boringssl/ssl/t1_lib.cc
David Benjamin a4bafd33b3 Add SSL_SESSION_{get,set}_protocol_version.
SSL_SESSION_set_protocol_version is useful when unit-testing a session
cache.

Change-Id: I4b04e31d61ce40739323248e3e5fdae498c4645e
Reviewed-on: https://boringssl-review.googlesource.com/21044
Commit-Queue: Steven Valdez <svaldez@google.com>
Reviewed-by: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2017-10-03 19:52:34 +00:00

3473 lines
101 KiB
C++

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/ssl.h>
#include <assert.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <utility>
#include <openssl/bytestring.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include <openssl/rand.h>
#include "internal.h"
#include "../crypto/internal.h"
namespace bssl {
static int ssl_check_clienthello_tlsext(SSL_HANDSHAKE *hs);
static int compare_uint16_t(const void *p1, const void *p2) {
uint16_t u1 = *((const uint16_t *)p1);
uint16_t u2 = *((const uint16_t *)p2);
if (u1 < u2) {
return -1;
} else if (u1 > u2) {
return 1;
} else {
return 0;
}
}
// Per http://tools.ietf.org/html/rfc5246#section-7.4.1.4, there may not be
// more than one extension of the same type in a ClientHello or ServerHello.
// This function does an initial scan over the extensions block to filter those
// out.
static int tls1_check_duplicate_extensions(const CBS *cbs) {
// First pass: count the extensions.
size_t num_extensions = 0;
CBS extensions = *cbs;
while (CBS_len(&extensions) > 0) {
uint16_t type;
CBS extension;
if (!CBS_get_u16(&extensions, &type) ||
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
return 0;
}
num_extensions++;
}
if (num_extensions == 0) {
return 1;
}
Array<uint16_t> extension_types;
if (!extension_types.Init(num_extensions)) {
return 0;
}
// Second pass: gather the extension types.
extensions = *cbs;
for (size_t i = 0; i < extension_types.size(); i++) {
CBS extension;
if (!CBS_get_u16(&extensions, &extension_types[i]) ||
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
// This should not happen.
return 0;
}
}
assert(CBS_len(&extensions) == 0);
// Sort the extensions and make sure there are no duplicates.
qsort(extension_types.data(), extension_types.size(), sizeof(uint16_t),
compare_uint16_t);
for (size_t i = 1; i < num_extensions; i++) {
if (extension_types[i - 1] == extension_types[i]) {
return 0;
}
}
return 1;
}
int ssl_client_hello_init(SSL *ssl, SSL_CLIENT_HELLO *out,
const SSLMessage &msg) {
OPENSSL_memset(out, 0, sizeof(*out));
out->ssl = ssl;
out->client_hello = CBS_data(&msg.body);
out->client_hello_len = CBS_len(&msg.body);
CBS client_hello, random, session_id;
CBS_init(&client_hello, out->client_hello, out->client_hello_len);
if (!CBS_get_u16(&client_hello, &out->version) ||
!CBS_get_bytes(&client_hello, &random, SSL3_RANDOM_SIZE) ||
!CBS_get_u8_length_prefixed(&client_hello, &session_id) ||
CBS_len(&session_id) > SSL_MAX_SSL_SESSION_ID_LENGTH) {
return 0;
}
out->random = CBS_data(&random);
out->random_len = CBS_len(&random);
out->session_id = CBS_data(&session_id);
out->session_id_len = CBS_len(&session_id);
// Skip past DTLS cookie
if (SSL_is_dtls(out->ssl)) {
CBS cookie;
if (!CBS_get_u8_length_prefixed(&client_hello, &cookie) ||
CBS_len(&cookie) > DTLS1_COOKIE_LENGTH) {
return 0;
}
}
CBS cipher_suites, compression_methods;
if (!CBS_get_u16_length_prefixed(&client_hello, &cipher_suites) ||
CBS_len(&cipher_suites) < 2 || (CBS_len(&cipher_suites) & 1) != 0 ||
!CBS_get_u8_length_prefixed(&client_hello, &compression_methods) ||
CBS_len(&compression_methods) < 1) {
return 0;
}
out->cipher_suites = CBS_data(&cipher_suites);
out->cipher_suites_len = CBS_len(&cipher_suites);
out->compression_methods = CBS_data(&compression_methods);
out->compression_methods_len = CBS_len(&compression_methods);
// If the ClientHello ends here then it's valid, but doesn't have any
// extensions. (E.g. SSLv3.)
if (CBS_len(&client_hello) == 0) {
out->extensions = NULL;
out->extensions_len = 0;
return 1;
}
// Extract extensions and check it is valid.
CBS extensions;
if (!CBS_get_u16_length_prefixed(&client_hello, &extensions) ||
!tls1_check_duplicate_extensions(&extensions) ||
CBS_len(&client_hello) != 0) {
return 0;
}
out->extensions = CBS_data(&extensions);
out->extensions_len = CBS_len(&extensions);
return 1;
}
int ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
CBS *out, uint16_t extension_type) {
CBS extensions;
CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len);
while (CBS_len(&extensions) != 0) {
// Decode the next extension.
uint16_t type;
CBS extension;
if (!CBS_get_u16(&extensions, &type) ||
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
return 0;
}
if (type == extension_type) {
*out = extension;
return 1;
}
}
return 0;
}
static const uint16_t kDefaultGroups[] = {
SSL_CURVE_X25519,
SSL_CURVE_SECP256R1,
SSL_CURVE_SECP384R1,
};
Span<const uint16_t> tls1_get_grouplist(const SSL *ssl) {
if (ssl->supported_group_list != nullptr) {
return MakeConstSpan(ssl->supported_group_list,
ssl->supported_group_list_len);
}
return Span<const uint16_t>(kDefaultGroups);
}
int tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id) {
SSL *const ssl = hs->ssl;
assert(ssl->server);
// Clients are not required to send a supported_groups extension. In this
// case, the server is free to pick any group it likes. See RFC 4492,
// section 4, paragraph 3.
//
// However, in the interests of compatibility, we will skip ECDH if the
// client didn't send an extension because we can't be sure that they'll
// support our favoured group. Thus we do not special-case an emtpy
// |peer_supported_group_list|.
Span<const uint16_t> groups = tls1_get_grouplist(ssl);
Span<const uint16_t> pref, supp;
if (ssl->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
pref = groups;
supp = hs->peer_supported_group_list;
} else {
pref = hs->peer_supported_group_list;
supp = groups;
}
for (uint16_t pref_group : pref) {
for (uint16_t supp_group : supp) {
if (pref_group == supp_group) {
*out_group_id = pref_group;
return 1;
}
}
}
return 0;
}
int tls1_set_curves(uint16_t **out_group_ids, size_t *out_group_ids_len,
const int *curves, size_t ncurves) {
uint16_t *group_ids = (uint16_t *)OPENSSL_malloc(ncurves * sizeof(uint16_t));
if (group_ids == NULL) {
return 0;
}
for (size_t i = 0; i < ncurves; i++) {
if (!ssl_nid_to_group_id(&group_ids[i], curves[i])) {
OPENSSL_free(group_ids);
return 0;
}
}
OPENSSL_free(*out_group_ids);
*out_group_ids = group_ids;
*out_group_ids_len = ncurves;
return 1;
}
int tls1_set_curves_list(uint16_t **out_group_ids, size_t *out_group_ids_len,
const char *curves) {
uint16_t *group_ids = NULL;
size_t ncurves = 0;
const char *col;
const char *ptr = curves;
do {
col = strchr(ptr, ':');
uint16_t group_id;
if (!ssl_name_to_group_id(&group_id, ptr,
col ? (size_t)(col - ptr) : strlen(ptr))) {
goto err;
}
uint16_t *new_group_ids = (uint16_t *)OPENSSL_realloc(
group_ids, (ncurves + 1) * sizeof(uint16_t));
if (new_group_ids == NULL) {
goto err;
}
group_ids = new_group_ids;
group_ids[ncurves] = group_id;
ncurves++;
if (col) {
ptr = col + 1;
}
} while (col);
OPENSSL_free(*out_group_ids);
*out_group_ids = group_ids;
*out_group_ids_len = ncurves;
return 1;
err:
OPENSSL_free(group_ids);
return 0;
}
int tls1_check_group_id(const SSL *ssl, uint16_t group_id) {
for (uint16_t supported : tls1_get_grouplist(ssl)) {
if (supported == group_id) {
return 1;
}
}
return 0;
}
// kVerifySignatureAlgorithms is the default list of accepted signature
// algorithms for verifying.
//
// For now, RSA-PSS signature algorithms are not enabled on Android's system
// BoringSSL. Once the change in Chrome has stuck and the values are finalized,
// restore them.
static const uint16_t kVerifySignatureAlgorithms[] = {
// List our preferred algorithms first.
SSL_SIGN_ED25519,
SSL_SIGN_ECDSA_SECP256R1_SHA256,
#if !defined(BORINGSSL_ANDROID_SYSTEM)
SSL_SIGN_RSA_PSS_SHA256,
#endif
SSL_SIGN_RSA_PKCS1_SHA256,
// Larger hashes are acceptable.
SSL_SIGN_ECDSA_SECP384R1_SHA384,
#if !defined(BORINGSSL_ANDROID_SYSTEM)
SSL_SIGN_RSA_PSS_SHA384,
#endif
SSL_SIGN_RSA_PKCS1_SHA384,
// TODO(davidben): Remove this.
#if defined(BORINGSSL_ANDROID_SYSTEM)
SSL_SIGN_ECDSA_SECP521R1_SHA512,
#endif
#if !defined(BORINGSSL_ANDROID_SYSTEM)
SSL_SIGN_RSA_PSS_SHA512,
#endif
SSL_SIGN_RSA_PKCS1_SHA512,
// For now, SHA-1 is still accepted but least preferable.
SSL_SIGN_RSA_PKCS1_SHA1,
};
// kSignSignatureAlgorithms is the default list of supported signature
// algorithms for signing.
//
// For now, RSA-PSS signature algorithms are not enabled on Android's system
// BoringSSL. Once the change in Chrome has stuck and the values are finalized,
// restore them.
static const uint16_t kSignSignatureAlgorithms[] = {
// List our preferred algorithms first.
SSL_SIGN_ED25519,
SSL_SIGN_ECDSA_SECP256R1_SHA256,
#if !defined(BORINGSSL_ANDROID_SYSTEM)
SSL_SIGN_RSA_PSS_SHA256,
#endif
SSL_SIGN_RSA_PKCS1_SHA256,
// If needed, sign larger hashes.
//
// TODO(davidben): Determine which of these may be pruned.
SSL_SIGN_ECDSA_SECP384R1_SHA384,
#if !defined(BORINGSSL_ANDROID_SYSTEM)
SSL_SIGN_RSA_PSS_SHA384,
#endif
SSL_SIGN_RSA_PKCS1_SHA384,
SSL_SIGN_ECDSA_SECP521R1_SHA512,
#if !defined(BORINGSSL_ANDROID_SYSTEM)
SSL_SIGN_RSA_PSS_SHA512,
#endif
SSL_SIGN_RSA_PKCS1_SHA512,
// If the peer supports nothing else, sign with SHA-1.
SSL_SIGN_ECDSA_SHA1,
SSL_SIGN_RSA_PKCS1_SHA1,
};
int tls12_add_verify_sigalgs(const SSL *ssl, CBB *out) {
const uint16_t *sigalgs = kVerifySignatureAlgorithms;
size_t num_sigalgs = OPENSSL_ARRAY_SIZE(kVerifySignatureAlgorithms);
if (ssl->ctx->num_verify_sigalgs != 0) {
sigalgs = ssl->ctx->verify_sigalgs;
num_sigalgs = ssl->ctx->num_verify_sigalgs;
}
for (size_t i = 0; i < num_sigalgs; i++) {
if (sigalgs == kVerifySignatureAlgorithms &&
sigalgs[i] == SSL_SIGN_ED25519 &&
!ssl->ctx->ed25519_enabled) {
continue;
}
if (!CBB_add_u16(out, sigalgs[i])) {
return 0;
}
}
return 1;
}
int tls12_check_peer_sigalg(SSL *ssl, uint8_t *out_alert, uint16_t sigalg) {
const uint16_t *sigalgs = kVerifySignatureAlgorithms;
size_t num_sigalgs = OPENSSL_ARRAY_SIZE(kVerifySignatureAlgorithms);
if (ssl->ctx->num_verify_sigalgs != 0) {
sigalgs = ssl->ctx->verify_sigalgs;
num_sigalgs = ssl->ctx->num_verify_sigalgs;
}
for (size_t i = 0; i < num_sigalgs; i++) {
if (sigalgs == kVerifySignatureAlgorithms &&
sigalgs[i] == SSL_SIGN_ED25519 &&
!ssl->ctx->ed25519_enabled) {
continue;
}
if (sigalg == sigalgs[i]) {
return 1;
}
}
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
// tls_extension represents a TLS extension that is handled internally. The
// |init| function is called for each handshake, before any other functions of
// the extension. Then the add and parse callbacks are called as needed.
//
// The parse callbacks receive a |CBS| that contains the contents of the
// extension (i.e. not including the type and length bytes). If an extension is
// not received then the parse callbacks will be called with a NULL CBS so that
// they can do any processing needed to handle the absence of an extension.
//
// The add callbacks receive a |CBB| to which the extension can be appended but
// the function is responsible for appending the type and length bytes too.
//
// All callbacks return one for success and zero for error. If a parse function
// returns zero then a fatal alert with value |*out_alert| will be sent. If
// |*out_alert| isn't set, then a |decode_error| alert will be sent.
struct tls_extension {
uint16_t value;
void (*init)(SSL_HANDSHAKE *hs);
int (*add_clienthello)(SSL_HANDSHAKE *hs, CBB *out);
int (*parse_serverhello)(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents);
int (*parse_clienthello)(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents);
int (*add_serverhello)(SSL_HANDSHAKE *hs, CBB *out);
};
static int forbid_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
if (contents != NULL) {
// Servers MUST NOT send this extension.
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION);
return 0;
}
return 1;
}
static int ignore_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
// This extension from the client is handled elsewhere.
return 1;
}
static int dont_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
return 1;
}
// Server name indication (SNI).
//
// https://tools.ietf.org/html/rfc6066#section-3.
static int ext_sni_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (ssl->tlsext_hostname == NULL) {
return 1;
}
CBB contents, server_name_list, name;
if (!CBB_add_u16(out, TLSEXT_TYPE_server_name) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u16_length_prefixed(&contents, &server_name_list) ||
!CBB_add_u8(&server_name_list, TLSEXT_NAMETYPE_host_name) ||
!CBB_add_u16_length_prefixed(&server_name_list, &name) ||
!CBB_add_bytes(&name, (const uint8_t *)ssl->tlsext_hostname,
strlen(ssl->tlsext_hostname)) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
static int ext_sni_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
// The server may acknowledge SNI with an empty extension. We check the syntax
// but otherwise ignore this signal.
return contents == NULL || CBS_len(contents) == 0;
}
static int ext_sni_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL) {
return 1;
}
CBS server_name_list, host_name;
uint8_t name_type;
if (!CBS_get_u16_length_prefixed(contents, &server_name_list) ||
!CBS_get_u8(&server_name_list, &name_type) ||
// Although the server_name extension was intended to be extensible to
// new name types and multiple names, OpenSSL 1.0.x had a bug which meant
// different name types will cause an error. Further, RFC 4366 originally
// defined syntax inextensibly. RFC 6066 corrected this mistake, but
// adding new name types is no longer feasible.
//
// Act as if the extensibility does not exist to simplify parsing.
!CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
CBS_len(&server_name_list) != 0 ||
CBS_len(contents) != 0) {
return 0;
}
if (name_type != TLSEXT_NAMETYPE_host_name ||
CBS_len(&host_name) == 0 ||
CBS_len(&host_name) > TLSEXT_MAXLEN_host_name ||
CBS_contains_zero_byte(&host_name)) {
*out_alert = SSL_AD_UNRECOGNIZED_NAME;
return 0;
}
// Copy the hostname as a string.
if (!CBS_strdup(&host_name, &ssl->s3->hostname)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
hs->should_ack_sni = true;
return 1;
}
static int ext_sni_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
if (hs->ssl->s3->session_reused ||
!hs->should_ack_sni) {
return 1;
}
if (!CBB_add_u16(out, TLSEXT_TYPE_server_name) ||
!CBB_add_u16(out, 0 /* length */)) {
return 0;
}
return 1;
}
// Renegotiation indication.
//
// https://tools.ietf.org/html/rfc5746
static int ext_ri_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
// Renegotiation indication is not necessary in TLS 1.3.
if (hs->min_version >= TLS1_3_VERSION) {
return 1;
}
assert(ssl->s3->initial_handshake_complete ==
(ssl->s3->previous_client_finished_len != 0));
CBB contents, prev_finished;
if (!CBB_add_u16(out, TLSEXT_TYPE_renegotiate) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u8_length_prefixed(&contents, &prev_finished) ||
!CBB_add_bytes(&prev_finished, ssl->s3->previous_client_finished,
ssl->s3->previous_client_finished_len) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
static int ext_ri_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents != NULL && ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
// Servers may not switch between omitting the extension and supporting it.
// See RFC 5746, sections 3.5 and 4.2.
if (ssl->s3->initial_handshake_complete &&
(contents != NULL) != ssl->s3->send_connection_binding) {
*out_alert = SSL_AD_HANDSHAKE_FAILURE;
OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH);
return 0;
}
if (contents == NULL) {
// Strictly speaking, if we want to avoid an attack we should *always* see
// RI even on initial ServerHello because the client doesn't see any
// renegotiation during an attack. However this would mean we could not
// connect to any server which doesn't support RI.
//
// OpenSSL has |SSL_OP_LEGACY_SERVER_CONNECT| to control this, but in
// practical terms every client sets it so it's just assumed here.
return 1;
}
const size_t expected_len = ssl->s3->previous_client_finished_len +
ssl->s3->previous_server_finished_len;
// Check for logic errors
assert(!expected_len || ssl->s3->previous_client_finished_len);
assert(!expected_len || ssl->s3->previous_server_finished_len);
assert(ssl->s3->initial_handshake_complete ==
(ssl->s3->previous_client_finished_len != 0));
assert(ssl->s3->initial_handshake_complete ==
(ssl->s3->previous_server_finished_len != 0));
// Parse out the extension contents.
CBS renegotiated_connection;
if (!CBS_get_u8_length_prefixed(contents, &renegotiated_connection) ||
CBS_len(contents) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_ENCODING_ERR);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
// Check that the extension matches.
if (CBS_len(&renegotiated_connection) != expected_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH);
*out_alert = SSL_AD_HANDSHAKE_FAILURE;
return 0;
}
const uint8_t *d = CBS_data(&renegotiated_connection);
int ok = CRYPTO_memcmp(d, ssl->s3->previous_client_finished,
ssl->s3->previous_client_finished_len) == 0;
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
ok = 1;
#endif
if (!ok) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH);
*out_alert = SSL_AD_HANDSHAKE_FAILURE;
return 0;
}
d += ssl->s3->previous_client_finished_len;
ok = CRYPTO_memcmp(d, ssl->s3->previous_server_finished,
ssl->s3->previous_server_finished_len) == 0;
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
ok = 1;
#endif
if (!ok) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH);
*out_alert = SSL_AD_HANDSHAKE_FAILURE;
return 0;
}
ssl->s3->send_connection_binding = true;
return 1;
}
static int ext_ri_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
// Renegotiation isn't supported as a server so this function should never be
// called after the initial handshake.
assert(!ssl->s3->initial_handshake_complete);
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
return 1;
}
if (contents == NULL) {
return 1;
}
CBS renegotiated_connection;
if (!CBS_get_u8_length_prefixed(contents, &renegotiated_connection) ||
CBS_len(contents) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_ENCODING_ERR);
return 0;
}
// Check that the extension matches. We do not support renegotiation as a
// server, so this must be empty.
if (CBS_len(&renegotiated_connection) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_MISMATCH);
*out_alert = SSL_AD_HANDSHAKE_FAILURE;
return 0;
}
ssl->s3->send_connection_binding = true;
return 1;
}
static int ext_ri_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
// Renegotiation isn't supported as a server so this function should never be
// called after the initial handshake.
assert(!ssl->s3->initial_handshake_complete);
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
return 1;
}
if (!CBB_add_u16(out, TLSEXT_TYPE_renegotiate) ||
!CBB_add_u16(out, 1 /* length */) ||
!CBB_add_u8(out, 0 /* empty renegotiation info */)) {
return 0;
}
return 1;
}
// Extended Master Secret.
//
// https://tools.ietf.org/html/rfc7627
static int ext_ems_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
// Extended master secret is not necessary in TLS 1.3.
if (hs->min_version >= TLS1_3_VERSION || hs->max_version <= SSL3_VERSION) {
return 1;
}
if (!CBB_add_u16(out, TLSEXT_TYPE_extended_master_secret) ||
!CBB_add_u16(out, 0 /* length */)) {
return 0;
}
return 1;
}
static int ext_ems_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents != NULL) {
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION ||
ssl->version == SSL3_VERSION ||
CBS_len(contents) != 0) {
return 0;
}
hs->extended_master_secret = true;
}
// Whether EMS is negotiated may not change on renegotiation.
if (ssl->s3->established_session != NULL &&
hs->extended_master_secret !=
!!ssl->s3->established_session->extended_master_secret) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RENEGOTIATION_EMS_MISMATCH);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
return 1;
}
static int ext_ems_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
uint16_t version = ssl3_protocol_version(hs->ssl);
if (version >= TLS1_3_VERSION ||
version == SSL3_VERSION) {
return 1;
}
if (contents == NULL) {
return 1;
}
if (CBS_len(contents) != 0) {
return 0;
}
hs->extended_master_secret = true;
return 1;
}
static int ext_ems_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
if (!hs->extended_master_secret) {
return 1;
}
if (!CBB_add_u16(out, TLSEXT_TYPE_extended_master_secret) ||
!CBB_add_u16(out, 0 /* length */)) {
return 0;
}
return 1;
}
// Session tickets.
//
// https://tools.ietf.org/html/rfc5077
static int ext_ticket_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
// TLS 1.3 uses a different ticket extension.
if (hs->min_version >= TLS1_3_VERSION ||
SSL_get_options(ssl) & SSL_OP_NO_TICKET) {
return 1;
}
const uint8_t *ticket_data = NULL;
int ticket_len = 0;
// Renegotiation does not participate in session resumption. However, still
// advertise the extension to avoid potentially breaking servers which carry
// over the state from the previous handshake, such as OpenSSL servers
// without upstream's 3c3f0259238594d77264a78944d409f2127642c4.
if (!ssl->s3->initial_handshake_complete &&
ssl->session != NULL &&
ssl->session->tlsext_tick != NULL &&
// Don't send TLS 1.3 session tickets in the ticket extension.
ssl_session_protocol_version(ssl->session) < TLS1_3_VERSION) {
ticket_data = ssl->session->tlsext_tick;
ticket_len = ssl->session->tlsext_ticklen;
}
CBB ticket;
if (!CBB_add_u16(out, TLSEXT_TYPE_session_ticket) ||
!CBB_add_u16_length_prefixed(out, &ticket) ||
!CBB_add_bytes(&ticket, ticket_data, ticket_len) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
static int ext_ticket_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL) {
return 1;
}
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
return 0;
}
// If |SSL_OP_NO_TICKET| is set then no extension will have been sent and
// this function should never be called, even if the server tries to send the
// extension.
assert((SSL_get_options(ssl) & SSL_OP_NO_TICKET) == 0);
if (CBS_len(contents) != 0) {
return 0;
}
hs->ticket_expected = true;
return 1;
}
static int ext_ticket_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
if (!hs->ticket_expected) {
return 1;
}
// If |SSL_OP_NO_TICKET| is set, |ticket_expected| should never be true.
assert((SSL_get_options(hs->ssl) & SSL_OP_NO_TICKET) == 0);
if (!CBB_add_u16(out, TLSEXT_TYPE_session_ticket) ||
!CBB_add_u16(out, 0 /* length */)) {
return 0;
}
return 1;
}
// Signature Algorithms.
//
// https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1
static int ext_sigalgs_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (hs->max_version < TLS1_2_VERSION) {
return 1;
}
CBB contents, sigalgs_cbb;
if (!CBB_add_u16(out, TLSEXT_TYPE_signature_algorithms) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u16_length_prefixed(&contents, &sigalgs_cbb) ||
!tls12_add_verify_sigalgs(ssl, &sigalgs_cbb) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
static int ext_sigalgs_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
hs->peer_sigalgs.Reset();
if (contents == NULL) {
return 1;
}
CBS supported_signature_algorithms;
if (!CBS_get_u16_length_prefixed(contents, &supported_signature_algorithms) ||
CBS_len(contents) != 0 ||
CBS_len(&supported_signature_algorithms) == 0 ||
!tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) {
return 0;
}
return 1;
}
// OCSP Stapling.
//
// https://tools.ietf.org/html/rfc6066#section-8
static int ext_ocsp_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (!ssl->ocsp_stapling_enabled) {
return 1;
}
CBB contents;
if (!CBB_add_u16(out, TLSEXT_TYPE_status_request) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u8(&contents, TLSEXT_STATUSTYPE_ocsp) ||
!CBB_add_u16(&contents, 0 /* empty responder ID list */) ||
!CBB_add_u16(&contents, 0 /* empty request extensions */) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
static int ext_ocsp_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL) {
return 1;
}
// TLS 1.3 OCSP responses are included in the Certificate extensions.
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
return 0;
}
// OCSP stapling is forbidden on non-certificate ciphers.
if (CBS_len(contents) != 0 ||
!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
return 0;
}
// Note this does not check for resumption in TLS 1.2. Sending
// status_request here does not make sense, but OpenSSL does so and the
// specification does not say anything. Tolerate it but ignore it.
hs->certificate_status_expected = true;
return 1;
}
static int ext_ocsp_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
if (contents == NULL) {
return 1;
}
uint8_t status_type;
if (!CBS_get_u8(contents, &status_type)) {
return 0;
}
// We cannot decide whether OCSP stapling will occur yet because the correct
// SSL_CTX might not have been selected.
hs->ocsp_stapling_requested = status_type == TLSEXT_STATUSTYPE_ocsp;
return 1;
}
static int ext_ocsp_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION ||
!hs->ocsp_stapling_requested ||
ssl->cert->ocsp_response == NULL ||
ssl->s3->session_reused ||
!ssl_cipher_uses_certificate_auth(hs->new_cipher)) {
return 1;
}
hs->certificate_status_expected = true;
return CBB_add_u16(out, TLSEXT_TYPE_status_request) &&
CBB_add_u16(out, 0 /* length */);
}
// Next protocol negotiation.
//
// https://htmlpreview.github.io/?https://github.com/agl/technotes/blob/master/nextprotoneg.html
static int ext_npn_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (ssl->s3->initial_handshake_complete ||
ssl->ctx->next_proto_select_cb == NULL ||
SSL_is_dtls(ssl)) {
return 1;
}
if (!CBB_add_u16(out, TLSEXT_TYPE_next_proto_neg) ||
!CBB_add_u16(out, 0 /* length */)) {
return 0;
}
return 1;
}
static int ext_npn_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL) {
return 1;
}
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
return 0;
}
// If any of these are false then we should never have sent the NPN
// extension in the ClientHello and thus this function should never have been
// called.
assert(!ssl->s3->initial_handshake_complete);
assert(!SSL_is_dtls(ssl));
assert(ssl->ctx->next_proto_select_cb != NULL);
if (ssl->s3->alpn_selected != NULL) {
// NPN and ALPN may not be negotiated in the same connection.
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_NEGOTIATED_BOTH_NPN_AND_ALPN);
return 0;
}
const uint8_t *const orig_contents = CBS_data(contents);
const size_t orig_len = CBS_len(contents);
while (CBS_len(contents) != 0) {
CBS proto;
if (!CBS_get_u8_length_prefixed(contents, &proto) ||
CBS_len(&proto) == 0) {
return 0;
}
}
uint8_t *selected;
uint8_t selected_len;
if (ssl->ctx->next_proto_select_cb(
ssl, &selected, &selected_len, orig_contents, orig_len,
ssl->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
OPENSSL_free(ssl->s3->next_proto_negotiated);
ssl->s3->next_proto_negotiated =
(uint8_t *)BUF_memdup(selected, selected_len);
if (ssl->s3->next_proto_negotiated == NULL) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
ssl->s3->next_proto_negotiated_len = selected_len;
hs->next_proto_neg_seen = true;
return 1;
}
static int ext_npn_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
return 1;
}
if (contents != NULL && CBS_len(contents) != 0) {
return 0;
}
if (contents == NULL ||
ssl->s3->initial_handshake_complete ||
ssl->ctx->next_protos_advertised_cb == NULL ||
SSL_is_dtls(ssl)) {
return 1;
}
hs->next_proto_neg_seen = true;
return 1;
}
static int ext_npn_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
// |next_proto_neg_seen| might have been cleared when an ALPN extension was
// parsed.
if (!hs->next_proto_neg_seen) {
return 1;
}
const uint8_t *npa;
unsigned npa_len;
if (ssl->ctx->next_protos_advertised_cb(
ssl, &npa, &npa_len, ssl->ctx->next_protos_advertised_cb_arg) !=
SSL_TLSEXT_ERR_OK) {
hs->next_proto_neg_seen = false;
return 1;
}
CBB contents;
if (!CBB_add_u16(out, TLSEXT_TYPE_next_proto_neg) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_bytes(&contents, npa, npa_len) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
// Signed certificate timestamps.
//
// https://tools.ietf.org/html/rfc6962#section-3.3.1
static int ext_sct_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (!ssl->signed_cert_timestamps_enabled) {
return 1;
}
if (!CBB_add_u16(out, TLSEXT_TYPE_certificate_timestamp) ||
!CBB_add_u16(out, 0 /* length */)) {
return 0;
}
return 1;
}
static int ext_sct_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL) {
return 1;
}
// TLS 1.3 SCTs are included in the Certificate extensions.
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
// If this is false then we should never have sent the SCT extension in the
// ClientHello and thus this function should never have been called.
assert(ssl->signed_cert_timestamps_enabled);
if (!ssl_is_sct_list_valid(contents)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
// Session resumption uses the original session information. The extension
// should not be sent on resumption, but RFC 6962 did not make it a
// requirement, so tolerate this.
//
// TODO(davidben): Enforce this anyway.
if (!ssl->s3->session_reused) {
CRYPTO_BUFFER_free(hs->new_session->signed_cert_timestamp_list);
hs->new_session->signed_cert_timestamp_list =
CRYPTO_BUFFER_new_from_CBS(contents, ssl->ctx->pool);
if (hs->new_session->signed_cert_timestamp_list == nullptr) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
}
return 1;
}
static int ext_sct_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
if (contents == NULL) {
return 1;
}
if (CBS_len(contents) != 0) {
return 0;
}
hs->scts_requested = true;
return 1;
}
static int ext_sct_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
// The extension shouldn't be sent when resuming sessions.
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION ||
ssl->s3->session_reused ||
ssl->cert->signed_cert_timestamp_list == NULL) {
return 1;
}
CBB contents;
return CBB_add_u16(out, TLSEXT_TYPE_certificate_timestamp) &&
CBB_add_u16_length_prefixed(out, &contents) &&
CBB_add_bytes(
&contents,
CRYPTO_BUFFER_data(ssl->cert->signed_cert_timestamp_list),
CRYPTO_BUFFER_len(ssl->cert->signed_cert_timestamp_list)) &&
CBB_flush(out);
}
// Application-level Protocol Negotiation.
//
// https://tools.ietf.org/html/rfc7301
static int ext_alpn_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (ssl->alpn_client_proto_list == NULL ||
ssl->s3->initial_handshake_complete) {
return 1;
}
CBB contents, proto_list;
if (!CBB_add_u16(out, TLSEXT_TYPE_application_layer_protocol_negotiation) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u16_length_prefixed(&contents, &proto_list) ||
!CBB_add_bytes(&proto_list, ssl->alpn_client_proto_list,
ssl->alpn_client_proto_list_len) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
static int ext_alpn_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL) {
return 1;
}
assert(!ssl->s3->initial_handshake_complete);
assert(ssl->alpn_client_proto_list != NULL);
if (hs->next_proto_neg_seen) {
// NPN and ALPN may not be negotiated in the same connection.
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_NEGOTIATED_BOTH_NPN_AND_ALPN);
return 0;
}
// The extension data consists of a ProtocolNameList which must have
// exactly one ProtocolName. Each of these is length-prefixed.
CBS protocol_name_list, protocol_name;
if (!CBS_get_u16_length_prefixed(contents, &protocol_name_list) ||
CBS_len(contents) != 0 ||
!CBS_get_u8_length_prefixed(&protocol_name_list, &protocol_name) ||
// Empty protocol names are forbidden.
CBS_len(&protocol_name) == 0 ||
CBS_len(&protocol_name_list) != 0) {
return 0;
}
if (!ssl->ctx->allow_unknown_alpn_protos) {
// Check that the protocol name is one of the ones we advertised.
int protocol_ok = 0;
CBS client_protocol_name_list, client_protocol_name;
CBS_init(&client_protocol_name_list, ssl->alpn_client_proto_list,
ssl->alpn_client_proto_list_len);
while (CBS_len(&client_protocol_name_list) > 0) {
if (!CBS_get_u8_length_prefixed(&client_protocol_name_list,
&client_protocol_name)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
if (CBS_len(&client_protocol_name) == CBS_len(&protocol_name) &&
OPENSSL_memcmp(CBS_data(&client_protocol_name),
CBS_data(&protocol_name),
CBS_len(&protocol_name)) == 0) {
protocol_ok = 1;
break;
}
}
if (!protocol_ok) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
}
if (!CBS_stow(&protocol_name, &ssl->s3->alpn_selected,
&ssl->s3->alpn_selected_len)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
return 1;
}
int ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
const SSL_CLIENT_HELLO *client_hello) {
SSL *const ssl = hs->ssl;
CBS contents;
if (ssl->ctx->alpn_select_cb == NULL ||
!ssl_client_hello_get_extension(
client_hello, &contents,
TLSEXT_TYPE_application_layer_protocol_negotiation)) {
// Ignore ALPN if not configured or no extension was supplied.
return 1;
}
// ALPN takes precedence over NPN.
hs->next_proto_neg_seen = false;
CBS protocol_name_list;
if (!CBS_get_u16_length_prefixed(&contents, &protocol_name_list) ||
CBS_len(&contents) != 0 ||
CBS_len(&protocol_name_list) < 2) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
// Validate the protocol list.
CBS protocol_name_list_copy = protocol_name_list;
while (CBS_len(&protocol_name_list_copy) > 0) {
CBS protocol_name;
if (!CBS_get_u8_length_prefixed(&protocol_name_list_copy, &protocol_name) ||
// Empty protocol names are forbidden.
CBS_len(&protocol_name) == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
}
const uint8_t *selected;
uint8_t selected_len;
if (ssl->ctx->alpn_select_cb(
ssl, &selected, &selected_len, CBS_data(&protocol_name_list),
CBS_len(&protocol_name_list),
ssl->ctx->alpn_select_cb_arg) == SSL_TLSEXT_ERR_OK) {
OPENSSL_free(ssl->s3->alpn_selected);
ssl->s3->alpn_selected = (uint8_t *)BUF_memdup(selected, selected_len);
if (ssl->s3->alpn_selected == NULL) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
ssl->s3->alpn_selected_len = selected_len;
}
return 1;
}
static int ext_alpn_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (ssl->s3->alpn_selected == NULL) {
return 1;
}
CBB contents, proto_list, proto;
if (!CBB_add_u16(out, TLSEXT_TYPE_application_layer_protocol_negotiation) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u16_length_prefixed(&contents, &proto_list) ||
!CBB_add_u8_length_prefixed(&proto_list, &proto) ||
!CBB_add_bytes(&proto, ssl->s3->alpn_selected,
ssl->s3->alpn_selected_len) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
// Channel ID.
//
// https://tools.ietf.org/html/draft-balfanz-tls-channelid-01
static void ext_channel_id_init(SSL_HANDSHAKE *hs) {
hs->ssl->s3->tlsext_channel_id_valid = false;
}
static int ext_channel_id_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (!ssl->tlsext_channel_id_enabled ||
SSL_is_dtls(ssl)) {
return 1;
}
if (!CBB_add_u16(out, TLSEXT_TYPE_channel_id) ||
!CBB_add_u16(out, 0 /* length */)) {
return 0;
}
return 1;
}
static int ext_channel_id_parse_serverhello(SSL_HANDSHAKE *hs,
uint8_t *out_alert, CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL) {
return 1;
}
assert(!SSL_is_dtls(ssl));
assert(ssl->tlsext_channel_id_enabled);
if (CBS_len(contents) != 0) {
return 0;
}
ssl->s3->tlsext_channel_id_valid = true;
return 1;
}
static int ext_channel_id_parse_clienthello(SSL_HANDSHAKE *hs,
uint8_t *out_alert, CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL ||
!ssl->tlsext_channel_id_enabled ||
SSL_is_dtls(ssl)) {
return 1;
}
if (CBS_len(contents) != 0) {
return 0;
}
ssl->s3->tlsext_channel_id_valid = true;
return 1;
}
static int ext_channel_id_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (!ssl->s3->tlsext_channel_id_valid) {
return 1;
}
if (!CBB_add_u16(out, TLSEXT_TYPE_channel_id) ||
!CBB_add_u16(out, 0 /* length */)) {
return 0;
}
return 1;
}
// Secure Real-time Transport Protocol (SRTP) extension.
//
// https://tools.ietf.org/html/rfc5764
static void ext_srtp_init(SSL_HANDSHAKE *hs) {
hs->ssl->srtp_profile = NULL;
}
static int ext_srtp_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
STACK_OF(SRTP_PROTECTION_PROFILE) *profiles = SSL_get_srtp_profiles(ssl);
if (profiles == NULL ||
sk_SRTP_PROTECTION_PROFILE_num(profiles) == 0) {
return 1;
}
CBB contents, profile_ids;
if (!CBB_add_u16(out, TLSEXT_TYPE_srtp) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u16_length_prefixed(&contents, &profile_ids)) {
return 0;
}
for (const SRTP_PROTECTION_PROFILE *profile : profiles) {
if (!CBB_add_u16(&profile_ids, profile->id)) {
return 0;
}
}
if (!CBB_add_u8(&contents, 0 /* empty use_mki value */) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
static int ext_srtp_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL) {
return 1;
}
// The extension consists of a u16-prefixed profile ID list containing a
// single uint16_t profile ID, then followed by a u8-prefixed srtp_mki field.
//
// See https://tools.ietf.org/html/rfc5764#section-4.1.1
CBS profile_ids, srtp_mki;
uint16_t profile_id;
if (!CBS_get_u16_length_prefixed(contents, &profile_ids) ||
!CBS_get_u16(&profile_ids, &profile_id) ||
CBS_len(&profile_ids) != 0 ||
!CBS_get_u8_length_prefixed(contents, &srtp_mki) ||
CBS_len(contents) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST);
return 0;
}
if (CBS_len(&srtp_mki) != 0) {
// Must be no MKI, since we never offer one.
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_MKI_VALUE);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
STACK_OF(SRTP_PROTECTION_PROFILE) *profiles = SSL_get_srtp_profiles(ssl);
// Check to see if the server gave us something we support (and presumably
// offered).
for (const SRTP_PROTECTION_PROFILE *profile : profiles) {
if (profile->id == profile_id) {
ssl->srtp_profile = profile;
return 1;
}
}
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
static int ext_srtp_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL) {
return 1;
}
CBS profile_ids, srtp_mki;
if (!CBS_get_u16_length_prefixed(contents, &profile_ids) ||
CBS_len(&profile_ids) < 2 ||
!CBS_get_u8_length_prefixed(contents, &srtp_mki) ||
CBS_len(contents) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SRTP_PROTECTION_PROFILE_LIST);
return 0;
}
// Discard the MKI value for now.
const STACK_OF(SRTP_PROTECTION_PROFILE) *server_profiles =
SSL_get_srtp_profiles(ssl);
// Pick the server's most preferred profile.
for (const SRTP_PROTECTION_PROFILE *server_profile : server_profiles) {
CBS profile_ids_tmp;
CBS_init(&profile_ids_tmp, CBS_data(&profile_ids), CBS_len(&profile_ids));
while (CBS_len(&profile_ids_tmp) > 0) {
uint16_t profile_id;
if (!CBS_get_u16(&profile_ids_tmp, &profile_id)) {
return 0;
}
if (server_profile->id == profile_id) {
ssl->srtp_profile = server_profile;
return 1;
}
}
}
return 1;
}
static int ext_srtp_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (ssl->srtp_profile == NULL) {
return 1;
}
CBB contents, profile_ids;
if (!CBB_add_u16(out, TLSEXT_TYPE_srtp) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u16_length_prefixed(&contents, &profile_ids) ||
!CBB_add_u16(&profile_ids, ssl->srtp_profile->id) ||
!CBB_add_u8(&contents, 0 /* empty MKI */) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
// EC point formats.
//
// https://tools.ietf.org/html/rfc4492#section-5.1.2
static int ext_ec_point_add_extension(SSL_HANDSHAKE *hs, CBB *out) {
CBB contents, formats;
if (!CBB_add_u16(out, TLSEXT_TYPE_ec_point_formats) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u8_length_prefixed(&contents, &formats) ||
!CBB_add_u8(&formats, TLSEXT_ECPOINTFORMAT_uncompressed) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
static int ext_ec_point_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
// The point format extension is unneccessary in TLS 1.3.
if (hs->min_version >= TLS1_3_VERSION) {
return 1;
}
return ext_ec_point_add_extension(hs, out);
}
static int ext_ec_point_parse_serverhello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
if (contents == NULL) {
return 1;
}
if (ssl3_protocol_version(hs->ssl) >= TLS1_3_VERSION) {
return 0;
}
CBS ec_point_format_list;
if (!CBS_get_u8_length_prefixed(contents, &ec_point_format_list) ||
CBS_len(contents) != 0) {
return 0;
}
// Per RFC 4492, section 5.1.2, implementations MUST support the uncompressed
// point format.
if (OPENSSL_memchr(CBS_data(&ec_point_format_list),
TLSEXT_ECPOINTFORMAT_uncompressed,
CBS_len(&ec_point_format_list)) == NULL) {
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
return 1;
}
static int ext_ec_point_parse_clienthello(SSL_HANDSHAKE *hs, uint8_t *out_alert,
CBS *contents) {
if (ssl3_protocol_version(hs->ssl) >= TLS1_3_VERSION) {
return 1;
}
return ext_ec_point_parse_serverhello(hs, out_alert, contents);
}
static int ext_ec_point_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
return 1;
}
const uint32_t alg_k = hs->new_cipher->algorithm_mkey;
const uint32_t alg_a = hs->new_cipher->algorithm_auth;
const int using_ecc = (alg_k & SSL_kECDHE) || (alg_a & SSL_aECDSA);
if (!using_ecc) {
return 1;
}
return ext_ec_point_add_extension(hs, out);
}
// Pre Shared Key
//
// https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.6
static size_t ext_pre_shared_key_clienthello_length(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
if (hs->max_version < TLS1_3_VERSION || ssl->session == NULL ||
ssl_session_protocol_version(ssl->session) < TLS1_3_VERSION) {
return 0;
}
size_t binder_len = EVP_MD_size(ssl_session_get_digest(ssl->session));
return 15 + ssl->session->tlsext_ticklen + binder_len;
}
static int ext_pre_shared_key_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (hs->max_version < TLS1_3_VERSION || ssl->session == NULL ||
ssl_session_protocol_version(ssl->session) < TLS1_3_VERSION) {
return 1;
}
struct OPENSSL_timeval now;
ssl_get_current_time(ssl, &now);
uint32_t ticket_age = 1000 * (now.tv_sec - ssl->session->time);
uint32_t obfuscated_ticket_age = ticket_age + ssl->session->ticket_age_add;
// Fill in a placeholder zero binder of the appropriate length. It will be
// computed and filled in later after length prefixes are computed.
uint8_t zero_binder[EVP_MAX_MD_SIZE] = {0};
size_t binder_len = EVP_MD_size(ssl_session_get_digest(ssl->session));
CBB contents, identity, ticket, binders, binder;
if (!CBB_add_u16(out, TLSEXT_TYPE_pre_shared_key) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u16_length_prefixed(&contents, &identity) ||
!CBB_add_u16_length_prefixed(&identity, &ticket) ||
!CBB_add_bytes(&ticket, ssl->session->tlsext_tick,
ssl->session->tlsext_ticklen) ||
!CBB_add_u32(&identity, obfuscated_ticket_age) ||
!CBB_add_u16_length_prefixed(&contents, &binders) ||
!CBB_add_u8_length_prefixed(&binders, &binder) ||
!CBB_add_bytes(&binder, zero_binder, binder_len)) {
return 0;
}
hs->needs_psk_binder = true;
return CBB_flush(out);
}
int ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
uint8_t *out_alert,
CBS *contents) {
uint16_t psk_id;
if (!CBS_get_u16(contents, &psk_id) ||
CBS_len(contents) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
// We only advertise one PSK identity, so the only legal index is zero.
if (psk_id != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
*out_alert = SSL_AD_UNKNOWN_PSK_IDENTITY;
return 0;
}
return 1;
}
int ssl_ext_pre_shared_key_parse_clienthello(
SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, CBS *contents) {
// We only process the first PSK identity since we don't support pure PSK.
CBS identities, binders;
if (!CBS_get_u16_length_prefixed(contents, &identities) ||
!CBS_get_u16_length_prefixed(&identities, out_ticket) ||
!CBS_get_u32(&identities, out_obfuscated_ticket_age) ||
!CBS_get_u16_length_prefixed(contents, &binders) ||
CBS_len(&binders) == 0 ||
CBS_len(contents) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
*out_binders = binders;
// Check the syntax of the remaining identities, but do not process them.
size_t num_identities = 1;
while (CBS_len(&identities) != 0) {
CBS unused_ticket;
uint32_t unused_obfuscated_ticket_age;
if (!CBS_get_u16_length_prefixed(&identities, &unused_ticket) ||
!CBS_get_u32(&identities, &unused_obfuscated_ticket_age)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
num_identities++;
}
// Check the syntax of the binders. The value will be checked later if
// resuming.
size_t num_binders = 0;
while (CBS_len(&binders) != 0) {
CBS binder;
if (!CBS_get_u8_length_prefixed(&binders, &binder)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
num_binders++;
}
if (num_identities != num_binders) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_BINDER_COUNT_MISMATCH);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
return 1;
}
int ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
if (!hs->ssl->s3->session_reused) {
return 1;
}
CBB contents;
if (!CBB_add_u16(out, TLSEXT_TYPE_pre_shared_key) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
// We only consider the first identity for resumption
!CBB_add_u16(&contents, 0) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
// Pre-Shared Key Exchange Modes
//
// https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.7
static int ext_psk_key_exchange_modes_add_clienthello(SSL_HANDSHAKE *hs,
CBB *out) {
if (hs->max_version < TLS1_3_VERSION) {
return 1;
}
CBB contents, ke_modes;
if (!CBB_add_u16(out, TLSEXT_TYPE_psk_key_exchange_modes) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u8_length_prefixed(&contents, &ke_modes) ||
!CBB_add_u8(&ke_modes, SSL_PSK_DHE_KE)) {
return 0;
}
return CBB_flush(out);
}
static int ext_psk_key_exchange_modes_parse_clienthello(SSL_HANDSHAKE *hs,
uint8_t *out_alert,
CBS *contents) {
if (contents == NULL) {
return 1;
}
CBS ke_modes;
if (!CBS_get_u8_length_prefixed(contents, &ke_modes) ||
CBS_len(&ke_modes) == 0 ||
CBS_len(contents) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
// We only support tickets with PSK_DHE_KE.
hs->accept_psk_mode = OPENSSL_memchr(CBS_data(&ke_modes), SSL_PSK_DHE_KE,
CBS_len(&ke_modes)) != NULL;
return 1;
}
// Early Data Indication
//
// https://tools.ietf.org/html/draft-ietf-tls-tls13-18#section-4.2.8
static int ext_early_data_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (ssl->session == NULL ||
ssl_session_protocol_version(ssl->session) < TLS1_3_VERSION ||
ssl->session->ticket_max_early_data == 0 ||
hs->received_hello_retry_request ||
!ssl->cert->enable_early_data) {
return 1;
}
hs->early_data_offered = true;
if (!CBB_add_u16(out, TLSEXT_TYPE_early_data) ||
!CBB_add_u16(out, 0) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
static int ext_early_data_parse_serverhello(SSL_HANDSHAKE *hs,
uint8_t *out_alert, CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL) {
return 1;
}
if (CBS_len(contents) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (!ssl->s3->session_reused) {
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION);
return 0;
}
ssl->early_data_accepted = 1;
return 1;
}
static int ext_early_data_parse_clienthello(SSL_HANDSHAKE *hs,
uint8_t *out_alert, CBS *contents) {
SSL *const ssl = hs->ssl;
if (contents == NULL ||
ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
return 1;
}
if (CBS_len(contents) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
hs->early_data_offered = true;
return 1;
}
static int ext_early_data_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
if (!hs->ssl->early_data_accepted) {
return 1;
}
if (!CBB_add_u16(out, TLSEXT_TYPE_early_data) ||
!CBB_add_u16(out, 0) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
// Key Share
//
// https://tools.ietf.org/html/draft-ietf-tls-tls13-16#section-4.2.5
static int ext_key_share_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (hs->max_version < TLS1_3_VERSION) {
return 1;
}
CBB contents, kse_bytes;
if (!CBB_add_u16(out, TLSEXT_TYPE_key_share) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u16_length_prefixed(&contents, &kse_bytes)) {
return 0;
}
uint16_t group_id = hs->retry_group;
if (hs->received_hello_retry_request) {
// We received a HelloRetryRequest without a new curve, so there is no new
// share to append. Leave |hs->key_share| as-is.
if (group_id == 0 &&
!CBB_add_bytes(&kse_bytes, hs->key_share_bytes.data(),
hs->key_share_bytes.size())) {
return 0;
}
hs->key_share_bytes.Reset();
if (group_id == 0) {
return CBB_flush(out);
}
} else {
// Add a fake group. See draft-davidben-tls-grease-01.
if (ssl->ctx->grease_enabled &&
(!CBB_add_u16(&kse_bytes,
ssl_get_grease_value(ssl, ssl_grease_group)) ||
!CBB_add_u16(&kse_bytes, 1 /* length */) ||
!CBB_add_u8(&kse_bytes, 0 /* one byte key share */))) {
return 0;
}
// Predict the most preferred group.
Span<const uint16_t> groups = tls1_get_grouplist(ssl);
if (groups.empty()) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_GROUPS_SPECIFIED);
return 0;
}
group_id = groups[0];
}
hs->key_share = SSLKeyShare::Create(group_id);
CBB key_exchange;
if (!hs->key_share ||
!CBB_add_u16(&kse_bytes, group_id) ||
!CBB_add_u16_length_prefixed(&kse_bytes, &key_exchange) ||
!hs->key_share->Offer(&key_exchange) ||
!CBB_flush(&kse_bytes)) {
return 0;
}
// Save the contents of the extension to repeat it in the second ClientHello.
if (!hs->received_hello_retry_request &&
!hs->key_share_bytes.CopyFrom(
MakeConstSpan(CBB_data(&kse_bytes), CBB_len(&kse_bytes)))) {
return 0;
}
return CBB_flush(out);
}
int ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
Array<uint8_t> *out_secret,
uint8_t *out_alert, CBS *contents) {
CBS peer_key;
uint16_t group_id;
if (!CBS_get_u16(contents, &group_id) ||
!CBS_get_u16_length_prefixed(contents, &peer_key) ||
CBS_len(contents) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (hs->key_share->GroupID() != group_id) {
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
return 0;
}
if (!hs->key_share->Finish(out_secret, out_alert, peer_key)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
hs->new_session->group_id = group_id;
hs->key_share.reset();
return 1;
}
int ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
Array<uint8_t> *out_secret,
uint8_t *out_alert, CBS *contents) {
uint16_t group_id;
CBS key_shares;
if (!tls1_get_shared_group(hs, &group_id)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_GROUP);
*out_alert = SSL_AD_HANDSHAKE_FAILURE;
return 0;
}
if (!CBS_get_u16_length_prefixed(contents, &key_shares) ||
CBS_len(contents) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return 0;
}
// Find the corresponding key share.
bool found = false;
CBS peer_key;
while (CBS_len(&key_shares) > 0) {
uint16_t id;
CBS peer_key_tmp;
if (!CBS_get_u16(&key_shares, &id) ||
!CBS_get_u16_length_prefixed(&key_shares, &peer_key_tmp)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return 0;
}
if (id == group_id) {
if (found) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_KEY_SHARE);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
found = true;
peer_key = peer_key_tmp;
// Continue parsing the structure to keep peers honest.
}
}
if (!found) {
*out_found = false;
out_secret->Reset();
return 1;
}
// Compute the DH secret.
Array<uint8_t> secret;
ScopedCBB public_key;
UniquePtr<SSLKeyShare> key_share = SSLKeyShare::Create(group_id);
if (!key_share ||
!CBB_init(public_key.get(), 32) ||
!key_share->Accept(public_key.get(), &secret, out_alert, peer_key) ||
!CBBFinishArray(public_key.get(), &hs->ecdh_public_key)) {
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
*out_secret = std::move(secret);
*out_found = true;
return 1;
}
int ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
uint16_t group_id;
CBB kse_bytes, public_key;
if (!tls1_get_shared_group(hs, &group_id) ||
!CBB_add_u16(out, TLSEXT_TYPE_key_share) ||
!CBB_add_u16_length_prefixed(out, &kse_bytes) ||
!CBB_add_u16(&kse_bytes, group_id) ||
!CBB_add_u16_length_prefixed(&kse_bytes, &public_key) ||
!CBB_add_bytes(&public_key, hs->ecdh_public_key.data(),
hs->ecdh_public_key.size()) ||
!CBB_flush(out)) {
return 0;
}
hs->ecdh_public_key.Reset();
hs->new_session->group_id = group_id;
return 1;
}
// Supported Versions
//
// https://tools.ietf.org/html/draft-ietf-tls-tls13-16#section-4.2.1
static int ext_supported_versions_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
if (hs->max_version <= TLS1_2_VERSION) {
return 1;
}
CBB contents, versions;
if (!CBB_add_u16(out, TLSEXT_TYPE_supported_versions) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u8_length_prefixed(&contents, &versions)) {
return 0;
}
// Add a fake version. See draft-davidben-tls-grease-01.
if (ssl->ctx->grease_enabled &&
!CBB_add_u16(&versions, ssl_get_grease_value(ssl, ssl_grease_version))) {
return 0;
}
if (!ssl_add_supported_versions(hs, &versions) ||
!CBB_flush(out)) {
return 0;
}
return 1;
}
// Cookie
//
// https://tools.ietf.org/html/draft-ietf-tls-tls13-16#section-4.2.2
static int ext_cookie_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
if (hs->cookie.empty()) {
return 1;
}
CBB contents, cookie;
if (!CBB_add_u16(out, TLSEXT_TYPE_cookie) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u16_length_prefixed(&contents, &cookie) ||
!CBB_add_bytes(&cookie, hs->cookie.data(), hs->cookie.size()) ||
!CBB_flush(out)) {
return 0;
}
// The cookie is no longer needed in memory.
hs->cookie.Reset();
return 1;
}
// Negotiated Groups
//
// https://tools.ietf.org/html/rfc4492#section-5.1.2
// https://tools.ietf.org/html/draft-ietf-tls-tls13-16#section-4.2.4
static int ext_supported_groups_add_clienthello(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
CBB contents, groups_bytes;
if (!CBB_add_u16(out, TLSEXT_TYPE_supported_groups) ||
!CBB_add_u16_length_prefixed(out, &contents) ||
!CBB_add_u16_length_prefixed(&contents, &groups_bytes)) {
return 0;
}
// Add a fake group. See draft-davidben-tls-grease-01.
if (ssl->ctx->grease_enabled &&
!CBB_add_u16(&groups_bytes,
ssl_get_grease_value(ssl, ssl_grease_group))) {
return 0;
}
for (uint16_t group : tls1_get_grouplist(ssl)) {
if (!CBB_add_u16(&groups_bytes, group)) {
return 0;
}
}
return CBB_flush(out);
}
static int ext_supported_groups_parse_serverhello(SSL_HANDSHAKE *hs,
uint8_t *out_alert,
CBS *contents) {
// This extension is not expected to be echoed by servers in TLS 1.2, but some
// BigIP servers send it nonetheless, so do not enforce this.
return 1;
}
static bool parse_u16_array(const CBS *cbs, Array<uint16_t> *out) {
CBS copy = *cbs;
if ((CBS_len(&copy) & 1) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return false;
}
Array<uint16_t> ret;
if (!ret.Init(CBS_len(&copy) / 2)) {
return false;
}
for (size_t i = 0; i < ret.size(); i++) {
if (!CBS_get_u16(&copy, &ret[i])) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
}
assert(CBS_len(&copy) == 0);
*out = std::move(ret);
return 1;
}
static int ext_supported_groups_parse_clienthello(SSL_HANDSHAKE *hs,
uint8_t *out_alert,
CBS *contents) {
if (contents == NULL) {
return 1;
}
CBS supported_group_list;
if (!CBS_get_u16_length_prefixed(contents, &supported_group_list) ||
CBS_len(&supported_group_list) == 0 ||
CBS_len(contents) != 0 ||
!parse_u16_array(&supported_group_list, &hs->peer_supported_group_list)) {
return 0;
}
return 1;
}
static int ext_supported_groups_add_serverhello(SSL_HANDSHAKE *hs, CBB *out) {
// Servers don't echo this extension.
return 1;
}
// kExtensions contains all the supported extensions.
static const struct tls_extension kExtensions[] = {
{
TLSEXT_TYPE_renegotiate,
NULL,
ext_ri_add_clienthello,
ext_ri_parse_serverhello,
ext_ri_parse_clienthello,
ext_ri_add_serverhello,
},
{
TLSEXT_TYPE_server_name,
NULL,
ext_sni_add_clienthello,
ext_sni_parse_serverhello,
ext_sni_parse_clienthello,
ext_sni_add_serverhello,
},
{
TLSEXT_TYPE_extended_master_secret,
NULL,
ext_ems_add_clienthello,
ext_ems_parse_serverhello,
ext_ems_parse_clienthello,
ext_ems_add_serverhello,
},
{
TLSEXT_TYPE_session_ticket,
NULL,
ext_ticket_add_clienthello,
ext_ticket_parse_serverhello,
// Ticket extension client parsing is handled in ssl_session.c
ignore_parse_clienthello,
ext_ticket_add_serverhello,
},
{
TLSEXT_TYPE_signature_algorithms,
NULL,
ext_sigalgs_add_clienthello,
forbid_parse_serverhello,
ext_sigalgs_parse_clienthello,
dont_add_serverhello,
},
{
TLSEXT_TYPE_status_request,
NULL,
ext_ocsp_add_clienthello,
ext_ocsp_parse_serverhello,
ext_ocsp_parse_clienthello,
ext_ocsp_add_serverhello,
},
{
TLSEXT_TYPE_next_proto_neg,
NULL,
ext_npn_add_clienthello,
ext_npn_parse_serverhello,
ext_npn_parse_clienthello,
ext_npn_add_serverhello,
},
{
TLSEXT_TYPE_certificate_timestamp,
NULL,
ext_sct_add_clienthello,
ext_sct_parse_serverhello,
ext_sct_parse_clienthello,
ext_sct_add_serverhello,
},
{
TLSEXT_TYPE_application_layer_protocol_negotiation,
NULL,
ext_alpn_add_clienthello,
ext_alpn_parse_serverhello,
// ALPN is negotiated late in |ssl_negotiate_alpn|.
ignore_parse_clienthello,
ext_alpn_add_serverhello,
},
{
TLSEXT_TYPE_channel_id,
ext_channel_id_init,
ext_channel_id_add_clienthello,
ext_channel_id_parse_serverhello,
ext_channel_id_parse_clienthello,
ext_channel_id_add_serverhello,
},
{
TLSEXT_TYPE_srtp,
ext_srtp_init,
ext_srtp_add_clienthello,
ext_srtp_parse_serverhello,
ext_srtp_parse_clienthello,
ext_srtp_add_serverhello,
},
{
TLSEXT_TYPE_ec_point_formats,
NULL,
ext_ec_point_add_clienthello,
ext_ec_point_parse_serverhello,
ext_ec_point_parse_clienthello,
ext_ec_point_add_serverhello,
},
{
TLSEXT_TYPE_key_share,
NULL,
ext_key_share_add_clienthello,
forbid_parse_serverhello,
ignore_parse_clienthello,
dont_add_serverhello,
},
{
TLSEXT_TYPE_psk_key_exchange_modes,
NULL,
ext_psk_key_exchange_modes_add_clienthello,
forbid_parse_serverhello,
ext_psk_key_exchange_modes_parse_clienthello,
dont_add_serverhello,
},
{
TLSEXT_TYPE_early_data,
NULL,
ext_early_data_add_clienthello,
ext_early_data_parse_serverhello,
ext_early_data_parse_clienthello,
ext_early_data_add_serverhello,
},
{
TLSEXT_TYPE_supported_versions,
NULL,
ext_supported_versions_add_clienthello,
forbid_parse_serverhello,
ignore_parse_clienthello,
dont_add_serverhello,
},
{
TLSEXT_TYPE_cookie,
NULL,
ext_cookie_add_clienthello,
forbid_parse_serverhello,
ignore_parse_clienthello,
dont_add_serverhello,
},
// The final extension must be non-empty. WebSphere Application Server 7.0 is
// intolerant to the last extension being zero-length. See
// https://crbug.com/363583.
{
TLSEXT_TYPE_supported_groups,
NULL,
ext_supported_groups_add_clienthello,
ext_supported_groups_parse_serverhello,
ext_supported_groups_parse_clienthello,
ext_supported_groups_add_serverhello,
},
};
#define kNumExtensions (sizeof(kExtensions) / sizeof(struct tls_extension))
static_assert(kNumExtensions <=
sizeof(((SSL_HANDSHAKE *)NULL)->extensions.sent) * 8,
"too many extensions for sent bitset");
static_assert(kNumExtensions <=
sizeof(((SSL_HANDSHAKE *)NULL)->extensions.received) * 8,
"too many extensions for received bitset");
static const struct tls_extension *tls_extension_find(uint32_t *out_index,
uint16_t value) {
unsigned i;
for (i = 0; i < kNumExtensions; i++) {
if (kExtensions[i].value == value) {
*out_index = i;
return &kExtensions[i];
}
}
return NULL;
}
int ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len) {
SSL *const ssl = hs->ssl;
// Don't add extensions for SSLv3 unless doing secure renegotiation.
if (hs->client_version == SSL3_VERSION &&
!ssl->s3->send_connection_binding) {
return 1;
}
CBB extensions;
if (!CBB_add_u16_length_prefixed(out, &extensions)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
hs->extensions.sent = 0;
hs->custom_extensions.sent = 0;
for (size_t i = 0; i < kNumExtensions; i++) {
if (kExtensions[i].init != NULL) {
kExtensions[i].init(hs);
}
}
uint16_t grease_ext1 = 0;
if (ssl->ctx->grease_enabled) {
// Add a fake empty extension. See draft-davidben-tls-grease-01.
grease_ext1 = ssl_get_grease_value(ssl, ssl_grease_extension1);
if (!CBB_add_u16(&extensions, grease_ext1) ||
!CBB_add_u16(&extensions, 0 /* zero length */)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
}
for (size_t i = 0; i < kNumExtensions; i++) {
const size_t len_before = CBB_len(&extensions);
if (!kExtensions[i].add_clienthello(hs, &extensions)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_ADDING_EXTENSION);
ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value);
return 0;
}
if (CBB_len(&extensions) != len_before) {
hs->extensions.sent |= (1u << i);
}
}
if (!custom_ext_add_clienthello(hs, &extensions)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
if (ssl->ctx->grease_enabled) {
// Add a fake non-empty extension. See draft-davidben-tls-grease-01.
uint16_t grease_ext2 = ssl_get_grease_value(ssl, ssl_grease_extension2);
// The two fake extensions must not have the same value. GREASE values are
// of the form 0x1a1a, 0x2a2a, 0x3a3a, etc., so XOR to generate a different
// one.
if (grease_ext1 == grease_ext2) {
grease_ext2 ^= 0x1010;
}
if (!CBB_add_u16(&extensions, grease_ext2) ||
!CBB_add_u16(&extensions, 1 /* one byte length */) ||
!CBB_add_u8(&extensions, 0 /* single zero byte as contents */)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
}
if (!SSL_is_dtls(ssl)) {
size_t psk_extension_len = ext_pre_shared_key_clienthello_length(hs);
header_len += 2 + CBB_len(&extensions) + psk_extension_len;
if (header_len > 0xff && header_len < 0x200) {
// Add padding to workaround bugs in F5 terminators. See RFC 7685.
//
// NB: because this code works out the length of all existing extensions
// it MUST always appear last.
size_t padding_len = 0x200 - header_len;
// Extensions take at least four bytes to encode. Always include at least
// one byte of data if including the extension. WebSphere Application
// Server 7.0 is intolerant to the last extension being zero-length. See
// https://crbug.com/363583.
if (padding_len >= 4 + 1) {
padding_len -= 4;
} else {
padding_len = 1;
}
uint8_t *padding_bytes;
if (!CBB_add_u16(&extensions, TLSEXT_TYPE_padding) ||
!CBB_add_u16(&extensions, padding_len) ||
!CBB_add_space(&extensions, &padding_bytes, padding_len)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
OPENSSL_memset(padding_bytes, 0, padding_len);
}
}
// The PSK extension must be last, including after the padding.
if (!ext_pre_shared_key_add_clienthello(hs, &extensions)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
// Discard empty extensions blocks.
if (CBB_len(&extensions) == 0) {
CBB_discard_child(out);
}
return CBB_flush(out);
}
int ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out) {
SSL *const ssl = hs->ssl;
CBB extensions;
if (!CBB_add_u16_length_prefixed(out, &extensions)) {
goto err;
}
for (unsigned i = 0; i < kNumExtensions; i++) {
if (!(hs->extensions.received & (1u << i))) {
// Don't send extensions that were not received.
continue;
}
if (!kExtensions[i].add_serverhello(hs, &extensions)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_ADDING_EXTENSION);
ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value);
goto err;
}
}
if (!custom_ext_add_serverhello(hs, &extensions)) {
goto err;
}
// Discard empty extensions blocks before TLS 1.3.
if (ssl3_protocol_version(ssl) < TLS1_3_VERSION &&
CBB_len(&extensions) == 0) {
CBB_discard_child(out);
}
return CBB_flush(out);
err:
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
static int ssl_scan_clienthello_tlsext(SSL_HANDSHAKE *hs,
const SSL_CLIENT_HELLO *client_hello,
int *out_alert) {
SSL *const ssl = hs->ssl;
for (size_t i = 0; i < kNumExtensions; i++) {
if (kExtensions[i].init != NULL) {
kExtensions[i].init(hs);
}
}
hs->extensions.received = 0;
hs->custom_extensions.received = 0;
CBS extensions;
CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len);
while (CBS_len(&extensions) != 0) {
uint16_t type;
CBS extension;
// Decode the next extension.
if (!CBS_get_u16(&extensions, &type) ||
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
// RFC 5746 made the existence of extensions in SSL 3.0 somewhat
// ambiguous. Ignore all but the renegotiation_info extension.
if (ssl->version == SSL3_VERSION && type != TLSEXT_TYPE_renegotiate) {
continue;
}
unsigned ext_index;
const struct tls_extension *const ext =
tls_extension_find(&ext_index, type);
if (ext == NULL) {
if (!custom_ext_parse_clienthello(hs, out_alert, type, &extension)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_PARSING_EXTENSION);
return 0;
}
continue;
}
hs->extensions.received |= (1u << ext_index);
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!ext->parse_clienthello(hs, &alert, &extension)) {
*out_alert = alert;
OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_PARSING_EXTENSION);
ERR_add_error_dataf("extension %u", (unsigned)type);
return 0;
}
}
for (size_t i = 0; i < kNumExtensions; i++) {
if (hs->extensions.received & (1u << i)) {
continue;
}
CBS *contents = NULL, fake_contents;
static const uint8_t kFakeRenegotiateExtension[] = {0};
if (kExtensions[i].value == TLSEXT_TYPE_renegotiate &&
ssl_client_cipher_list_contains_cipher(client_hello,
SSL3_CK_SCSV & 0xffff)) {
// The renegotiation SCSV was received so pretend that we received a
// renegotiation extension.
CBS_init(&fake_contents, kFakeRenegotiateExtension,
sizeof(kFakeRenegotiateExtension));
contents = &fake_contents;
hs->extensions.received |= (1u << i);
}
// Extension wasn't observed so call the callback with a NULL
// parameter.
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!kExtensions[i].parse_clienthello(hs, &alert, contents)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_EXTENSION);
ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value);
*out_alert = alert;
return 0;
}
}
return 1;
}
int ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
const SSL_CLIENT_HELLO *client_hello) {
SSL *const ssl = hs->ssl;
int alert = SSL_AD_DECODE_ERROR;
if (ssl_scan_clienthello_tlsext(hs, client_hello, &alert) <= 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
return 0;
}
if (ssl_check_clienthello_tlsext(hs) <= 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CLIENTHELLO_TLSEXT);
return 0;
}
return 1;
}
static int ssl_scan_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs,
int *out_alert) {
SSL *const ssl = hs->ssl;
// Before TLS 1.3, ServerHello extensions blocks may be omitted if empty.
if (CBS_len(cbs) == 0 && ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
return 1;
}
// Decode the extensions block and check it is valid.
CBS extensions;
if (!CBS_get_u16_length_prefixed(cbs, &extensions) ||
!tls1_check_duplicate_extensions(&extensions)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
uint32_t received = 0;
while (CBS_len(&extensions) != 0) {
uint16_t type;
CBS extension;
// Decode the next extension.
if (!CBS_get_u16(&extensions, &type) ||
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
unsigned ext_index;
const struct tls_extension *const ext =
tls_extension_find(&ext_index, type);
if (ext == NULL) {
hs->received_custom_extension = true;
if (!custom_ext_parse_serverhello(hs, out_alert, type, &extension)) {
return 0;
}
continue;
}
static_assert(kNumExtensions <= sizeof(hs->extensions.sent) * 8,
"too many bits");
if (!(hs->extensions.sent & (1u << ext_index)) &&
type != TLSEXT_TYPE_renegotiate) {
// If the extension was never sent then it is illegal, except for the
// renegotiation extension which, in SSL 3.0, is signaled via SCSV.
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION);
ERR_add_error_dataf("extension :%u", (unsigned)type);
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
return 0;
}
received |= (1u << ext_index);
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!ext->parse_serverhello(hs, &alert, &extension)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_PARSING_EXTENSION);
ERR_add_error_dataf("extension %u", (unsigned)type);
*out_alert = alert;
return 0;
}
}
for (size_t i = 0; i < kNumExtensions; i++) {
if (!(received & (1u << i))) {
// Extension wasn't observed so call the callback with a NULL
// parameter.
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!kExtensions[i].parse_serverhello(hs, &alert, NULL)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_EXTENSION);
ERR_add_error_dataf("extension %u", (unsigned)kExtensions[i].value);
*out_alert = alert;
return 0;
}
}
}
return 1;
}
static int ssl_check_clienthello_tlsext(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
int ret = SSL_TLSEXT_ERR_NOACK;
int al = SSL_AD_UNRECOGNIZED_NAME;
if (ssl->ctx->tlsext_servername_callback != 0) {
ret = ssl->ctx->tlsext_servername_callback(ssl, &al,
ssl->ctx->tlsext_servername_arg);
} else if (ssl->session_ctx->tlsext_servername_callback != 0) {
ret = ssl->session_ctx->tlsext_servername_callback(
ssl, &al, ssl->session_ctx->tlsext_servername_arg);
}
switch (ret) {
case SSL_TLSEXT_ERR_ALERT_FATAL:
ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
return -1;
case SSL_TLSEXT_ERR_NOACK:
hs->should_ack_sni = false;
return 1;
default:
return 1;
}
}
int ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs) {
SSL *const ssl = hs->ssl;
int alert = SSL_AD_DECODE_ERROR;
if (ssl_scan_serverhello_tlsext(hs, cbs, &alert) <= 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
return 0;
}
return 1;
}
static enum ssl_ticket_aead_result_t decrypt_ticket_with_cipher_ctx(
uint8_t **out, size_t *out_len, EVP_CIPHER_CTX *cipher_ctx,
HMAC_CTX *hmac_ctx, const uint8_t *ticket, size_t ticket_len) {
size_t iv_len = EVP_CIPHER_CTX_iv_length(cipher_ctx);
// Check the MAC at the end of the ticket.
uint8_t mac[EVP_MAX_MD_SIZE];
size_t mac_len = HMAC_size(hmac_ctx);
if (ticket_len < SSL_TICKET_KEY_NAME_LEN + iv_len + 1 + mac_len) {
// The ticket must be large enough for key name, IV, data, and MAC.
return ssl_ticket_aead_ignore_ticket;
}
HMAC_Update(hmac_ctx, ticket, ticket_len - mac_len);
HMAC_Final(hmac_ctx, mac, NULL);
int mac_ok =
CRYPTO_memcmp(mac, ticket + (ticket_len - mac_len), mac_len) == 0;
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
mac_ok = 1;
#endif
if (!mac_ok) {
return ssl_ticket_aead_ignore_ticket;
}
// Decrypt the session data.
const uint8_t *ciphertext = ticket + SSL_TICKET_KEY_NAME_LEN + iv_len;
size_t ciphertext_len = ticket_len - SSL_TICKET_KEY_NAME_LEN - iv_len -
mac_len;
UniquePtr<uint8_t> plaintext((uint8_t *)OPENSSL_malloc(ciphertext_len));
if (!plaintext) {
return ssl_ticket_aead_error;
}
size_t plaintext_len;
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
OPENSSL_memcpy(plaintext.get(), ciphertext, ciphertext_len);
plaintext_len = ciphertext_len;
#else
if (ciphertext_len >= INT_MAX) {
return ssl_ticket_aead_ignore_ticket;
}
int len1, len2;
if (!EVP_DecryptUpdate(cipher_ctx, plaintext.get(), &len1, ciphertext,
(int)ciphertext_len) ||
!EVP_DecryptFinal_ex(cipher_ctx, plaintext.get() + len1, &len2)) {
ERR_clear_error();
return ssl_ticket_aead_ignore_ticket;
}
plaintext_len = (size_t)(len1) + len2;
#endif
*out = plaintext.release();
*out_len = plaintext_len;
return ssl_ticket_aead_success;
}
static enum ssl_ticket_aead_result_t ssl_decrypt_ticket_with_cb(
SSL *ssl, uint8_t **out, size_t *out_len, bool *out_renew_ticket,
const uint8_t *ticket, size_t ticket_len) {
assert(ticket_len >= SSL_TICKET_KEY_NAME_LEN + EVP_MAX_IV_LENGTH);
ScopedEVP_CIPHER_CTX cipher_ctx;
ScopedHMAC_CTX hmac_ctx;
const uint8_t *iv = ticket + SSL_TICKET_KEY_NAME_LEN;
int cb_ret = ssl->session_ctx->tlsext_ticket_key_cb(
ssl, (uint8_t *)ticket /* name */, (uint8_t *)iv, cipher_ctx.get(),
hmac_ctx.get(), 0 /* decrypt */);
if (cb_ret < 0) {
return ssl_ticket_aead_error;
} else if (cb_ret == 0) {
return ssl_ticket_aead_ignore_ticket;
} else if (cb_ret == 2) {
*out_renew_ticket = true;
} else {
assert(cb_ret == 1);
}
return decrypt_ticket_with_cipher_ctx(out, out_len, cipher_ctx.get(),
hmac_ctx.get(), ticket, ticket_len);
}
static enum ssl_ticket_aead_result_t ssl_decrypt_ticket_with_ticket_keys(
SSL *ssl, uint8_t **out, size_t *out_len, const uint8_t *ticket,
size_t ticket_len) {
assert(ticket_len >= SSL_TICKET_KEY_NAME_LEN + EVP_MAX_IV_LENGTH);
SSL_CTX *ctx = ssl->session_ctx;
// Rotate the ticket key if necessary.
if (!ssl_ctx_rotate_ticket_encryption_key(ctx)) {
return ssl_ticket_aead_error;
}
// Pick the matching ticket key and decrypt.
ScopedEVP_CIPHER_CTX cipher_ctx;
ScopedHMAC_CTX hmac_ctx;
{
MutexReadLock lock(&ctx->lock);
const tlsext_ticket_key *key;
if (ctx->tlsext_ticket_key_current &&
!OPENSSL_memcmp(ctx->tlsext_ticket_key_current->name, ticket,
SSL_TICKET_KEY_NAME_LEN)) {
key = ctx->tlsext_ticket_key_current;
} else if (ctx->tlsext_ticket_key_prev &&
!OPENSSL_memcmp(ctx->tlsext_ticket_key_prev->name, ticket,
SSL_TICKET_KEY_NAME_LEN)) {
key = ctx->tlsext_ticket_key_prev;
} else {
return ssl_ticket_aead_ignore_ticket;
}
const uint8_t *iv = ticket + SSL_TICKET_KEY_NAME_LEN;
if (!HMAC_Init_ex(hmac_ctx.get(), key->hmac_key, sizeof(key->hmac_key),
tlsext_tick_md(), NULL) ||
!EVP_DecryptInit_ex(cipher_ctx.get(), EVP_aes_128_cbc(), NULL,
key->aes_key, iv)) {
return ssl_ticket_aead_error;
}
}
return decrypt_ticket_with_cipher_ctx(out, out_len, cipher_ctx.get(),
hmac_ctx.get(), ticket, ticket_len);
}
static enum ssl_ticket_aead_result_t ssl_decrypt_ticket_with_method(
SSL *ssl, uint8_t **out, size_t *out_len, bool *out_renew_ticket,
const uint8_t *ticket, size_t ticket_len) {
uint8_t *plaintext = (uint8_t *)OPENSSL_malloc(ticket_len);
if (plaintext == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return ssl_ticket_aead_error;
}
size_t plaintext_len;
const enum ssl_ticket_aead_result_t result =
ssl->session_ctx->ticket_aead_method->open(
ssl, plaintext, &plaintext_len, ticket_len, ticket, ticket_len);
if (result == ssl_ticket_aead_success) {
*out = plaintext;
plaintext = NULL;
*out_len = plaintext_len;
}
OPENSSL_free(plaintext);
return result;
}
enum ssl_ticket_aead_result_t ssl_process_ticket(
SSL *ssl, UniquePtr<SSL_SESSION> *out_session, bool *out_renew_ticket,
const uint8_t *ticket, size_t ticket_len, const uint8_t *session_id,
size_t session_id_len) {
*out_renew_ticket = false;
out_session->reset();
if ((SSL_get_options(ssl) & SSL_OP_NO_TICKET) ||
session_id_len > SSL_MAX_SSL_SESSION_ID_LENGTH) {
return ssl_ticket_aead_ignore_ticket;
}
uint8_t *plaintext = NULL;
size_t plaintext_len;
enum ssl_ticket_aead_result_t result;
if (ssl->session_ctx->ticket_aead_method != NULL) {
result = ssl_decrypt_ticket_with_method(
ssl, &plaintext, &plaintext_len, out_renew_ticket, ticket, ticket_len);
} else {
// Ensure there is room for the key name and the largest IV
// |tlsext_ticket_key_cb| may try to consume. The real limit may be lower,
// but the maximum IV length should be well under the minimum size for the
// session material and HMAC.
if (ticket_len < SSL_TICKET_KEY_NAME_LEN + EVP_MAX_IV_LENGTH) {
return ssl_ticket_aead_ignore_ticket;
}
if (ssl->session_ctx->tlsext_ticket_key_cb != NULL) {
result = ssl_decrypt_ticket_with_cb(ssl, &plaintext, &plaintext_len,
out_renew_ticket, ticket, ticket_len);
} else {
result = ssl_decrypt_ticket_with_ticket_keys(
ssl, &plaintext, &plaintext_len, ticket, ticket_len);
}
}
if (result != ssl_ticket_aead_success) {
return result;
}
// Decode the session.
UniquePtr<SSL_SESSION> session(
SSL_SESSION_from_bytes(plaintext, plaintext_len, ssl->ctx));
OPENSSL_free(plaintext);
if (!session) {
ERR_clear_error(); // Don't leave an error on the queue.
return ssl_ticket_aead_ignore_ticket;
}
// Copy the client's session ID into the new session, to denote the ticket has
// been accepted.
OPENSSL_memcpy(session->session_id, session_id, session_id_len);
session->session_id_length = session_id_len;
*out_session = std::move(session);
return ssl_ticket_aead_success;
}
int tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *in_sigalgs) {
// Extension ignored for inappropriate versions
if (ssl3_protocol_version(hs->ssl) < TLS1_2_VERSION) {
return 1;
}
return parse_u16_array(in_sigalgs, &hs->peer_sigalgs);
}
int tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey) {
switch (EVP_PKEY_id(pkey)) {
case EVP_PKEY_RSA:
*out = SSL_SIGN_RSA_PKCS1_MD5_SHA1;
return 1;
case EVP_PKEY_EC:
*out = SSL_SIGN_ECDSA_SHA1;
return 1;
default:
return 0;
}
}
int tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out) {
SSL *const ssl = hs->ssl;
CERT *cert = ssl->cert;
// Before TLS 1.2, the signature algorithm isn't negotiated as part of the
// handshake.
if (ssl3_protocol_version(ssl) < TLS1_2_VERSION) {
if (!tls1_get_legacy_signature_algorithm(out, hs->local_pubkey.get())) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_COMMON_SIGNATURE_ALGORITHMS);
return 0;
}
return 1;
}
Span<const uint16_t> sigalgs = kSignSignatureAlgorithms;
if (cert->sigalgs != nullptr) {
sigalgs = MakeConstSpan(cert->sigalgs, cert->num_sigalgs);
}
Span<const uint16_t> peer_sigalgs = hs->peer_sigalgs;
if (peer_sigalgs.empty() && ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
// If the client didn't specify any signature_algorithms extension then
// we can assume that it supports SHA1. See
// http://tools.ietf.org/html/rfc5246#section-7.4.1.4.1
static const uint16_t kDefaultPeerAlgorithms[] = {SSL_SIGN_RSA_PKCS1_SHA1,
SSL_SIGN_ECDSA_SHA1};
peer_sigalgs = kDefaultPeerAlgorithms;
}
for (uint16_t sigalg : sigalgs) {
// SSL_SIGN_RSA_PKCS1_MD5_SHA1 is an internal value and should never be
// negotiated.
if (sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1 ||
!ssl_private_key_supports_signature_algorithm(hs, sigalg)) {
continue;
}
for (uint16_t peer_sigalg : peer_sigalgs) {
if (sigalg == peer_sigalg) {
*out = sigalg;
return 1;
}
}
}
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_COMMON_SIGNATURE_ALGORITHMS);
return 0;
}
int tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg) {
SSL *const ssl = hs->ssl;
// A Channel ID handshake message is structured to contain multiple
// extensions, but the only one that can be present is Channel ID.
uint16_t extension_type;
CBS channel_id = msg.body, extension;
if (!CBS_get_u16(&channel_id, &extension_type) ||
!CBS_get_u16_length_prefixed(&channel_id, &extension) ||
CBS_len(&channel_id) != 0 ||
extension_type != TLSEXT_TYPE_channel_id ||
CBS_len(&extension) != TLSEXT_CHANNEL_ID_SIZE) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return 0;
}
UniquePtr<EC_GROUP> p256(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1));
if (!p256) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_P256_SUPPORT);
return 0;
}
UniquePtr<ECDSA_SIG> sig(ECDSA_SIG_new());
UniquePtr<BIGNUM> x(BN_new()), y(BN_new());
if (!sig || !x || !y) {
return 0;
}
const uint8_t *p = CBS_data(&extension);
if (BN_bin2bn(p + 0, 32, x.get()) == NULL ||
BN_bin2bn(p + 32, 32, y.get()) == NULL ||
BN_bin2bn(p + 64, 32, sig->r) == NULL ||
BN_bin2bn(p + 96, 32, sig->s) == NULL) {
return 0;
}
UniquePtr<EC_KEY> key(EC_KEY_new());
UniquePtr<EC_POINT> point(EC_POINT_new(p256.get()));
if (!key || !point ||
!EC_POINT_set_affine_coordinates_GFp(p256.get(), point.get(), x.get(),
y.get(), nullptr) ||
!EC_KEY_set_group(key.get(), p256.get()) ||
!EC_KEY_set_public_key(key.get(), point.get())) {
return 0;
}
uint8_t digest[EVP_MAX_MD_SIZE];
size_t digest_len;
if (!tls1_channel_id_hash(hs, digest, &digest_len)) {
return 0;
}
int sig_ok = ECDSA_do_verify(digest, digest_len, sig.get(), key.get());
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
sig_ok = 1;
#endif
if (!sig_ok) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_SIGNATURE_INVALID);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
ssl->s3->tlsext_channel_id_valid = false;
return 0;
}
OPENSSL_memcpy(ssl->s3->tlsext_channel_id, p, 64);
return 1;
}
int tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb) {
SSL *const ssl = hs->ssl;
uint8_t digest[EVP_MAX_MD_SIZE];
size_t digest_len;
if (!tls1_channel_id_hash(hs, digest, &digest_len)) {
return 0;
}
EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(ssl->tlsext_channel_id_private);
if (ec_key == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
int ret = 0;
BIGNUM *x = BN_new();
BIGNUM *y = BN_new();
ECDSA_SIG *sig = NULL;
if (x == NULL || y == NULL ||
!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(ec_key),
EC_KEY_get0_public_key(ec_key),
x, y, NULL)) {
goto err;
}
sig = ECDSA_do_sign(digest, digest_len, ec_key);
if (sig == NULL) {
goto err;
}
CBB child;
if (!CBB_add_u16(cbb, TLSEXT_TYPE_channel_id) ||
!CBB_add_u16_length_prefixed(cbb, &child) ||
!BN_bn2cbb_padded(&child, 32, x) ||
!BN_bn2cbb_padded(&child, 32, y) ||
!BN_bn2cbb_padded(&child, 32, sig->r) ||
!BN_bn2cbb_padded(&child, 32, sig->s) ||
!CBB_flush(cbb)) {
goto err;
}
ret = 1;
err:
BN_free(x);
BN_free(y);
ECDSA_SIG_free(sig);
return ret;
}
int tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len) {
SSL *const ssl = hs->ssl;
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
uint8_t *msg;
size_t msg_len;
if (!tls13_get_cert_verify_signature_input(hs, &msg, &msg_len,
ssl_cert_verify_channel_id)) {
return 0;
}
SHA256(msg, msg_len, out);
*out_len = SHA256_DIGEST_LENGTH;
OPENSSL_free(msg);
return 1;
}
SHA256_CTX ctx;
SHA256_Init(&ctx);
static const char kClientIDMagic[] = "TLS Channel ID signature";
SHA256_Update(&ctx, kClientIDMagic, sizeof(kClientIDMagic));
if (ssl->session != NULL) {
static const char kResumptionMagic[] = "Resumption";
SHA256_Update(&ctx, kResumptionMagic, sizeof(kResumptionMagic));
if (ssl->session->original_handshake_hash_len == 0) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
SHA256_Update(&ctx, ssl->session->original_handshake_hash,
ssl->session->original_handshake_hash_len);
}
uint8_t hs_hash[EVP_MAX_MD_SIZE];
size_t hs_hash_len;
if (!hs->transcript.GetHash(hs_hash, &hs_hash_len)) {
return 0;
}
SHA256_Update(&ctx, hs_hash, (size_t)hs_hash_len);
SHA256_Final(out, &ctx);
*out_len = SHA256_DIGEST_LENGTH;
return 1;
}
// tls1_record_handshake_hashes_for_channel_id records the current handshake
// hashes in |hs->new_session| so that Channel ID resumptions can sign that
// data.
int tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
// This function should never be called for a resumed session because the
// handshake hashes that we wish to record are for the original, full
// handshake.
if (ssl->session != NULL) {
return 0;
}
static_assert(
sizeof(hs->new_session->original_handshake_hash) == EVP_MAX_MD_SIZE,
"original_handshake_hash is too small");
size_t digest_len;
if (!hs->transcript.GetHash(hs->new_session->original_handshake_hash,
&digest_len)) {
return 0;
}
static_assert(EVP_MAX_MD_SIZE <= 0xff,
"EVP_MAX_MD_SIZE does not fit in uint8_t");
hs->new_session->original_handshake_hash_len = (uint8_t)digest_len;
return 1;
}
int ssl_do_channel_id_callback(SSL *ssl) {
if (ssl->tlsext_channel_id_private != NULL ||
ssl->ctx->channel_id_cb == NULL) {
return 1;
}
EVP_PKEY *key = NULL;
ssl->ctx->channel_id_cb(ssl, &key);
if (key == NULL) {
// The caller should try again later.
return 1;
}
int ret = SSL_set1_tls_channel_id(ssl, key);
EVP_PKEY_free(key);
return ret;
}
int ssl_is_sct_list_valid(const CBS *contents) {
// Shallow parse the SCT list for sanity. By the RFC
// (https://tools.ietf.org/html/rfc6962#section-3.3) neither the list nor any
// of the SCTs may be empty.
CBS copy = *contents;
CBS sct_list;
if (!CBS_get_u16_length_prefixed(&copy, &sct_list) ||
CBS_len(&copy) != 0 ||
CBS_len(&sct_list) == 0) {
return 0;
}
while (CBS_len(&sct_list) > 0) {
CBS sct;
if (!CBS_get_u16_length_prefixed(&sct_list, &sct) ||
CBS_len(&sct) == 0) {
return 0;
}
}
return 1;
}
} // namespace bssl
using namespace bssl;
int SSL_early_callback_ctx_extension_get(const SSL_CLIENT_HELLO *client_hello,
uint16_t extension_type,
const uint8_t **out_data,
size_t *out_len) {
CBS cbs;
if (!ssl_client_hello_get_extension(client_hello, &cbs, extension_type)) {
return 0;
}
*out_data = CBS_data(&cbs);
*out_len = CBS_len(&cbs);
return 1;
}
void SSL_CTX_set_ed25519_enabled(SSL_CTX *ctx, int enabled) {
ctx->ed25519_enabled = !!enabled;
}
int SSL_extension_supported(unsigned extension_value) {
uint32_t index;
return extension_value == TLSEXT_TYPE_padding ||
tls_extension_find(&index, extension_value) != NULL;
}