 * 8 */
#
# FUNCTIONS
#
{{{
#
# MULADD_128x512 : Function to multiply 128-bits (2 qwords) by 512-bits (8 qwords)
# and add 512-bits (8 qwords)
# to get 640 bits (10 qwords)
# Input: 128-bit mul source: [rdi+8*1], rbp
# 512-bit mul source: [rsi+8*n]
# 512-bit add source: r15, r14, ..., r9, r8
# Output: r9, r8, r15, r14, r13, r12, r11, r10, [rcx+8*1], [rcx+8*0]
# Clobbers all regs except: rcx, rsi, rdi
$code.=<<___;
.type MULADD_128x512,\@abi-omnipotent
.align 16
MULADD_128x512:
___
&MULSTEP_512([map("%r$_",(8..15))], "(+8*0)(%rcx)", "%rsi", "%rbp", "%rbx");
$code.=<<___;
mov (+8*1)(%rdi), %rbp
___
&MULSTEP_512([map("%r$_",(9..15,8))], "(+8*1)(%rcx)", "%rsi", "%rbp", "%rbx");
$code.=<<___;
ret
.size MULADD_128x512,.-MULADD_128x512
___
}}}
{{{
#MULADD_256x512 MACRO pDst, pA, pB, OP, TMP, X7, X6, X5, X4, X3, X2, X1, X0
#
# Inputs: pDst: Destination (768 bits, 12 qwords)
# pA: Multiplicand (1024 bits, 16 qwords)
# pB: Multiplicand (512 bits, 8 qwords)
# Dst = Ah * B + Al
# where Ah is (in qwords) A[15:12] (256 bits) and Al is A[7:0] (512 bits)
# Results in X3 X2 X1 X0 X7 X6 X5 X4 Dst[3:0]
# Uses registers: arguments, RAX, RDX
sub MULADD_256x512
{
my ($pDst, $pA, $pB, $OP, $TMP, $X)=@_;
$code.=<<___;
mov (+8*12)($pA), $OP
___
&MULSTEP_512_ADD($X, "(+8*0)($pDst)", $pB, $pA, $OP, $TMP);
push(@$X,shift(@$X));
$code.=<<___;
mov (+8*13)($pA), $OP
___
&MULSTEP_512($X, "(+8*1)($pDst)", $pB, $OP, $TMP);
push(@$X,shift(@$X));
$code.=<<___;
mov (+8*14)($pA), $OP
___
&MULSTEP_512($X, "(+8*2)($pDst)", $pB, $OP, $TMP);
push(@$X,shift(@$X));
$code.=<<___;
mov (+8*15)($pA), $OP
___
&MULSTEP_512($X, "(+8*3)($pDst)", $pB, $OP, $TMP);
push(@$X,shift(@$X));
}
#
# mont_reduce(UINT64 *x, /* 1024 bits, 16 qwords */
# UINT64 *m, /* 512 bits, 8 qwords */
# MODF_2FOLD_MONT_512_C1_DATA *data,
# UINT64 *r) /* 512 bits, 8 qwords */
# Input: x (number to be reduced): tmp16 (Implicit)
# m (modulus): [pM] (Implicit)
# data (reduce data): [pData] (Implicit)
# Output: r (result): Address in [red_res_addr]
# result also in: r9, r8, r15, r14, r13, r12, r11, r10
my @X=map("%r$_",(8..15));
$code.=<<___;
.type mont_reduce,\@abi-omnipotent
.align 16
mont_reduce:
___
my $STACK_DEPTH = 8;
#
# X1 = Xh * M1 + Xl
$code.=<<___;
lea (+$Reduce_Data_offset+$X1_offset+$STACK_DEPTH)(%rsp), %rdi # pX1 (Dst) 769 bits, 13 qwords
mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rsi # pM1 (Bsrc) 512 bits, 8 qwords
add \$$M1, %rsi
lea (+$tmp16_offset+$STACK_DEPTH)(%rsp), %rcx # X (Asrc) 1024 bits, 16 qwords
___
&MULADD_256x512("%rdi", "%rcx", "%rsi", "%rbp", "%rbx", \@X); # rotates @X 4 times
# results in r11, r10, r9, r8, r15, r14, r13, r12, X1[3:0]
$code.=<<___;
xor %rax, %rax
# X1 += xl
add (+8*8)(%rcx), $X[4]
adc (+8*9)(%rcx), $X[5]
adc (+8*10)(%rcx), $X[6]
adc (+8*11)(%rcx), $X[7]
adc \$0, %rax
# X1 is now rax, r11-r8, r15-r12, tmp16[3:0]
#
# check for carry ;; carry stored in rax
mov $X[4], (+8*8)(%rdi) # rdi points to X1
mov $X[5], (+8*9)(%rdi)
mov $X[6], %rbp
mov $X[7], (+8*11)(%rdi)
mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)
mov (+8*0)(%rdi), $X[4]
mov (+8*1)(%rdi), $X[5]
mov (+8*2)(%rdi), $X[6]
mov (+8*3)(%rdi), $X[7]
# X1 is now stored in: X1[11], rbp, X1[9:8], r15-r8
# rdi -> X1
# rsi -> M1
#
# X2 = Xh * M2 + Xl
# do first part (X2 = Xh * M2)
add \$8*10, %rdi # rdi -> pXh ; 128 bits, 2 qwords
# Xh is actually { [rdi+8*1], rbp }
add \$`$M2-$M1`, %rsi # rsi -> M2
lea (+$Reduce_Data_offset+$X2_offset+$STACK_DEPTH)(%rsp), %rcx # rcx -> pX2 ; 641 bits, 11 qwords
___
unshift(@X,pop(@X)); unshift(@X,pop(@X));
$code.=<<___;
call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r15-r8
# result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rax
# X2 += Xl
add (+8*8-8*10)(%rdi), $X[6] # (-8*10) is to adjust rdi -> Xh to Xl
adc (+8*9-8*10)(%rdi), $X[7]
mov $X[6], (+8*8)(%rcx)
mov $X[7], (+8*9)(%rcx)
adc %rax, %rax
mov %rax, (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp)
lea (+$Reduce_Data_offset+$Q_offset+$STACK_DEPTH)(%rsp), %rdi # rdi -> pQ ; 128 bits, 2 qwords
add \$`$K1-$M2`, %rsi # rsi -> pK1 ; 128 bits, 2 qwords
# MUL_128x128t128 rdi, rcx, rsi ; Q = X2 * K1 (bottom half)
# B1:B0 = rsi[1:0] = K1[1:0]
# A1:A0 = rcx[1:0] = X2[1:0]
# Result = rdi[1],rbp = Q[1],rbp
mov (%rsi), %r8 # B0
mov (+8*1)(%rsi), %rbx # B1
mov (%rcx), %rax # A0
mul %r8 # B0
mov %rax, %rbp
mov %rdx, %r9
mov (+8*1)(%rcx), %rax # A1
mul %r8 # B0
add %rax, %r9
mov (%rcx), %rax # A0
mul %rbx # B1
add %rax, %r9
mov %r9, (+8*1)(%rdi)
# end MUL_128x128t128
sub \$`$K1-$M`, %rsi
mov (%rcx), $X[6]
mov (+8*1)(%rcx), $X[7] # r9:r8 = X2[1:0]
call MULADD_128x512 # args in rcx, rdi / rbp, rsi, r15-r8
# result in r9, r8, r15, r14, r13, r12, r11, r10, X2[1:0]
# load first half of m to rdx, rdi, rbx, rax
# moved this here for efficiency
mov (+8*0)(%rsi), %rax
mov (+8*1)(%rsi), %rbx
mov (+8*2)(%rsi), %rdi
mov (+8*3)(%rsi), %rdx
# continue with reduction
mov (+$Reduce_Data_offset+$Carries_offset+$STACK_DEPTH)(%rsp), %rbp
add (+8*8)(%rcx), $X[6]
adc (+8*9)(%rcx), $X[7]
#accumulate the final carry to rbp
adc %rbp, %rbp
# Add in overflow corrections: R = (X2>>128) += T[overflow]
# R = {r9, r8, r15, r14, ..., r10}
shl \$3, %rbp
mov (+$pData_offset+$STACK_DEPTH)(%rsp), %rcx # rsi -> Data (and points to T)
add %rcx, %rbp # pT ; 512 bits, 8 qwords, spread out
# rsi will be used to generate a mask after the addition
xor %rsi, %rsi
add (+8*8*0)(%rbp), $X[0]
adc (+8*8*1)(%rbp), $X[1]
adc (+8*8*2)(%rbp), $X[2]
adc (+8*8*3)(%rbp), $X[3]
adc (+8*8*4)(%rbp), $X[4]
adc (+8*8*5)(%rbp), $X[5]
adc (+8*8*6)(%rbp), $X[6]
adc (+8*8*7)(%rbp), $X[7]
# if there is a carry: rsi = 0xFFFFFFFFFFFFFFFF
# if carry is clear: rsi = 0x0000000000000000
sbb \$0, %rsi
# if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
and %rsi, %rax
and %rsi, %rbx
and %rsi, %rdi
and %rsi, %rdx
mov \$1, %rbp
sub %rax, $X[0]
sbb %rbx, $X[1]
sbb %rdi, $X[2]
sbb %rdx, $X[3]
# if there is a borrow: rbp = 0
# if there is no borrow: rbp = 1
# this is used to save the borrows in between the first half and the 2nd half of the subtraction of m
sbb \$0, %rbp
#load second half of m to rdx, rdi, rbx, rax
add \$$M, %rcx
mov (+8*4)(%rcx), %rax
mov (+8*5)(%rcx), %rbx
mov (+8*6)(%rcx), %rdi
mov (+8*7)(%rcx), %rdx
# use the rsi mask as before
# if carry is clear, subtract 0. Otherwise, subtract 256 bits of m
and %rsi, %rax
and %rsi, %rbx
and %rsi, %rdi
and %rsi, %rdx
# if rbp = 0, there was a borrow before, it is moved to the carry flag
# if rbp = 1, there was not a borrow before, carry flag is cleared
sub \$1, %rbp
sbb %rax, $X[4]
sbb %rbx, $X[5]
sbb %rdi, $X[6]
sbb %rdx, $X[7]
# write R back to memory
mov (+$red_result_addr_offset+$STACK_DEPTH)(%rsp), %rsi
mov $X[0], (+8*0)(%rsi)
mov $X[1], (+8*1)(%rsi)
mov $X[2], (+8*2)(%rsi)
mov $X[3], (+8*3)(%rsi)
mov $X[4], (+8*4)(%rsi)
mov $X[5], (+8*5)(%rsi)
mov $X[6], (+8*6)(%rsi)
mov $X[7], (+8*7)(%rsi)
ret
.size mont_reduce,.-mont_reduce
___
}}}
{{{
#MUL_512x512 MACRO pDst, pA, pB, x7, x6, x5, x4, x3, x2, x1, x0, tmp*2
#
# Inputs: pDst: Destination (1024 bits, 16 qwords)
# pA: Multiplicand (512 bits, 8 qwords)
# pB: Multiplicand (512 bits, 8 qwords)
# Uses registers rax, rdx, args
# B operand in [pB] and also in x7...x0
sub MUL_512x512
{
my ($pDst, $pA, $pB, $x, $OP, $TMP, $pDst_o)=@_;
my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
my @X=@$x; # make a copy
$code.=<<___;
mov (+8*0)($pA), $OP
mov $X[0], %rax
mul $OP # rdx:rax = %OP * [0]
mov %rax, (+$pDst_o+8*0)($pDst)
mov %rdx, $X[0]
___
for(my $i=1;$i<8;$i++) {
$code.=<<___;
mov $X[$i], %rax
mul $OP # rdx:rax = %OP * [$i]
add %rax, $X[$i-1]
adc \$0, %rdx
mov %rdx, $X[$i]
___
}
for(my $i=1;$i<8;$i++) {
$code.=<<___;
mov (+8*$i)($pA), $OP
___
&MULSTEP_512(\@X, "(+$pDst_o+8*$i)($pDst)", $pB, $OP, $TMP);
push(@X,shift(@X));
}
$code.=<<___;
mov $X[0], (+$pDst_o+8*8)($pDst)
mov $X[1], (+$pDst_o+8*9)($pDst)
mov $X[2], (+$pDst_o+8*10)($pDst)
mov $X[3], (+$pDst_o+8*11)($pDst)
mov $X[4], (+$pDst_o+8*12)($pDst)
mov $X[5], (+$pDst_o+8*13)($pDst)
mov $X[6], (+$pDst_o+8*14)($pDst)
mov $X[7], (+$pDst_o+8*15)($pDst)
___
}
#
# mont_mul_a3b : subroutine to compute (Src1 * Src2) % M (all 512-bits)
# Input: src1: Address of source 1: rdi
# src2: Address of source 2: rsi
# Output: dst: Address of destination: [red_res_addr]
# src2 and result also in: r9, r8, r15, r14, r13, r12, r11, r10
# Temp: Clobbers [tmp16], all registers
$code.=<<___;
.type mont_mul_a3b,\@abi-omnipotent
.align 16
mont_mul_a3b:
#
# multiply tmp = src1 * src2
# For multiply: dst = rcx, src1 = rdi, src2 = rsi
# stack depth is extra 8 from call
___
&MUL_512x512("%rsp+$tmp16_offset+8", "%rdi", "%rsi", [map("%r$_",(10..15,8..9))], "%rbp", "%rbx");
$code.=<<___;
#
# Dst = tmp % m
# Call reduce(tmp, m, data, dst)
# tail recursion optimization: jmp to mont_reduce and return from there
jmp mont_reduce
# call mont_reduce
# ret
.size mont_mul_a3b,.-mont_mul_a3b
___
}}}
{{{
#SQR_512 MACRO pDest, pA, x7, x6, x5, x4, x3, x2, x1, x0, tmp*4
#
# Input in memory [pA] and also in x7...x0
# Uses all argument registers plus rax and rdx
#
# This version computes all of the off-diagonal terms into memory,
# and then it adds in the diagonal terms
sub SQR_512
{
my ($pDst, $pA, $x, $A, $tmp, $x7, $x6, $pDst_o)=@_;
my ($pDst, $pDst_o) = ($pDst =~ m/([^+]*)\+?(.*)?/);
my @X=@$x; # make a copy
$code.=<<___;
# ------------------
# first pass 01...07
# ------------------
mov $X[0], $A
mov $X[1],%rax
mul $A
mov %rax, (+$pDst_o+8*1)($pDst)
___
for(my $i=2;$i<8;$i++) {
$code.=<<___;
mov %rdx, $X[$i-2]
mov $X[$i],%rax
mul $A
add %rax, $X[$i-2]
adc \$0, %rdx
___
}
$code.=<<___;
mov %rdx, $x7
mov $X[0], (+$pDst_o+8*2)($pDst)
# ------------------
# second pass 12...17
# ------------------
mov (+8*1)($pA), $A
mov (+8*2)($pA),%rax
mul $A
add %rax, $X[1]
adc \$0, %rdx
mov $X[1], (+$pDst_o+8*3)($pDst)
mov %rdx, $X[0]
mov (+8*3)($pA),%rax
mul $A
add %rax, $X[2]
adc \$0, %rdx
add $X[0], $X[2]
adc \$0, %rdx
mov $X[2], (+$pDst_o+8*4)($pDst)
mov %rdx, $X[0]
mov (+8*4)($pA),%rax
mul $A
add %rax, $X[3]
adc \$0, %rdx
add $X[0], $X[3]
adc \$0, %rdx
mov %rdx, $X[0]
mov (+8*5)($pA),%rax
mul $A
add %rax, $X[4]
adc \$0, %rdx
add $X[0], $X[4]
adc \$0, %rdx
mov %rdx, $X[0]
mov $X[6],%rax
mul $A
add %rax, $X[5]
adc \$0, %rdx
add $X[0], $X[5]
adc \$0, %rdx
mov %rdx, $X[0]
mov $X[7],%rax
mul $A
add %rax, $x7
adc \$0, %rdx
add $X[0], $x7
adc \$0, %rdx
mov %rdx, $X[1]
# ------------------
# third pass 23...27
# ------------------
mov (+8*2)($pA), $A
mov (+8*3)($pA),%rax
mul $A
add %rax, $X[3]
adc \$0, %rdx
mov $X[3], (+$pDst_o+8*5)($pDst)
mov %rdx, $X[0]
mov (+8*4)($pA),%rax
mul $A
add %rax, $X[4]
adc \$0, %rdx
add $X[0], $X[4]
adc \$0, %rdx
mov $X[4], (+$pDst_o+8*6)($pDst)
mov %rdx, $X[0]
mov (+8*5)($pA),%rax
mul $A
add %rax, $X[5]
adc \$0, %rdx
add $X[0], $X[5]
adc \$0, %rdx
mov %rdx, $X[0]
mov $X[6],%rax
mul $A
add %rax, $x7
adc \$0, %rdx
add $X[0], $x7
adc \$0, %rdx
mov %rdx, $X[0]
mov $X[7],%rax
mul $A
add %rax, $X[1]
adc \$0, %rdx
add $X[0], $X[1]
adc \$0, %rdx
mov %rdx, $X[2]
# ------------------
# fourth pass 34...37
# ------------------
mov (+8*3)($pA), $A
mov (+8*4)($pA),%rax
mul $A
add %rax, $X[5]
adc \$0, %rdx
mov $X[5], (+$pDst_o+8*7)($pDst)
mov %rdx, $X[0]
mov (+8*5)($pA),%rax
mul $A
add %rax, $x7
adc \$0, %rdx
add $X[0], $x7
adc \$0, %rdx
mov $x7, (+$pDst_o+8*8)($pDst)
mov %rdx, $X[0]
mov $X[6],%rax
mul $A
add %rax, $X[1]
adc \$0, %rdx
add $X[0], $X[1]
adc \$0, %rdx
mov %rdx, $X[0]
mov $X[7],%rax
mul $A
add %rax, $X[2]
adc \$0, %rdx
add $X[0], $X[2]
adc \$0, %rdx
mov %rdx, $X[5]
# ------------------
# fifth pass 45...47
# ------------------
mov (+8*4)($pA), $A
mov (+8*5)($pA),%rax
mul $A
add %rax, $X[1]
adc \$0, %rdx
mov $X[1], (+$pDst_o+8*9)($pDst)
mov %rdx, $X[0]
mov $X[6],%rax
mul $A
add %rax, $X[2]
adc \$0, %rdx
add $X[0], $X[2]
adc \$0, %rdx
mov $X[2], (+$pDst_o+8*10)($pDst)
mov %rdx, $X[0]
mov $X[7],%rax
mul $A
add %rax, $X[5]
adc \$0, %rdx
add $X[0], $X[5]
adc \$0, %rdx
mov %rdx, $X[1]
# ------------------
# sixth pass 56...57
# ------------------
mov (+8*5)($pA), $A
mov $X[6],%rax
mul $A
add %rax, $X[5]
adc \$0, %rdx
mov $X[5], (+$pDst_o+8*11)($pDst)
mov %rdx, $X[0]
mov $X[7],%rax
mul $A
add %rax, $X[1]
adc \$0, %rdx
add $X[0], $X[1]
adc \$0, %rdx
mov $X[1], (+$pDst_o+8*12)($pDst)
mov %rdx, $X[2]
# ------------------
# seventh pass 67
# ------------------
mov $X[6], $A
mov $X[7],%rax
mul $A
add %rax, $X[2]
adc \$0, %rdx
mov $X[2], (+$pDst_o+8*13)($pDst)
mov %rdx, (+$pDst_o+8*14)($pDst)
# start finalize (add in squares, and double off-terms)
mov (+$pDst_o+8*1)($pDst), $X[0]
mov (+$pDst_o+8*2)($pDst), $X[1]
mov (+$pDst_o+8*3)($pDst), $X[2]
mov (+$pDst_o+8*4)($pDst), $X[3]
mov (+$pDst_o+8*5)($pDst), $X[4]
mov (+$pDst_o+8*6)($pDst), $X[5]
mov (+8*3)($pA), %rax
mul %rax
mov %rax, $x6
mov %rdx, $X[6]
add $X[0], $X[0]
adc $X[1], $X[1]
adc $X[2], $X[2]
adc $X[3], $X[3]
adc $X[4], $X[4]
adc $X[5], $X[5]
adc \$0, $X[6]
mov (+8*0)($pA), %rax
mul %rax
mov %rax, (+$pDst_o+8*0)($pDst)
mov %rdx, $A
mov (+8*1)($pA), %rax
mul %rax
add $A, $X[0]
adc %rax, $X[1]
adc \$0, %rdx
mov %rdx, $A
mov $X[0], (+$pDst_o+8*1)($pDst)
mov $X[1], (+$pDst_o+8*2)($pDst)
mov (+8*2)($pA), %rax
mul %rax
add $A, $X[2]
adc %rax, $X[3]
adc \$0, %rdx
mov %rdx, $A
mov $X[2], (+$pDst_o+8*3)($pDst)
mov $X[3], (+$pDst_o+8*4)($pDst)
xor $tmp, $tmp
add $A, $X[4]
adc $x6, $X[5]
adc \$0, $tmp
mov $X[4], (+$pDst_o+8*5)($pDst)
mov $X[5], (+$pDst_o+8*6)($pDst)
# %%tmp has 0/1 in column 7
# %%A6 has a full value in column 7
mov (+$pDst_o+8*7)($pDst), $X[0]
mov (+$pDst_o+8*8)($pDst), $X[1]
mov (+$pDst_o+8*9)($pDst), $X[2]
mov (+$pDst_o+8*10)($pDst), $X[3]
mov (+$pDst_o+8*11)($pDst), $X[4]
mov (+$pDst_o+8*12)($pDst), $X[5]
mov (+$pDst_o+8*13)($pDst), $x6
mov (+$pDst_o+8*14)($pDst), $x7
mov $X[7], %rax
mul %rax
mov %rax, $X[7]
mov %rdx, $A
add $X[0], $X[0]
adc $X[1], $X[1]
adc $X[2], $X[2]
adc $X[3], $X[3]
adc $X[4], $X[4]
adc $X[5], $X[5]
adc $x6, $x6
adc $x7, $x7
adc \$0, $A
add $tmp, $X[0]
mov (+8*4)($pA), %rax
mul %rax
add $X[6], $X[0]
adc %rax, $X[1]
adc \$0, %rdx
mov %rdx, $tmp
mov $X[0], (+$pDst_o+8*7)($pDst)
mov $X[1], (+$pDst_o+8*8)($pDst)
mov (+8*5)($pA), %rax
mul %rax
add $tmp, $X[2]
adc %rax, $X[3]
adc \$0, %rdx
mov %rdx, $tmp
mov $X[2], (+$pDst_o+8*9)($pDst)
mov $X[3], (+$pDst_o+8*10)($pDst)
mov (+8*6)($pA), %rax
mul %rax
add $tmp, $X[4]
adc %rax, $X[5]
adc \$0, %rdx
mov $X[4], (+$pDst_o+8*11)($pDst)
mov $X[5], (+$pDst_o+8*12)($pDst)
add %rdx, $x6
adc $X[7], $x7
adc \$0, $A
mov $x6, (+$pDst_o+8*13)($pDst)
mov $x7, (+$pDst_o+8*14)($pDst)
mov $A, (+$pDst_o+8*15)($pDst)
___
}
#
# sqr_reduce: subroutine to compute Result = reduce(Result * Result)
#
# input and result also in: r9, r8, r15, r14, r13, r12, r11, r10
#
$code.=<<___;
.type sqr_reduce,\@abi-omnipotent
.align 16
sqr_reduce:
mov (+$pResult_offset+8)(%rsp), %rcx
___
&SQR_512("%rsp+$tmp16_offset+8", "%rcx", [map("%r$_",(10..15,8..9))], "%rbx", "%rbp", "%rsi", "%rdi");
$code.=<<___;
# tail recursion optimization: jmp to mont_reduce and return from there
jmp mont_reduce
# call mont_reduce
# ret
.size sqr_reduce,.-sqr_reduce
___
}}}
#
# MAIN FUNCTION
#
#mod_exp_512(UINT64 *result, /* 512 bits, 8 qwords */
# UINT64 *g, /* 512 bits, 8 qwords */
# UINT64 *exp, /* 512 bits, 8 qwords */
# struct mod_ctx_512 *data)
# window size = 5
# table size = 2^5 = 32
#table_entries equ 32
#table_size equ table_entries * 8
$code.=<<___;
.globl mod_exp_512
.type mod_exp_512,\@function,4
mod_exp_512:
push %rbp
push %rbx
push %r12
push %r13
push %r14
push %r15
# adjust stack down and then align it with cache boundary
mov %rsp, %r8
sub \$$mem_size, %rsp
and \$-64, %rsp
# store previous stack pointer and arguments
mov %r8, (+$rsp_offset)(%rsp)
mov %rdi, (+$pResult_offset)(%rsp)
mov %rsi, (+$pG_offset)(%rsp)
mov %rcx, (+$pData_offset)(%rsp)
.Lbody:
# transform g into montgomery space
# GT = reduce(g * C2) = reduce(g * (2^256))
# reduce expects to have the input in [tmp16]
pxor %xmm4, %xmm4
movdqu (+16*0)(%rsi), %xmm0
movdqu (+16*1)(%rsi), %xmm1
movdqu (+16*2)(%rsi), %xmm2
movdqu (+16*3)(%rsi), %xmm3
movdqa %xmm4, (+$tmp16_offset+16*0)(%rsp)
movdqa %xmm4, (+$tmp16_offset+16*1)(%rsp)
movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp)
movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp)
movdqa %xmm0, (+$tmp16_offset+16*2)(%rsp)
movdqa %xmm1, (+$tmp16_offset+16*3)(%rsp)
movdqa %xmm2, (+$tmp16_offset+16*4)(%rsp)
movdqa %xmm3, (+$tmp16_offset+16*5)(%rsp)
# load pExp before rdx gets blown away
movdqu (+16*0)(%rdx), %xmm0
movdqu (+16*1)(%rdx), %xmm1
movdqu (+16*2)(%rdx), %xmm2
movdqu (+16*3)(%rdx), %xmm3
lea (+$GT_offset)(%rsp), %rbx
mov %rbx, (+$red_result_addr_offset)(%rsp)
call mont_reduce
# Initialize tmp = C
lea (+$tmp_offset)(%rsp), %rcx
xor %rax, %rax
mov %rax, (+8*0)(%rcx)
mov %rax, (+8*1)(%rcx)
mov %rax, (+8*3)(%rcx)
mov %rax, (+8*4)(%rcx)
mov %rax, (+8*5)(%rcx)
mov %rax, (+8*6)(%rcx)
mov %rax, (+8*7)(%rcx)
mov %rax, (+$exp_offset+8*8)(%rsp)
movq \$1, (+8*2)(%rcx)
lea (+$garray_offset)(%rsp), %rbp
mov %rcx, %rsi # pTmp
mov %rbp, %rdi # Garray[][0]
___
&swizzle("%rdi", "%rcx", "%rax", "%rbx");
# for (rax = 31; rax != 0; rax--) {
# tmp = reduce(tmp * G)
# swizzle(pg, tmp);
# pg += 2; }
$code.=<<___;
mov \$31, %rax
mov %rax, (+$i_offset)(%rsp)
mov %rbp, (+$pg_offset)(%rsp)
# rsi -> pTmp
mov %rsi, (+$red_result_addr_offset)(%rsp)
mov (+8*0)(%rsi), %r10
mov (+8*1)(%rsi), %r11
mov (+8*2)(%rsi), %r12
mov (+8*3)(%rsi), %r13
mov (+8*4)(%rsi), %r14
mov (+8*5)(%rsi), %r15
mov (+8*6)(%rsi), %r8
mov (+8*7)(%rsi), %r9
init_loop:
lea (+$GT_offset)(%rsp), %rdi
call mont_mul_a3b
lea (+$tmp_offset)(%rsp), %rsi
mov (+$pg_offset)(%rsp), %rbp
add \$2, %rbp
mov %rbp, (+$pg_offset)(%rsp)
mov %rsi, %rcx # rcx = rsi = addr of tmp
___
&swizzle("%rbp", "%rcx", "%rax", "%rbx");
$code.=<<___;
mov (+$i_offset)(%rsp), %rax
sub \$1, %rax
mov %rax, (+$i_offset)(%rsp)
jne init_loop
#
# Copy exponent onto stack
movdqa %xmm0, (+$exp_offset+16*0)(%rsp)
movdqa %xmm1, (+$exp_offset+16*1)(%rsp)
movdqa %xmm2, (+$exp_offset+16*2)(%rsp)
movdqa %xmm3, (+$exp_offset+16*3)(%rsp)
#
# Do exponentiation
# Initialize result to G[exp{511:507}]
mov (+$exp_offset+62)(%rsp), %eax
mov %rax, %rdx
shr \$11, %rax
and \$0x07FF, %edx
mov %edx, (+$exp_offset+62)(%rsp)
lea (+$garray_offset)(%rsp,%rax,2), %rsi
mov (+$pResult_offset)(%rsp), %rdx
___
&unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
#
# Loop variables
# rcx = [loop_idx] = index: 510-5 to 0 by 5
$code.=<<___;
movq \$505, (+$loop_idx_offset)(%rsp)
mov (+$pResult_offset)(%rsp), %rcx
mov %rcx, (+$red_result_addr_offset)(%rsp)
mov (+8*0)(%rcx), %r10
mov (+8*1)(%rcx), %r11
mov (+8*2)(%rcx), %r12
mov (+8*3)(%rcx), %r13
mov (+8*4)(%rcx), %r14
mov (+8*5)(%rcx), %r15
mov (+8*6)(%rcx), %r8
mov (+8*7)(%rcx), %r9
jmp sqr_2
main_loop_a3b:
call sqr_reduce
call sqr_reduce
call sqr_reduce
sqr_2:
call sqr_reduce
call sqr_reduce
#
# Do multiply, first look up proper value in Garray
mov (+$loop_idx_offset)(%rsp), %rcx # bit index
mov %rcx, %rax
shr \$4, %rax # rax is word pointer
mov (+$exp_offset)(%rsp,%rax,2), %edx
and \$15, %rcx
shrq %cl, %rdx
and \$0x1F, %rdx
lea (+$garray_offset)(%rsp,%rdx,2), %rsi
lea (+$tmp_offset)(%rsp), %rdx
mov %rdx, %rdi
___
&unswizzle("%rdx", "%rsi", "%rbp", "%rbx", "%rax");
# rdi = tmp = pG
#
# Call mod_mul_a1(pDst, pSrc1, pSrc2, pM, pData)
# result result pG M Data
$code.=<<___;
mov (+$pResult_offset)(%rsp), %rsi
call mont_mul_a3b
#
# finish loop
mov (+$loop_idx_offset)(%rsp), %rcx
sub \$5, %rcx
mov %rcx, (+$loop_idx_offset)(%rsp)
jge main_loop_a3b
#
end_main_loop_a3b:
# transform result out of Montgomery space
# result = reduce(result)
mov (+$pResult_offset)(%rsp), %rdx
pxor %xmm4, %xmm4
movdqu (+16*0)(%rdx), %xmm0
movdqu (+16*1)(%rdx), %xmm1
movdqu (+16*2)(%rdx), %xmm2
movdqu (+16*3)(%rdx), %xmm3
movdqa %xmm4, (+$tmp16_offset+16*4)(%rsp)
movdqa %xmm4, (+$tmp16_offset+16*5)(%rsp)
movdqa %xmm4, (+$tmp16_offset+16*6)(%rsp)
movdqa %xmm4, (+$tmp16_offset+16*7)(%rsp)
movdqa %xmm0, (+$tmp16_offset+16*0)(%rsp)
movdqa %xmm1, (+$tmp16_offset+16*1)(%rsp)
movdqa %xmm2, (+$tmp16_offset+16*2)(%rsp)
movdqa %xmm3, (+$tmp16_offset+16*3)(%rsp)
call mont_reduce
# If result > m, subract m
# load result into r15:r8
mov (+$pResult_offset)(%rsp), %rax
mov (+8*0)(%rax), %r8
mov (+8*1)(%rax), %r9
mov (+8*2)(%rax), %r10
mov (+8*3)(%rax), %r11
mov (+8*4)(%rax), %r12
mov (+8*5)(%rax), %r13
mov (+8*6)(%rax), %r14
mov (+8*7)(%rax), %r15
# subtract m
mov (+$pData_offset)(%rsp), %rbx
add \$$M, %rbx
sub (+8*0)(%rbx), %r8
sbb (+8*1)(%rbx), %r9
sbb (+8*2)(%rbx), %r10
sbb (+8*3)(%rbx), %r11
sbb (+8*4)(%rbx), %r12
sbb (+8*5)(%rbx), %r13
sbb (+8*6)(%rbx), %r14
sbb (+8*7)(%rbx), %r15
# if Carry is clear, replace result with difference
mov (+8*0)(%rax), %rsi
mov (+8*1)(%rax), %rdi
mov (+8*2)(%rax), %rcx
mov (+8*3)(%rax), %rdx
cmovnc %r8, %rsi
cmovnc %r9, %rdi
cmovnc %r10, %rcx
cmovnc %r11, %rdx
mov %rsi, (+8*0)(%rax)
mov %rdi, (+8*1)(%rax)
mov %rcx, (+8*2)(%rax)
mov %rdx, (+8*3)(%rax)
mov (+8*4)(%rax), %rsi
mov (+8*5)(%rax), %rdi
mov (+8*6)(%rax), %rcx
mov (+8*7)(%rax), %rdx
cmovnc %r12, %rsi
cmovnc %r13, %rdi
cmovnc %r14, %rcx
cmovnc %r15, %rdx
mov %rsi, (+8*4)(%rax)
mov %rdi, (+8*5)(%rax)
mov %rcx, (+8*6)(%rax)
mov %rdx, (+8*7)(%rax)
mov (+$rsp_offset)(%rsp), %rsi
mov 0(%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbx
mov 40(%rsi),%rbp
lea 48(%rsi),%rsp
.Lepilogue:
ret
.size mod_exp_512, . - mod_exp_512
___
if ($win64) {
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
my $rec="%rcx";
my $frame="%rdx";
my $context="%r8";
my $disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type mod_exp_512_se_handler,\@abi-omnipotent
.align 16
mod_exp_512_se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
lea .Lbody(%rip),%r10
cmp %r10,%rbx # context->Rip<prologue label
jb .Lin_prologue
mov 152($context),%rax # pull context->Rsp
lea .Lepilogue(%rip),%r10
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lin_prologue
mov $rsp_offset(%rax),%rax # pull saved Rsp
mov 32(%rax),%rbx
mov 40(%rax),%rbp
mov 24(%rax),%r12
mov 16(%rax),%r13
mov 8(%rax),%r14
mov 0(%rax),%r15
lea 48(%rax),%rax
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
mov %r15,240($context) # restore context->R15
.Lin_prologue:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size mod_exp_512_se_handler,.-mod_exp_512_se_handler
.section .pdata
.align 4
.rva .LSEH_begin_mod_exp_512
.rva .LSEH_end_mod_exp_512
.rva .LSEH_info_mod_exp_512
.section .xdata
.align 8
.LSEH_info_mod_exp_512:
.byte 9,0,0,0
.rva mod_exp_512_se_handler
___
}
sub reg_part {
my ($reg,$conv)=@_;
if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
return $reg;
}
$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
$code =~ s/\`([^\`]*)\`/eval $1/gem;
$code =~ s/(\(\+[^)]+\))/eval $1/gem;
print $code;
close STDOUT;