boringssl/ssl/handshake_client.c
David Benjamin 786793411a Do not distinguish NULL and empty PSK identity hints.
Plain PSK omits the ServerKeyExchange when there is no hint and includes
it otherwise (it should have always sent it), while other PSK ciphers
like ECDHE_PSK cannot omit the hint. Having different capabilities here
is odd and RFC 4279 5.2 suggests that all PSK ciphers are capable of
"[not] provid[ing] an identity hint".

Interpret this to mean no identity hint and empty identity hint are the
same state. Annoyingly, this gives a plain PSK implementation two
options for spelling an empty hint. The spec isn't clear and this is not
really a battle worth fighting, so I've left both acceptable and added a
test for this case.

See also https://android-review.googlesource.com/c/275217/. This is also
consistent with Android's PskKeyManager API, our only consumer anyway.

https://developer.android.com/reference/android/net/PskKeyManager.html

Change-Id: I8a8e6cc1f7dd1b8b202cdaf3d4f151bebfb4a25b
Reviewed-on: https://boringssl-review.googlesource.com/11087
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-09-20 23:00:47 +00:00

1984 lines
62 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* ECC cipher suite support in OpenSSL originally written by
* Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/dh.h>
#include <openssl/ec_key.h>
#include <openssl/ecdsa.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include "internal.h"
static int ssl3_send_client_hello(SSL *ssl);
static int dtls1_get_hello_verify(SSL *ssl);
static int ssl3_get_server_hello(SSL *ssl);
static int ssl3_get_server_certificate(SSL *ssl);
static int ssl3_get_cert_status(SSL *ssl);
static int ssl3_verify_server_cert(SSL *ssl);
static int ssl3_get_server_key_exchange(SSL *ssl);
static int ssl3_get_certificate_request(SSL *ssl);
static int ssl3_get_server_hello_done(SSL *ssl);
static int ssl3_send_client_certificate(SSL *ssl);
static int ssl3_send_client_key_exchange(SSL *ssl);
static int ssl3_send_cert_verify(SSL *ssl);
static int ssl3_send_next_proto(SSL *ssl);
static int ssl3_send_channel_id(SSL *ssl);
static int ssl3_get_new_session_ticket(SSL *ssl);
int ssl3_connect(SSL *ssl) {
int ret = -1;
int state, skip = 0;
assert(ssl->handshake_func == ssl3_connect);
assert(!ssl->server);
for (;;) {
state = ssl->state;
switch (ssl->state) {
case SSL_ST_INIT:
ssl->state = SSL_ST_CONNECT;
skip = 1;
break;
case SSL_ST_CONNECT:
ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_START, 1);
ssl->s3->hs = ssl_handshake_new(tls13_client_handshake);
if (ssl->s3->hs == NULL) {
ret = -1;
goto end;
}
if (!ssl_init_wbio_buffer(ssl)) {
ret = -1;
goto end;
}
ssl->state = SSL3_ST_CW_CLNT_HELLO_A;
break;
case SSL3_ST_CW_CLNT_HELLO_A:
case SSL3_ST_CW_CLNT_HELLO_B:
ret = ssl3_send_client_hello(ssl);
if (ret <= 0) {
goto end;
}
if (!SSL_is_dtls(ssl) || ssl->d1->send_cookie) {
ssl->s3->tmp.next_state = SSL3_ST_CR_SRVR_HELLO_A;
} else {
ssl->s3->tmp.next_state = DTLS1_ST_CR_HELLO_VERIFY_REQUEST_A;
}
ssl->state = SSL3_ST_CW_FLUSH;
break;
case DTLS1_ST_CR_HELLO_VERIFY_REQUEST_A:
assert(SSL_is_dtls(ssl));
ret = dtls1_get_hello_verify(ssl);
if (ret <= 0) {
goto end;
}
if (ssl->d1->send_cookie) {
ssl->method->received_flight(ssl);
ssl->state = SSL3_ST_CW_CLNT_HELLO_A;
} else {
ssl->state = SSL3_ST_CR_SRVR_HELLO_A;
}
break;
case SSL3_ST_CR_SRVR_HELLO_A:
ret = ssl3_get_server_hello(ssl);
if (ssl->state == SSL_ST_TLS13) {
break;
}
if (ret <= 0) {
goto end;
}
if (ssl->session != NULL) {
ssl->state = SSL3_ST_CR_SESSION_TICKET_A;
} else {
ssl->state = SSL3_ST_CR_CERT_A;
}
break;
case SSL3_ST_CR_CERT_A:
if (ssl_cipher_uses_certificate_auth(ssl->s3->tmp.new_cipher)) {
ret = ssl3_get_server_certificate(ssl);
if (ret <= 0) {
goto end;
}
} else {
skip = 1;
}
ssl->state = SSL3_ST_CR_CERT_STATUS_A;
break;
case SSL3_ST_CR_CERT_STATUS_A:
if (ssl->s3->tmp.certificate_status_expected) {
ret = ssl3_get_cert_status(ssl);
if (ret <= 0) {
goto end;
}
} else {
skip = 1;
}
ssl->state = SSL3_ST_VERIFY_SERVER_CERT;
break;
case SSL3_ST_VERIFY_SERVER_CERT:
if (ssl_cipher_uses_certificate_auth(ssl->s3->tmp.new_cipher)) {
ret = ssl3_verify_server_cert(ssl);
if (ret <= 0) {
goto end;
}
} else {
skip = 1;
}
ssl->state = SSL3_ST_CR_KEY_EXCH_A;
break;
case SSL3_ST_CR_KEY_EXCH_A:
ret = ssl3_get_server_key_exchange(ssl);
if (ret <= 0) {
goto end;
}
ssl->state = SSL3_ST_CR_CERT_REQ_A;
break;
case SSL3_ST_CR_CERT_REQ_A:
if (ssl_cipher_uses_certificate_auth(ssl->s3->tmp.new_cipher)) {
ret = ssl3_get_certificate_request(ssl);
if (ret <= 0) {
goto end;
}
} else {
skip = 1;
}
ssl->state = SSL3_ST_CR_SRVR_DONE_A;
break;
case SSL3_ST_CR_SRVR_DONE_A:
ret = ssl3_get_server_hello_done(ssl);
if (ret <= 0) {
goto end;
}
ssl->method->received_flight(ssl);
ssl->state = SSL3_ST_CW_CERT_A;
break;
case SSL3_ST_CW_CERT_A:
case SSL3_ST_CW_CERT_B:
case SSL3_ST_CW_CERT_C:
if (ssl->s3->tmp.cert_request) {
ret = ssl3_send_client_certificate(ssl);
if (ret <= 0) {
goto end;
}
} else {
skip = 1;
}
ssl->state = SSL3_ST_CW_KEY_EXCH_A;
break;
case SSL3_ST_CW_KEY_EXCH_A:
case SSL3_ST_CW_KEY_EXCH_B:
ret = ssl3_send_client_key_exchange(ssl);
if (ret <= 0) {
goto end;
}
ssl->state = SSL3_ST_CW_CERT_VRFY_A;
break;
case SSL3_ST_CW_CERT_VRFY_A:
case SSL3_ST_CW_CERT_VRFY_B:
case SSL3_ST_CW_CERT_VRFY_C:
if (ssl->s3->tmp.cert_request) {
ret = ssl3_send_cert_verify(ssl);
if (ret <= 0) {
goto end;
}
} else {
skip = 1;
}
ssl->state = SSL3_ST_CW_CHANGE;
break;
case SSL3_ST_CW_CHANGE:
ret = ssl->method->send_change_cipher_spec(ssl);
if (ret <= 0) {
goto end;
}
ssl->state = SSL3_ST_CW_NEXT_PROTO_A;
if (!tls1_change_cipher_state(ssl, SSL3_CHANGE_CIPHER_CLIENT_WRITE)) {
ret = -1;
goto end;
}
break;
case SSL3_ST_CW_NEXT_PROTO_A:
case SSL3_ST_CW_NEXT_PROTO_B:
if (ssl->s3->next_proto_neg_seen) {
ret = ssl3_send_next_proto(ssl);
if (ret <= 0) {
goto end;
}
} else {
skip = 1;
}
ssl->state = SSL3_ST_CW_CHANNEL_ID_A;
break;
case SSL3_ST_CW_CHANNEL_ID_A:
case SSL3_ST_CW_CHANNEL_ID_B:
if (ssl->s3->tlsext_channel_id_valid) {
ret = ssl3_send_channel_id(ssl);
if (ret <= 0) {
goto end;
}
} else {
skip = 1;
}
ssl->state = SSL3_ST_CW_FINISHED_A;
break;
case SSL3_ST_CW_FINISHED_A:
case SSL3_ST_CW_FINISHED_B:
ret = ssl3_send_finished(ssl, SSL3_ST_CW_FINISHED_A,
SSL3_ST_CW_FINISHED_B);
if (ret <= 0) {
goto end;
}
ssl->state = SSL3_ST_CW_FLUSH;
if (ssl->session != NULL) {
ssl->s3->tmp.next_state = SSL_ST_OK;
} else {
/* This is a non-resumption handshake. If it involves ChannelID, then
* record the handshake hashes at this point in the session so that
* any resumption of this session with ChannelID can sign those
* hashes. */
ret = tls1_record_handshake_hashes_for_channel_id(ssl);
if (ret <= 0) {
goto end;
}
if ((SSL_get_mode(ssl) & SSL_MODE_ENABLE_FALSE_START) &&
ssl3_can_false_start(ssl) &&
/* No False Start on renegotiation (would complicate the state
* machine). */
!ssl->s3->initial_handshake_complete) {
ssl->s3->tmp.next_state = SSL3_ST_FALSE_START;
} else {
ssl->s3->tmp.next_state = SSL3_ST_CR_SESSION_TICKET_A;
}
}
break;
case SSL3_ST_FALSE_START:
ssl->state = SSL3_ST_CR_SESSION_TICKET_A;
ssl->s3->tmp.in_false_start = 1;
ssl_free_wbio_buffer(ssl);
ret = 1;
goto end;
case SSL3_ST_CR_SESSION_TICKET_A:
if (ssl->tlsext_ticket_expected) {
ret = ssl3_get_new_session_ticket(ssl);
if (ret <= 0) {
goto end;
}
} else {
skip = 1;
}
ssl->state = SSL3_ST_CR_CHANGE;
break;
case SSL3_ST_CR_CHANGE:
ret = ssl->method->read_change_cipher_spec(ssl);
if (ret <= 0) {
goto end;
}
if (!tls1_change_cipher_state(ssl, SSL3_CHANGE_CIPHER_CLIENT_READ)) {
ret = -1;
goto end;
}
ssl->state = SSL3_ST_CR_FINISHED_A;
break;
case SSL3_ST_CR_FINISHED_A:
ret = ssl3_get_finished(ssl);
if (ret <= 0) {
goto end;
}
ssl->method->received_flight(ssl);
if (ssl->session != NULL) {
ssl->state = SSL3_ST_CW_CHANGE;
} else {
ssl->state = SSL_ST_OK;
}
break;
case SSL3_ST_CW_FLUSH:
if (BIO_flush(ssl->wbio) <= 0) {
ssl->rwstate = SSL_WRITING;
ret = -1;
goto end;
}
ssl->state = ssl->s3->tmp.next_state;
if (ssl->state != SSL_ST_OK) {
ssl->method->expect_flight(ssl);
}
break;
case SSL_ST_TLS13:
ret = tls13_handshake(ssl);
if (ret <= 0) {
goto end;
}
ssl->state = SSL_ST_OK;
break;
case SSL_ST_OK:
/* Clean a few things up. */
ssl3_cleanup_key_block(ssl);
ssl->method->release_current_message(ssl, 1 /* free_buffer */);
SSL_SESSION_free(ssl->s3->established_session);
if (ssl->session != NULL) {
SSL_SESSION_up_ref(ssl->session);
ssl->s3->established_session = ssl->session;
} else {
/* We make a copy of the session in order to maintain the immutability
* of the new established_session due to False Start. The caller may
* have taken a reference to the temporary session. */
ssl->s3->established_session =
SSL_SESSION_dup(ssl->s3->new_session, SSL_SESSION_DUP_ALL);
if (ssl->s3->established_session == NULL) {
/* Do not stay in SSL_ST_OK, to avoid confusing |SSL_in_init|
* callers. */
ssl->state = SSL_ST_ERROR;
skip = 1;
ret = -1;
goto end;
}
ssl->s3->established_session->not_resumable = 0;
SSL_SESSION_free(ssl->s3->new_session);
ssl->s3->new_session = NULL;
}
/* Remove write buffering now. */
ssl_free_wbio_buffer(ssl);
ssl_handshake_free(ssl->s3->hs);
ssl->s3->hs = NULL;
const int is_initial_handshake = !ssl->s3->initial_handshake_complete;
ssl->s3->tmp.in_false_start = 0;
ssl->s3->initial_handshake_complete = 1;
if (is_initial_handshake) {
/* Renegotiations do not participate in session resumption. */
ssl_update_cache(ssl, SSL_SESS_CACHE_CLIENT);
}
ret = 1;
ssl_do_info_callback(ssl, SSL_CB_HANDSHAKE_DONE, 1);
goto end;
case SSL_ST_ERROR:
OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE);
ret = -1;
goto end;
default:
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_STATE);
ret = -1;
goto end;
}
if (!ssl->s3->tmp.reuse_message && !skip && ssl->state != state) {
int new_state = ssl->state;
ssl->state = state;
ssl_do_info_callback(ssl, SSL_CB_CONNECT_LOOP, 1);
ssl->state = new_state;
}
skip = 0;
}
end:
ssl_do_info_callback(ssl, SSL_CB_CONNECT_EXIT, ret);
return ret;
}
static int ssl_write_client_cipher_list(SSL *ssl, CBB *out,
uint16_t min_version,
uint16_t max_version,
uint16_t real_max_version) {
/* Prepare disabled cipher masks. */
ssl_set_client_disabled(ssl);
CBB child;
if (!CBB_add_u16_length_prefixed(out, &child)) {
return 0;
}
STACK_OF(SSL_CIPHER) *ciphers = SSL_get_ciphers(ssl);
int any_enabled = 0;
for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i);
/* Skip disabled ciphers */
if ((cipher->algorithm_mkey & ssl->cert->mask_k) ||
(cipher->algorithm_auth & ssl->cert->mask_a)) {
continue;
}
if (SSL_CIPHER_get_min_version(cipher) > max_version ||
SSL_CIPHER_get_max_version(cipher) < min_version) {
continue;
}
any_enabled = 1;
if (!CBB_add_u16(&child, ssl_cipher_get_value(cipher))) {
return 0;
}
/* Add PSK ciphers for TLS 1.3 resumption. */
if (ssl->session != NULL &&
ssl->method->version_from_wire(ssl->session->ssl_version) >=
TLS1_3_VERSION) {
uint16_t resumption_cipher;
if (ssl_cipher_get_ecdhe_psk_cipher(cipher, &resumption_cipher) &&
!CBB_add_u16(&child, resumption_cipher)) {
return 0;
}
}
}
/* If all ciphers were disabled, return the error to the caller. */
if (!any_enabled) {
OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_AVAILABLE);
return 0;
}
/* For SSLv3, the SCSV is added. Otherwise the renegotiation extension is
* added. */
if (ssl->client_version == SSL3_VERSION &&
!ssl->s3->initial_handshake_complete) {
if (!CBB_add_u16(&child, SSL3_CK_SCSV & 0xffff)) {
return 0;
}
}
if ((ssl->mode & SSL_MODE_SEND_FALLBACK_SCSV) ||
real_max_version > max_version) {
if (!CBB_add_u16(&child, SSL3_CK_FALLBACK_SCSV & 0xffff)) {
return 0;
}
}
return CBB_flush(out);
}
int ssl_add_client_hello_body(SSL *ssl, CBB *body) {
uint16_t min_version, max_version, real_max_version;
if (!ssl_get_full_version_range(ssl, &min_version, &max_version,
&real_max_version)) {
return 0;
}
/* Renegotiations do not participate in session resumption. */
int has_session = ssl->session != NULL &&
!ssl->s3->initial_handshake_complete;
CBB child;
if (!CBB_add_u16(body, ssl->client_version) ||
!CBB_add_bytes(body, ssl->s3->client_random, SSL3_RANDOM_SIZE) ||
!CBB_add_u8_length_prefixed(body, &child) ||
(has_session &&
!CBB_add_bytes(&child, ssl->session->session_id,
ssl->session->session_id_length))) {
return 0;
}
if (SSL_is_dtls(ssl)) {
if (!CBB_add_u8_length_prefixed(body, &child) ||
!CBB_add_bytes(&child, ssl->d1->cookie, ssl->d1->cookie_len)) {
return 0;
}
}
size_t header_len =
SSL_is_dtls(ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH;
if (!ssl_write_client_cipher_list(ssl, body, min_version, max_version,
real_max_version) ||
!CBB_add_u8(body, 1 /* one compression method */) ||
!CBB_add_u8(body, 0 /* null compression */) ||
!ssl_add_clienthello_tlsext(ssl, body, header_len + CBB_len(body))) {
return 0;
}
return 1;
}
static int ssl3_send_client_hello(SSL *ssl) {
if (ssl->state == SSL3_ST_CW_CLNT_HELLO_B) {
return ssl->method->write_message(ssl);
}
/* The handshake buffer is reset on every ClientHello. Notably, in DTLS, we
* may send multiple ClientHellos if we receive HelloVerifyRequest. */
if (!ssl3_init_handshake_buffer(ssl)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return -1;
}
CBB cbb;
CBB_zero(&cbb);
uint16_t min_version, max_version;
if (!ssl_get_version_range(ssl, &min_version, &max_version)) {
goto err;
}
assert(ssl->state == SSL3_ST_CW_CLNT_HELLO_A);
if (!ssl->s3->have_version) {
ssl->version = ssl->method->version_to_wire(max_version);
/* Only set |ssl->client_version| on the initial handshake. Renegotiations,
* although locked to a version, reuse the value. When using the plain RSA
* key exchange, the ClientHello version is checked in the premaster secret.
* Some servers fail when this value changes. */
ssl->client_version = ssl->version;
}
/* If the configured session has expired or was created at a disabled
* version, drop it. */
if (ssl->session != NULL) {
uint16_t session_version =
ssl->method->version_from_wire(ssl->session->ssl_version);
if ((session_version < TLS1_3_VERSION &&
ssl->session->session_id_length == 0) ||
ssl->session->not_resumable ||
!ssl_session_is_time_valid(ssl, ssl->session) ||
session_version < min_version || session_version > max_version) {
ssl_set_session(ssl, NULL);
}
}
/* If resending the ClientHello in DTLS after a HelloVerifyRequest, don't
* renegerate the client_random. The random must be reused. */
if ((!SSL_is_dtls(ssl) || !ssl->d1->send_cookie) &&
!RAND_bytes(ssl->s3->client_random, sizeof(ssl->s3->client_random))) {
goto err;
}
CBB body;
if (!ssl->method->init_message(ssl, &cbb, &body, SSL3_MT_CLIENT_HELLO) ||
!ssl_add_client_hello_body(ssl, &body) ||
!ssl->method->finish_message(ssl, &cbb)) {
goto err;
}
ssl->state = SSL3_ST_CW_CLNT_HELLO_B;
return ssl->method->write_message(ssl);
err:
CBB_cleanup(&cbb);
return -1;
}
static int dtls1_get_hello_verify(SSL *ssl) {
int al;
CBS hello_verify_request, cookie;
uint16_t server_version;
int ret = ssl->method->ssl_get_message(ssl, -1, ssl_hash_message);
if (ret <= 0) {
return ret;
}
if (ssl->s3->tmp.message_type != DTLS1_MT_HELLO_VERIFY_REQUEST) {
ssl->d1->send_cookie = 0;
ssl->s3->tmp.reuse_message = 1;
return 1;
}
CBS_init(&hello_verify_request, ssl->init_msg, ssl->init_num);
if (!CBS_get_u16(&hello_verify_request, &server_version) ||
!CBS_get_u8_length_prefixed(&hello_verify_request, &cookie) ||
CBS_len(&hello_verify_request) != 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (CBS_len(&cookie) > sizeof(ssl->d1->cookie)) {
al = SSL_AD_ILLEGAL_PARAMETER;
goto f_err;
}
memcpy(ssl->d1->cookie, CBS_data(&cookie), CBS_len(&cookie));
ssl->d1->cookie_len = CBS_len(&cookie);
ssl->d1->send_cookie = 1;
return 1;
f_err:
ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
return -1;
}
static int ssl3_get_server_hello(SSL *ssl) {
STACK_OF(SSL_CIPHER) *sk;
const SSL_CIPHER *c;
CERT *ct = ssl->cert;
int al = SSL_AD_INTERNAL_ERROR;
CBS server_hello, server_random, session_id;
uint16_t server_wire_version, server_version, cipher_suite;
uint8_t compression_method;
int ret = ssl->method->ssl_get_message(ssl, -1, ssl_hash_message);
if (ret <= 0) {
uint32_t err = ERR_peek_error();
if (ERR_GET_LIB(err) == ERR_LIB_SSL &&
ERR_GET_REASON(err) == SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE) {
/* Add a dedicated error code to the queue for a handshake_failure alert
* in response to ClientHello. This matches NSS's client behavior and
* gives a better error on a (probable) failure to negotiate initial
* parameters. Note: this error code comes after the original one.
*
* See https://crbug.com/446505. */
OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_FAILURE_ON_CLIENT_HELLO);
}
return ret;
}
if (ssl->s3->tmp.message_type != SSL3_MT_SERVER_HELLO &&
ssl->s3->tmp.message_type != SSL3_MT_HELLO_RETRY_REQUEST) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
return -1;
}
CBS_init(&server_hello, ssl->init_msg, ssl->init_num);
if (!CBS_get_u16(&server_hello, &server_wire_version)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
server_version = ssl->method->version_from_wire(server_wire_version);
uint16_t min_version, max_version, real_max_version;
if (!ssl_get_full_version_range(ssl, &min_version, &max_version,
&real_max_version) ||
server_version < min_version || server_version > max_version) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL);
al = SSL_AD_PROTOCOL_VERSION;
goto f_err;
}
assert(ssl->s3->have_version == ssl->s3->initial_handshake_complete);
if (!ssl->s3->have_version) {
ssl->version = server_wire_version;
ssl->s3->enc_method = ssl3_get_enc_method(server_version);
assert(ssl->s3->enc_method != NULL);
/* At this point, the connection's version is known and ssl->version is
* fixed. Begin enforcing the record-layer version. */
ssl->s3->have_version = 1;
} else if (server_wire_version != ssl->version) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
al = SSL_AD_PROTOCOL_VERSION;
goto f_err;
}
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
ssl->state = SSL_ST_TLS13;
return 1;
}
ssl_clear_tls13_state(ssl);
if (ssl->s3->tmp.message_type != SSL3_MT_SERVER_HELLO) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
return -1;
}
if (!CBS_get_bytes(&server_hello, &server_random, SSL3_RANDOM_SIZE) ||
!CBS_get_u8_length_prefixed(&server_hello, &session_id) ||
CBS_len(&session_id) > SSL3_SESSION_ID_SIZE ||
!CBS_get_u16(&server_hello, &cipher_suite) ||
!CBS_get_u8(&server_hello, &compression_method)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
/* Copy over the server random. */
memcpy(ssl->s3->server_random, CBS_data(&server_random), SSL3_RANDOM_SIZE);
/* TODO(davidben): Implement the TLS 1.1 and 1.2 downgrade sentinels once TLS
* 1.3 is finalized and we are not implementing a draft version. */
if (!ssl->s3->initial_handshake_complete && ssl->session != NULL &&
ssl->session->session_id_length != 0 &&
CBS_mem_equal(&session_id, ssl->session->session_id,
ssl->session->session_id_length)) {
ssl->s3->session_reused = 1;
} else {
/* The session wasn't resumed. Create a fresh SSL_SESSION to
* fill out. */
ssl_set_session(ssl, NULL);
if (!ssl_get_new_session(ssl, 0 /* client */)) {
goto f_err;
}
/* Note: session_id could be empty. */
ssl->s3->new_session->session_id_length = CBS_len(&session_id);
memcpy(ssl->s3->new_session->session_id, CBS_data(&session_id),
CBS_len(&session_id));
}
c = SSL_get_cipher_by_value(cipher_suite);
if (c == NULL) {
/* unknown cipher */
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CIPHER_RETURNED);
goto f_err;
}
/* If the cipher is disabled then we didn't sent it in the ClientHello, so if
* the server selected it, it's an error. */
if ((c->algorithm_mkey & ct->mask_k) || (c->algorithm_auth & ct->mask_a) ||
SSL_CIPHER_get_min_version(c) > ssl3_protocol_version(ssl) ||
SSL_CIPHER_get_max_version(c) < ssl3_protocol_version(ssl)) {
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
goto f_err;
}
sk = ssl_get_ciphers_by_id(ssl);
if (!sk_SSL_CIPHER_find(sk, NULL, c)) {
/* we did not say we would use this cipher */
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
goto f_err;
}
if (ssl->session != NULL) {
if (ssl->session->cipher != c) {
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED);
goto f_err;
}
if (ssl->session->ssl_version != ssl->version) {
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED);
goto f_err;
}
if (!ssl_session_is_context_valid(ssl, ssl->session)) {
/* This is actually a client application bug. */
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL,
SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT);
goto f_err;
}
} else {
ssl->s3->new_session->cipher = c;
}
ssl->s3->tmp.new_cipher = c;
/* Now that the cipher is known, initialize the handshake hash. */
if (!ssl3_init_handshake_hash(ssl)) {
goto f_err;
}
/* If doing a full handshake, the server may request a client certificate
* which requires hashing the handshake transcript. Otherwise, the handshake
* buffer may be released. */
if (ssl->session != NULL ||
!ssl_cipher_uses_certificate_auth(ssl->s3->tmp.new_cipher)) {
ssl3_free_handshake_buffer(ssl);
}
/* Only the NULL compression algorithm is supported. */
if (compression_method != 0) {
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
goto f_err;
}
/* TLS extensions */
if (!ssl_parse_serverhello_tlsext(ssl, &server_hello)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
goto err;
}
/* There should be nothing left over in the record. */
if (CBS_len(&server_hello) != 0) {
/* wrong packet length */
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (ssl->session != NULL &&
ssl->s3->tmp.extended_master_secret !=
ssl->session->extended_master_secret) {
al = SSL_AD_HANDSHAKE_FAILURE;
if (ssl->session->extended_master_secret) {
OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION);
} else {
OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_NON_EMS_SESSION_WITH_EMS_EXTENSION);
}
goto f_err;
}
return 1;
f_err:
ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
err:
return -1;
}
static int ssl3_get_server_certificate(SSL *ssl) {
int ret =
ssl->method->ssl_get_message(ssl, SSL3_MT_CERTIFICATE, ssl_hash_message);
if (ret <= 0) {
return ret;
}
CBS cbs;
CBS_init(&cbs, ssl->init_msg, ssl->init_num);
uint8_t alert;
STACK_OF(X509) *chain = ssl_parse_cert_chain(ssl, &alert, NULL, &cbs);
if (chain == NULL) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
goto err;
}
if (sk_X509_num(chain) == 0 || CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
goto err;
}
X509 *leaf = sk_X509_value(chain, 0);
if (!ssl_check_leaf_certificate(ssl, leaf)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
goto err;
}
/* NOTE: Unlike the server half, the client's copy of |cert_chain| includes
* the leaf. */
sk_X509_pop_free(ssl->s3->new_session->cert_chain, X509_free);
ssl->s3->new_session->cert_chain = chain;
X509_free(ssl->s3->new_session->peer);
X509_up_ref(leaf);
ssl->s3->new_session->peer = leaf;
return 1;
err:
sk_X509_pop_free(chain, X509_free);
return -1;
}
static int ssl3_get_cert_status(SSL *ssl) {
int al;
CBS certificate_status, ocsp_response;
uint8_t status_type;
int ret = ssl->method->ssl_get_message(ssl, -1, ssl_hash_message);
if (ret <= 0) {
return ret;
}
if (ssl->s3->tmp.message_type != SSL3_MT_CERTIFICATE_STATUS) {
/* A server may send status_request in ServerHello and then change
* its mind about sending CertificateStatus. */
ssl->s3->tmp.reuse_message = 1;
return 1;
}
CBS_init(&certificate_status, ssl->init_msg, ssl->init_num);
if (!CBS_get_u8(&certificate_status, &status_type) ||
status_type != TLSEXT_STATUSTYPE_ocsp ||
!CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) ||
CBS_len(&ocsp_response) == 0 ||
CBS_len(&certificate_status) != 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (!CBS_stow(&ocsp_response, &ssl->s3->new_session->ocsp_response,
&ssl->s3->new_session->ocsp_response_length)) {
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto f_err;
}
return 1;
f_err:
ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
return -1;
}
static int ssl3_verify_server_cert(SSL *ssl) {
if (!ssl_verify_cert_chain(ssl, &ssl->s3->new_session->verify_result,
ssl->s3->new_session->cert_chain)) {
return -1;
}
return 1;
}
static int ssl3_get_server_key_exchange(SSL *ssl) {
int al;
EVP_PKEY *pkey = NULL;
DH *dh = NULL;
EC_KEY *ecdh = NULL;
EC_POINT *srvr_ecpoint = NULL;
int ret = ssl->method->ssl_get_message(ssl, -1, ssl_hash_message);
if (ret <= 0) {
return ret;
}
if (ssl->s3->tmp.message_type != SSL3_MT_SERVER_KEY_EXCHANGE) {
/* Some ciphers (pure PSK) have an optional ServerKeyExchange message. */
if (ssl_cipher_requires_server_key_exchange(ssl->s3->tmp.new_cipher)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
return -1;
}
ssl->s3->tmp.reuse_message = 1;
return 1;
}
/* Retain a copy of the original CBS to compute the signature over. */
CBS server_key_exchange;
CBS_init(&server_key_exchange, ssl->init_msg, ssl->init_num);
CBS server_key_exchange_orig = server_key_exchange;
uint32_t alg_k = ssl->s3->tmp.new_cipher->algorithm_mkey;
uint32_t alg_a = ssl->s3->tmp.new_cipher->algorithm_auth;
if (alg_a & SSL_aPSK) {
CBS psk_identity_hint;
/* Each of the PSK key exchanges begins with a psk_identity_hint. */
if (!CBS_get_u16_length_prefixed(&server_key_exchange,
&psk_identity_hint)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
/* Store PSK identity hint for later use, hint is used in
* ssl3_send_client_key_exchange. Assume that the maximum length of a PSK
* identity hint can be as long as the maximum length of a PSK identity.
* Also do not allow NULL characters; identities are saved as C strings.
*
* TODO(davidben): Should invalid hints be ignored? It's a hint rather than
* a specific identity. */
if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN ||
CBS_contains_zero_byte(&psk_identity_hint)) {
al = SSL_AD_HANDSHAKE_FAILURE;
OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
goto f_err;
}
/* Save non-empty identity hints as a C string. Empty identity hints we
* treat as missing. Plain PSK makes it possible to send either no hint
* (omit ServerKeyExchange) or an empty hint, while ECDHE_PSK can only spell
* empty hint. Having different capabilities is odd, so we interpret empty
* and missing as identical. */
if (CBS_len(&psk_identity_hint) != 0 &&
!CBS_strdup(&psk_identity_hint, &ssl->s3->hs->peer_psk_identity_hint)) {
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto f_err;
}
}
if (alg_k & SSL_kDHE) {
CBS dh_p, dh_g, dh_Ys;
if (!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_p) ||
CBS_len(&dh_p) == 0 ||
!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_g) ||
CBS_len(&dh_g) == 0 ||
!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_Ys) ||
CBS_len(&dh_Ys) == 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
dh = DH_new();
if (dh == NULL) {
goto err;
}
dh->p = BN_bin2bn(CBS_data(&dh_p), CBS_len(&dh_p), NULL);
dh->g = BN_bin2bn(CBS_data(&dh_g), CBS_len(&dh_g), NULL);
if (dh->p == NULL || dh->g == NULL) {
goto err;
}
ssl->s3->new_session->key_exchange_info = DH_num_bits(dh);
if (ssl->s3->new_session->key_exchange_info < 1024) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_DH_P_LENGTH);
goto err;
} else if (ssl->s3->new_session->key_exchange_info > 4096) {
/* Overly large DHE groups are prohibitively expensive, so enforce a limit
* to prevent a server from causing us to perform too expensive of a
* computation. */
OPENSSL_PUT_ERROR(SSL, SSL_R_DH_P_TOO_LONG);
goto err;
}
SSL_ECDH_CTX_init_for_dhe(&ssl->s3->tmp.ecdh_ctx, dh);
dh = NULL;
/* Save the peer public key for later. */
size_t peer_key_len;
if (!CBS_stow(&dh_Ys, &ssl->s3->tmp.peer_key, &peer_key_len)) {
goto err;
}
/* |dh_Ys| was initialized with CBS_get_u16_length_prefixed, so peer_key_len
* fits in a uint16_t. */
assert(sizeof(ssl->s3->tmp.peer_key_len) == 2 && peer_key_len <= 0xffff);
ssl->s3->tmp.peer_key_len = (uint16_t)peer_key_len;
} else if (alg_k & SSL_kECDHE) {
/* Parse the server parameters. */
uint8_t group_type;
uint16_t group_id;
CBS point;
if (!CBS_get_u8(&server_key_exchange, &group_type) ||
group_type != NAMED_CURVE_TYPE ||
!CBS_get_u16(&server_key_exchange, &group_id) ||
!CBS_get_u8_length_prefixed(&server_key_exchange, &point)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
ssl->s3->new_session->key_exchange_info = group_id;
/* Ensure the group is consistent with preferences. */
if (!tls1_check_group_id(ssl, group_id)) {
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
goto f_err;
}
/* Initialize ECDH and save the peer public key for later. */
size_t peer_key_len;
if (!SSL_ECDH_CTX_init(&ssl->s3->tmp.ecdh_ctx, group_id) ||
!CBS_stow(&point, &ssl->s3->tmp.peer_key, &peer_key_len)) {
goto err;
}
/* |point| was initialized with CBS_get_u8_length_prefixed, so peer_key_len
* fits in a uint16_t. */
assert(sizeof(ssl->s3->tmp.peer_key_len) == 2 && peer_key_len <= 0xffff);
ssl->s3->tmp.peer_key_len = (uint16_t)peer_key_len;
} else if (alg_k & SSL_kCECPQ1) {
SSL_ECDH_CTX_init_for_cecpq1(&ssl->s3->tmp.ecdh_ctx);
CBS key;
if (!CBS_get_u16_length_prefixed(&server_key_exchange, &key)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
size_t peer_key_len;
if (!CBS_stow(&key, &ssl->s3->tmp.peer_key, &peer_key_len)) {
goto err;
}
/* |key| was initialized with CBS_get_u16_length_prefixed, so peer_key_len
* fits in a uint16_t. */
assert(sizeof(ssl->s3->tmp.peer_key_len) == 2 && peer_key_len <= 0xffff);
ssl->s3->tmp.peer_key_len = (uint16_t)peer_key_len;
} else if (!(alg_k & SSL_kPSK)) {
al = SSL_AD_UNEXPECTED_MESSAGE;
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
goto f_err;
}
/* At this point, |server_key_exchange| contains the signature, if any, while
* |server_key_exchange_orig| contains the entire message. From that, derive
* a CBS containing just the parameter. */
CBS parameter;
CBS_init(&parameter, CBS_data(&server_key_exchange_orig),
CBS_len(&server_key_exchange_orig) - CBS_len(&server_key_exchange));
/* ServerKeyExchange should be signed by the server's public key. */
if (ssl_cipher_uses_certificate_auth(ssl->s3->tmp.new_cipher)) {
pkey = X509_get_pubkey(ssl->s3->new_session->peer);
if (pkey == NULL) {
goto err;
}
uint16_t signature_algorithm = 0;
if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) {
if (!CBS_get_u16(&server_key_exchange, &signature_algorithm)) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
if (!tls12_check_peer_sigalg(ssl, &al, signature_algorithm)) {
goto f_err;
}
ssl->s3->tmp.peer_signature_algorithm = signature_algorithm;
} else if (pkey->type == EVP_PKEY_RSA) {
signature_algorithm = SSL_SIGN_RSA_PKCS1_MD5_SHA1;
} else if (pkey->type == EVP_PKEY_EC) {
signature_algorithm = SSL_SIGN_ECDSA_SHA1;
} else {
al = SSL_AD_UNSUPPORTED_CERTIFICATE;
OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE);
goto f_err;
}
/* The last field in |server_key_exchange| is the signature. */
CBS signature;
if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) ||
CBS_len(&server_key_exchange) != 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
goto f_err;
}
CBB transcript;
uint8_t *transcript_data;
size_t transcript_len;
if (!CBB_init(&transcript, 2*SSL3_RANDOM_SIZE + CBS_len(&parameter)) ||
!CBB_add_bytes(&transcript, ssl->s3->client_random, SSL3_RANDOM_SIZE) ||
!CBB_add_bytes(&transcript, ssl->s3->server_random, SSL3_RANDOM_SIZE) ||
!CBB_add_bytes(&transcript, CBS_data(&parameter), CBS_len(&parameter)) ||
!CBB_finish(&transcript, &transcript_data, &transcript_len)) {
CBB_cleanup(&transcript);
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto f_err;
}
int sig_ok = ssl_public_key_verify(
ssl, CBS_data(&signature), CBS_len(&signature), signature_algorithm,
pkey, transcript_data, transcript_len);
OPENSSL_free(transcript_data);
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
sig_ok = 1;
ERR_clear_error();
#endif
if (!sig_ok) {
/* bad signature */
al = SSL_AD_DECRYPT_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE);
goto f_err;
}
} else {
/* PSK ciphers are the only supported certificate-less ciphers. */
assert(alg_a == SSL_aPSK);
if (CBS_len(&server_key_exchange) > 0) {
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, SSL_R_EXTRA_DATA_IN_MESSAGE);
goto f_err;
}
}
EVP_PKEY_free(pkey);
return 1;
f_err:
ssl3_send_alert(ssl, SSL3_AL_FATAL, al);
err:
EVP_PKEY_free(pkey);
DH_free(dh);
EC_POINT_free(srvr_ecpoint);
EC_KEY_free(ecdh);
return -1;
}
static int ssl3_get_certificate_request(SSL *ssl) {
int msg_ret = ssl->method->ssl_get_message(ssl, -1, ssl_hash_message);
if (msg_ret <= 0) {
return msg_ret;
}
ssl->s3->tmp.cert_request = 0;
if (ssl->s3->tmp.message_type == SSL3_MT_SERVER_HELLO_DONE) {
ssl->s3->tmp.reuse_message = 1;
/* If we get here we don't need the handshake buffer as we won't be doing
* client auth. */
ssl3_free_handshake_buffer(ssl);
return 1;
}
if (ssl->s3->tmp.message_type != SSL3_MT_CERTIFICATE_REQUEST) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
return -1;
}
CBS cbs;
CBS_init(&cbs, ssl->init_msg, ssl->init_num);
/* Get the certificate types. */
CBS certificate_types;
if (!CBS_get_u8_length_prefixed(&cbs, &certificate_types)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return -1;
}
if (!CBS_stow(&certificate_types, &ssl->s3->tmp.certificate_types,
&ssl->s3->tmp.num_certificate_types)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return -1;
}
if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) {
CBS supported_signature_algorithms;
if (!CBS_get_u16_length_prefixed(&cbs, &supported_signature_algorithms) ||
!tls1_parse_peer_sigalgs(ssl, &supported_signature_algorithms)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return -1;
}
}
uint8_t alert;
STACK_OF(X509_NAME) *ca_sk = ssl_parse_client_CA_list(ssl, &alert, &cbs);
if (ca_sk == NULL) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
return -1;
}
if (CBS_len(&cbs) != 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
sk_X509_NAME_pop_free(ca_sk, X509_NAME_free);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return -1;
}
ssl->s3->tmp.cert_request = 1;
sk_X509_NAME_pop_free(ssl->s3->tmp.ca_names, X509_NAME_free);
ssl->s3->tmp.ca_names = ca_sk;
return 1;
}
static int ssl3_get_server_hello_done(SSL *ssl) {
int ret = ssl->method->ssl_get_message(ssl, SSL3_MT_SERVER_HELLO_DONE,
ssl_hash_message);
if (ret <= 0) {
return ret;
}
/* ServerHelloDone is empty. */
if (ssl->init_num > 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return -1;
}
return 1;
}
static int ssl3_send_client_certificate(SSL *ssl) {
if (ssl->state == SSL3_ST_CW_CERT_A) {
/* Call cert_cb to update the certificate. */
if (ssl->cert->cert_cb) {
int ret = ssl->cert->cert_cb(ssl, ssl->cert->cert_cb_arg);
if (ret < 0) {
ssl->rwstate = SSL_X509_LOOKUP;
return -1;
}
if (ret == 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return -1;
}
}
ssl->state = SSL3_ST_CW_CERT_B;
}
if (ssl->state == SSL3_ST_CW_CERT_B) {
/* Call client_cert_cb to update the certificate. */
int should_retry;
if (!ssl_do_client_cert_cb(ssl, &should_retry)) {
if (should_retry) {
ssl->rwstate = SSL_X509_LOOKUP;
}
return -1;
}
if (!ssl_has_certificate(ssl)) {
ssl->s3->tmp.cert_request = 0;
/* Without a client certificate, the handshake buffer may be released. */
ssl3_free_handshake_buffer(ssl);
if (ssl->version == SSL3_VERSION) {
/* In SSL 3.0, send no certificate by skipping both messages. */
ssl3_send_alert(ssl, SSL3_AL_WARNING, SSL_AD_NO_CERTIFICATE);
return 1;
}
}
if (!ssl3_output_cert_chain(ssl)) {
return -1;
}
ssl->state = SSL3_ST_CW_CERT_C;
}
assert(ssl->state == SSL3_ST_CW_CERT_C);
return ssl->method->write_message(ssl);
}
OPENSSL_COMPILE_ASSERT(sizeof(size_t) >= sizeof(unsigned),
SIZE_T_IS_SMALLER_THAN_UNSIGNED);
static int ssl3_send_client_key_exchange(SSL *ssl) {
if (ssl->state == SSL3_ST_CW_KEY_EXCH_B) {
return ssl->method->write_message(ssl);
}
assert(ssl->state == SSL3_ST_CW_KEY_EXCH_A);
uint8_t *pms = NULL;
size_t pms_len = 0;
CBB cbb, body;
if (!ssl->method->init_message(ssl, &cbb, &body,
SSL3_MT_CLIENT_KEY_EXCHANGE)) {
goto err;
}
uint32_t alg_k = ssl->s3->tmp.new_cipher->algorithm_mkey;
uint32_t alg_a = ssl->s3->tmp.new_cipher->algorithm_auth;
/* If using a PSK key exchange, prepare the pre-shared key. */
unsigned psk_len = 0;
uint8_t psk[PSK_MAX_PSK_LEN];
if (alg_a & SSL_aPSK) {
if (ssl->psk_client_callback == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_CLIENT_CB);
goto err;
}
char identity[PSK_MAX_IDENTITY_LEN + 1];
memset(identity, 0, sizeof(identity));
psk_len = ssl->psk_client_callback(
ssl, ssl->s3->hs->peer_psk_identity_hint, identity, sizeof(identity),
psk, sizeof(psk));
if (psk_len == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND);
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
goto err;
}
assert(psk_len <= PSK_MAX_PSK_LEN);
OPENSSL_free(ssl->s3->new_session->psk_identity);
ssl->s3->new_session->psk_identity = BUF_strdup(identity);
if (ssl->s3->new_session->psk_identity == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Write out psk_identity. */
CBB child;
if (!CBB_add_u16_length_prefixed(&body, &child) ||
!CBB_add_bytes(&child, (const uint8_t *)identity,
OPENSSL_strnlen(identity, sizeof(identity))) ||
!CBB_flush(&body)) {
goto err;
}
}
/* Depending on the key exchange method, compute |pms| and |pms_len|. */
if (alg_k & SSL_kRSA) {
pms_len = SSL_MAX_MASTER_KEY_LENGTH;
pms = OPENSSL_malloc(pms_len);
if (pms == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
EVP_PKEY *pkey = X509_get_pubkey(ssl->s3->new_session->peer);
if (pkey == NULL) {
goto err;
}
RSA *rsa = EVP_PKEY_get0_RSA(pkey);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
EVP_PKEY_free(pkey);
goto err;
}
EVP_PKEY_free(pkey);
pms[0] = ssl->client_version >> 8;
pms[1] = ssl->client_version & 0xff;
if (!RAND_bytes(&pms[2], SSL_MAX_MASTER_KEY_LENGTH - 2)) {
goto err;
}
CBB child, *enc_pms = &body;
size_t enc_pms_len;
/* In TLS, there is a length prefix. */
if (ssl->version > SSL3_VERSION) {
if (!CBB_add_u16_length_prefixed(&body, &child)) {
goto err;
}
enc_pms = &child;
}
uint8_t *ptr;
if (!CBB_reserve(enc_pms, &ptr, RSA_size(rsa)) ||
!RSA_encrypt(rsa, &enc_pms_len, ptr, RSA_size(rsa), pms, pms_len,
RSA_PKCS1_PADDING) ||
/* Log the premaster secret, if logging is enabled. */
!ssl_log_rsa_client_key_exchange(ssl, ptr, enc_pms_len, pms, pms_len) ||
!CBB_did_write(enc_pms, enc_pms_len) ||
!CBB_flush(&body)) {
goto err;
}
} else if (alg_k & (SSL_kECDHE|SSL_kDHE|SSL_kCECPQ1)) {
/* Generate a keypair and serialize the public half. */
CBB child;
if (!SSL_ECDH_CTX_add_key(&ssl->s3->tmp.ecdh_ctx, &body, &child)) {
goto err;
}
/* Compute the premaster. */
uint8_t alert;
if (!SSL_ECDH_CTX_accept(&ssl->s3->tmp.ecdh_ctx, &child, &pms, &pms_len,
&alert, ssl->s3->tmp.peer_key,
ssl->s3->tmp.peer_key_len)) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
goto err;
}
if (!CBB_flush(&body)) {
goto err;
}
/* The key exchange state may now be discarded. */
SSL_ECDH_CTX_cleanup(&ssl->s3->tmp.ecdh_ctx);
OPENSSL_free(ssl->s3->tmp.peer_key);
ssl->s3->tmp.peer_key = NULL;
} else if (alg_k & SSL_kPSK) {
/* For plain PSK, other_secret is a block of 0s with the same length as
* the pre-shared key. */
pms_len = psk_len;
pms = OPENSSL_malloc(pms_len);
if (pms == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
memset(pms, 0, pms_len);
} else {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
/* For a PSK cipher suite, other_secret is combined with the pre-shared
* key. */
if (alg_a & SSL_aPSK) {
CBB pms_cbb, child;
uint8_t *new_pms;
size_t new_pms_len;
CBB_zero(&pms_cbb);
if (!CBB_init(&pms_cbb, 2 + psk_len + 2 + pms_len) ||
!CBB_add_u16_length_prefixed(&pms_cbb, &child) ||
!CBB_add_bytes(&child, pms, pms_len) ||
!CBB_add_u16_length_prefixed(&pms_cbb, &child) ||
!CBB_add_bytes(&child, psk, psk_len) ||
!CBB_finish(&pms_cbb, &new_pms, &new_pms_len)) {
CBB_cleanup(&pms_cbb);
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
pms = new_pms;
pms_len = new_pms_len;
}
/* The message must be added to the finished hash before calculating the
* master secret. */
if (!ssl->method->finish_message(ssl, &cbb)) {
goto err;
}
ssl->state = SSL3_ST_CW_KEY_EXCH_B;
ssl->s3->new_session->master_key_length =
tls1_generate_master_secret(ssl, ssl->s3->new_session->master_key, pms,
pms_len);
if (ssl->s3->new_session->master_key_length == 0) {
goto err;
}
ssl->s3->new_session->extended_master_secret =
ssl->s3->tmp.extended_master_secret;
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
return ssl->method->write_message(ssl);
err:
CBB_cleanup(&cbb);
if (pms != NULL) {
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
}
return -1;
}
static int ssl3_send_cert_verify(SSL *ssl) {
if (ssl->state == SSL3_ST_CW_CERT_VRFY_C) {
return ssl->method->write_message(ssl);
}
assert(ssl_has_private_key(ssl));
CBB cbb, body, child;
if (!ssl->method->init_message(ssl, &cbb, &body,
SSL3_MT_CERTIFICATE_VERIFY)) {
goto err;
}
uint16_t signature_algorithm;
if (!tls1_choose_signature_algorithm(ssl, &signature_algorithm)) {
goto err;
}
if (ssl3_protocol_version(ssl) >= TLS1_2_VERSION) {
/* Write out the digest type in TLS 1.2. */
if (!CBB_add_u16(&body, signature_algorithm)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
}
/* Set aside space for the signature. */
const size_t max_sig_len = ssl_private_key_max_signature_len(ssl);
uint8_t *ptr;
if (!CBB_add_u16_length_prefixed(&body, &child) ||
!CBB_reserve(&child, &ptr, max_sig_len)) {
goto err;
}
size_t sig_len = max_sig_len;
enum ssl_private_key_result_t sign_result;
if (ssl->state == SSL3_ST_CW_CERT_VRFY_A) {
/* The SSL3 construction for CertificateVerify does not decompose into a
* single final digest and signature, and must be special-cased. */
if (ssl3_protocol_version(ssl) == SSL3_VERSION) {
if (ssl->cert->key_method != NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL_FOR_CUSTOM_KEY);
goto err;
}
const EVP_MD *md;
uint8_t digest[EVP_MAX_MD_SIZE];
size_t digest_len;
if (!ssl3_cert_verify_hash(ssl, &md, digest, &digest_len,
signature_algorithm)) {
goto err;
}
sign_result = ssl_private_key_success;
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new(ssl->cert->privatekey, NULL);
if (pctx == NULL ||
!EVP_PKEY_sign_init(pctx) ||
!EVP_PKEY_CTX_set_signature_md(pctx, md) ||
!EVP_PKEY_sign(pctx, ptr, &sig_len, digest, digest_len)) {
EVP_PKEY_CTX_free(pctx);
sign_result = ssl_private_key_failure;
goto err;
}
EVP_PKEY_CTX_free(pctx);
} else {
sign_result = ssl_private_key_sign(
ssl, ptr, &sig_len, max_sig_len, signature_algorithm,
(const uint8_t *)ssl->s3->handshake_buffer->data,
ssl->s3->handshake_buffer->length);
}
/* The handshake buffer is no longer necessary. */
ssl3_free_handshake_buffer(ssl);
} else {
assert(ssl->state == SSL3_ST_CW_CERT_VRFY_B);
sign_result = ssl_private_key_complete(ssl, ptr, &sig_len, max_sig_len);
}
switch (sign_result) {
case ssl_private_key_success:
break;
case ssl_private_key_failure:
goto err;
case ssl_private_key_retry:
ssl->rwstate = SSL_PRIVATE_KEY_OPERATION;
ssl->state = SSL3_ST_CW_CERT_VRFY_B;
goto err;
}
if (!CBB_did_write(&child, sig_len) ||
!ssl->method->finish_message(ssl, &cbb)) {
goto err;
}
ssl->state = SSL3_ST_CW_CERT_VRFY_C;
return ssl->method->write_message(ssl);
err:
CBB_cleanup(&cbb);
return -1;
}
static int ssl3_send_next_proto(SSL *ssl) {
if (ssl->state == SSL3_ST_CW_NEXT_PROTO_B) {
return ssl->method->write_message(ssl);
}
assert(ssl->state == SSL3_ST_CW_NEXT_PROTO_A);
static const uint8_t kZero[32] = {0};
size_t padding_len = 32 - ((ssl->s3->next_proto_negotiated_len + 2) % 32);
CBB cbb, body, child;
if (!ssl->method->init_message(ssl, &cbb, &body, SSL3_MT_NEXT_PROTO) ||
!CBB_add_u8_length_prefixed(&body, &child) ||
!CBB_add_bytes(&child, ssl->s3->next_proto_negotiated,
ssl->s3->next_proto_negotiated_len) ||
!CBB_add_u8_length_prefixed(&body, &child) ||
!CBB_add_bytes(&child, kZero, padding_len) ||
!ssl->method->finish_message(ssl, &cbb)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
CBB_cleanup(&cbb);
return -1;
}
ssl->state = SSL3_ST_CW_NEXT_PROTO_B;
return ssl->method->write_message(ssl);
}
static int ssl3_send_channel_id(SSL *ssl) {
if (ssl->state == SSL3_ST_CW_CHANNEL_ID_B) {
return ssl->method->write_message(ssl);
}
assert(ssl->state == SSL3_ST_CW_CHANNEL_ID_A);
if (ssl->tlsext_channel_id_private == NULL &&
ssl->ctx->channel_id_cb != NULL) {
EVP_PKEY *key = NULL;
ssl->ctx->channel_id_cb(ssl, &key);
if (key != NULL &&
!SSL_set1_tls_channel_id(ssl, key)) {
EVP_PKEY_free(key);
return -1;
}
EVP_PKEY_free(key);
}
if (ssl->tlsext_channel_id_private == NULL) {
ssl->rwstate = SSL_CHANNEL_ID_LOOKUP;
return -1;
}
EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(ssl->tlsext_channel_id_private);
if (ec_key == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return -1;
}
int ret = -1;
BIGNUM *x = BN_new();
BIGNUM *y = BN_new();
ECDSA_SIG *sig = NULL;
if (x == NULL || y == NULL ||
!EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(ec_key),
EC_KEY_get0_public_key(ec_key),
x, y, NULL)) {
goto err;
}
uint8_t digest[EVP_MAX_MD_SIZE];
size_t digest_len;
if (!tls1_channel_id_hash(ssl, digest, &digest_len)) {
goto err;
}
sig = ECDSA_do_sign(digest, digest_len, ec_key);
if (sig == NULL) {
goto err;
}
CBB cbb, body, child;
if (!ssl->method->init_message(ssl, &cbb, &body, SSL3_MT_CHANNEL_ID) ||
!CBB_add_u16(&body, TLSEXT_TYPE_channel_id) ||
!CBB_add_u16_length_prefixed(&body, &child) ||
!BN_bn2cbb_padded(&child, 32, x) || !BN_bn2cbb_padded(&child, 32, y) ||
!BN_bn2cbb_padded(&child, 32, sig->r) ||
!BN_bn2cbb_padded(&child, 32, sig->s) ||
!ssl->method->finish_message(ssl, &cbb)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
CBB_cleanup(&cbb);
goto err;
}
ssl->state = SSL3_ST_CW_CHANNEL_ID_B;
ret = ssl->method->write_message(ssl);
err:
BN_free(x);
BN_free(y);
ECDSA_SIG_free(sig);
return ret;
}
static int ssl3_get_new_session_ticket(SSL *ssl) {
int ret = ssl->method->ssl_get_message(ssl, SSL3_MT_NEW_SESSION_TICKET,
ssl_hash_message);
if (ret <= 0) {
return ret;
}
CBS new_session_ticket, ticket;
uint32_t tlsext_tick_lifetime_hint;
CBS_init(&new_session_ticket, ssl->init_msg, ssl->init_num);
if (!CBS_get_u32(&new_session_ticket, &tlsext_tick_lifetime_hint) ||
!CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) ||
CBS_len(&new_session_ticket) != 0) {
ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return -1;
}
if (CBS_len(&ticket) == 0) {
/* RFC 5077 allows a server to change its mind and send no ticket after
* negotiating the extension. The value of |tlsext_ticket_expected| is
* checked in |ssl_update_cache| so is cleared here to avoid an unnecessary
* update. */
ssl->tlsext_ticket_expected = 0;
return 1;
}
int session_renewed = ssl->session != NULL;
SSL_SESSION *session = ssl->s3->new_session;
if (session_renewed) {
/* The server is sending a new ticket for an existing session. Sessions are
* immutable once established, so duplicate all but the ticket of the
* existing session. */
session = SSL_SESSION_dup(ssl->session, SSL_SESSION_INCLUDE_NONAUTH);
if (session == NULL) {
/* This should never happen. */
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (!CBS_stow(&ticket, &session->tlsext_tick, &session->tlsext_ticklen)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
goto err;
}
session->tlsext_tick_lifetime_hint = tlsext_tick_lifetime_hint;
/* Generate a session ID for this session based on the session ticket. We use
* the session ID mechanism for detecting ticket resumption. This also fits in
* with assumptions elsewhere in OpenSSL.*/
if (!EVP_Digest(CBS_data(&ticket), CBS_len(&ticket),
session->session_id, &session->session_id_length,
EVP_sha256(), NULL)) {
goto err;
}
if (session_renewed) {
session->not_resumable = 0;
SSL_SESSION_free(ssl->session);
ssl->session = session;
}
return 1;
err:
if (session_renewed) {
SSL_SESSION_free(session);
}
return -1;
}