boringssl/crypto/chacha/chacha_vec.c
Brian Smith 7cae9f5b6c Use |alignas| for alignment.
MSVC doesn't have stdalign.h and so doesn't support |alignas| in C
code. Define |alignas(x)| as a synonym for |__decltype(align(x))|
instead for it.

This also fixes -Wcast-qual warnings in rsaz_exp.c.

Change-Id: Ifce9031724cb93f5a4aa1f567e7af61b272df9d5
Reviewed-on: https://boringssl-review.googlesource.com/6924
Reviewed-by: Adam Langley <agl@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
2016-01-25 23:05:04 +00:00

329 lines
10 KiB
C

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
/* ====================================================================
*
* When updating this file, also update chacha_vec_arm.S
*
* ==================================================================== */
/* This implementation is by Ted Krovetz and was submitted to SUPERCOP and
* marked as public domain. It was been altered to allow for non-aligned inputs
* and to allow the block counter to be passed in specifically. */
#include <openssl/chacha.h>
#include "../internal.h"
#if defined(ASM_GEN) || \
!defined(OPENSSL_WINDOWS) && \
(defined(OPENSSL_X86_64) || defined(OPENSSL_X86)) && defined(__SSE2__)
#define CHACHA_RNDS 20 /* 8 (high speed), 20 (conservative), 12 (middle) */
/* Architecture-neutral way to specify 16-byte vector of ints */
typedef unsigned vec __attribute__((vector_size(16)));
/* This implementation is designed for Neon, SSE and AltiVec machines. The
* following specify how to do certain vector operations efficiently on
* each architecture, using intrinsics.
* This implementation supports parallel processing of multiple blocks,
* including potentially using general-purpose registers. */
#if __ARM_NEON__
#include <string.h>
#include <arm_neon.h>
#define GPR_TOO 1
#define VBPI 2
#define ONE (vec) vsetq_lane_u32(1, vdupq_n_u32(0), 0)
#define LOAD_ALIGNED(m) (vec)(*((vec *)(m)))
#define LOAD(m) ({ \
memcpy(alignment_buffer, m, 16); \
LOAD_ALIGNED(alignment_buffer); \
})
#define STORE(m, r) ({ \
(*((vec *)(alignment_buffer))) = (r); \
memcpy(m, alignment_buffer, 16); \
})
#define ROTV1(x) (vec) vextq_u32((uint32x4_t)x, (uint32x4_t)x, 1)
#define ROTV2(x) (vec) vextq_u32((uint32x4_t)x, (uint32x4_t)x, 2)
#define ROTV3(x) (vec) vextq_u32((uint32x4_t)x, (uint32x4_t)x, 3)
#define ROTW16(x) (vec) vrev32q_u16((uint16x8_t)x)
#if __clang__
#define ROTW7(x) (x << ((vec) {7, 7, 7, 7})) ^ (x >> ((vec) {25, 25, 25, 25}))
#define ROTW8(x) (x << ((vec) {8, 8, 8, 8})) ^ (x >> ((vec) {24, 24, 24, 24}))
#define ROTW12(x) \
(x << ((vec) {12, 12, 12, 12})) ^ (x >> ((vec) {20, 20, 20, 20}))
#else
#define ROTW7(x) \
(vec) vsriq_n_u32(vshlq_n_u32((uint32x4_t)x, 7), (uint32x4_t)x, 25)
#define ROTW8(x) \
(vec) vsriq_n_u32(vshlq_n_u32((uint32x4_t)x, 8), (uint32x4_t)x, 24)
#define ROTW12(x) \
(vec) vsriq_n_u32(vshlq_n_u32((uint32x4_t)x, 12), (uint32x4_t)x, 20)
#endif
#elif __SSE2__
#include <emmintrin.h>
#define GPR_TOO 0
#if __clang__
#define VBPI 4
#else
#define VBPI 3
#endif
#define ONE (vec) _mm_set_epi32(0, 0, 0, 1)
#define LOAD(m) (vec) _mm_loadu_si128((const __m128i *)(m))
#define LOAD_ALIGNED(m) (vec) _mm_load_si128((const __m128i *)(m))
#define STORE(m, r) _mm_storeu_si128((__m128i *)(m), (__m128i)(r))
#define ROTV1(x) (vec) _mm_shuffle_epi32((__m128i)x, _MM_SHUFFLE(0, 3, 2, 1))
#define ROTV2(x) (vec) _mm_shuffle_epi32((__m128i)x, _MM_SHUFFLE(1, 0, 3, 2))
#define ROTV3(x) (vec) _mm_shuffle_epi32((__m128i)x, _MM_SHUFFLE(2, 1, 0, 3))
#define ROTW7(x) \
(vec)(_mm_slli_epi32((__m128i)x, 7) ^ _mm_srli_epi32((__m128i)x, 25))
#define ROTW12(x) \
(vec)(_mm_slli_epi32((__m128i)x, 12) ^ _mm_srli_epi32((__m128i)x, 20))
#if __SSSE3__
#include <tmmintrin.h>
#define ROTW8(x) \
(vec) _mm_shuffle_epi8((__m128i)x, _mm_set_epi8(14, 13, 12, 15, 10, 9, 8, \
11, 6, 5, 4, 7, 2, 1, 0, 3))
#define ROTW16(x) \
(vec) _mm_shuffle_epi8((__m128i)x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, \
10, 5, 4, 7, 6, 1, 0, 3, 2))
#else
#define ROTW8(x) \
(vec)(_mm_slli_epi32((__m128i)x, 8) ^ _mm_srli_epi32((__m128i)x, 24))
#define ROTW16(x) \
(vec)(_mm_slli_epi32((__m128i)x, 16) ^ _mm_srli_epi32((__m128i)x, 16))
#endif
#else
#error-- Implementation supports only machines with neon or SSE2
#endif
#ifndef REVV_BE
#define REVV_BE(x) (x)
#endif
#ifndef REVW_BE
#define REVW_BE(x) (x)
#endif
#define BPI (VBPI + GPR_TOO) /* Blocks computed per loop iteration */
#define DQROUND_VECTORS(a,b,c,d) \
a += b; d ^= a; d = ROTW16(d); \
c += d; b ^= c; b = ROTW12(b); \
a += b; d ^= a; d = ROTW8(d); \
c += d; b ^= c; b = ROTW7(b); \
b = ROTV1(b); c = ROTV2(c); d = ROTV3(d); \
a += b; d ^= a; d = ROTW16(d); \
c += d; b ^= c; b = ROTW12(b); \
a += b; d ^= a; d = ROTW8(d); \
c += d; b ^= c; b = ROTW7(b); \
b = ROTV3(b); c = ROTV2(c); d = ROTV1(d);
#define QROUND_WORDS(a,b,c,d) \
a = a+b; d ^= a; d = d<<16 | d>>16; \
c = c+d; b ^= c; b = b<<12 | b>>20; \
a = a+b; d ^= a; d = d<< 8 | d>>24; \
c = c+d; b ^= c; b = b<< 7 | b>>25;
#define WRITE_XOR(in, op, d, v0, v1, v2, v3) \
STORE(op + d + 0, LOAD(in + d + 0) ^ REVV_BE(v0)); \
STORE(op + d + 4, LOAD(in + d + 4) ^ REVV_BE(v1)); \
STORE(op + d + 8, LOAD(in + d + 8) ^ REVV_BE(v2)); \
STORE(op + d +12, LOAD(in + d +12) ^ REVV_BE(v3));
#if __ARM_NEON__
/* For ARM, we can't depend on NEON support, so this function is compiled with
* a different name, along with the generic code, and can be enabled at
* run-time. */
void CRYPTO_chacha_20_neon(
#else
void CRYPTO_chacha_20(
#endif
uint8_t *out,
const uint8_t *in,
size_t inlen,
const uint8_t key[32],
const uint8_t nonce[12],
uint32_t counter)
{
unsigned iters, i;
unsigned *op = (unsigned *)out;
const unsigned *ip = (const unsigned *)in;
const unsigned *kp = (const unsigned *)key;
#if defined(__ARM_NEON__)
uint32_t np[3];
alignas(16) uint8_t alignment_buffer[16];
#endif
vec s0, s1, s2, s3;
alignas(16) unsigned chacha_const[] =
{0x61707865,0x3320646E,0x79622D32,0x6B206574};
#if defined(__ARM_NEON__)
memcpy(np, nonce, 12);
#endif
s0 = LOAD_ALIGNED(chacha_const);
s1 = LOAD(&((const vec*)kp)[0]);
s2 = LOAD(&((const vec*)kp)[1]);
s3 = (vec){
counter,
((const uint32_t*)nonce)[0],
((const uint32_t*)nonce)[1],
((const uint32_t*)nonce)[2]
};
for (iters = 0; iters < inlen/(BPI*64); iters++)
{
#if GPR_TOO
register unsigned x0, x1, x2, x3, x4, x5, x6, x7, x8,
x9, x10, x11, x12, x13, x14, x15;
#endif
#if VBPI > 2
vec v8,v9,v10,v11;
#endif
#if VBPI > 3
vec v12,v13,v14,v15;
#endif
vec v0,v1,v2,v3,v4,v5,v6,v7;
v4 = v0 = s0; v5 = v1 = s1; v6 = v2 = s2; v3 = s3;
v7 = v3 + ONE;
#if VBPI > 2
v8 = v4; v9 = v5; v10 = v6;
v11 = v7 + ONE;
#endif
#if VBPI > 3
v12 = v8; v13 = v9; v14 = v10;
v15 = v11 + ONE;
#endif
#if GPR_TOO
x0 = chacha_const[0]; x1 = chacha_const[1];
x2 = chacha_const[2]; x3 = chacha_const[3];
x4 = kp[0]; x5 = kp[1]; x6 = kp[2]; x7 = kp[3];
x8 = kp[4]; x9 = kp[5]; x10 = kp[6]; x11 = kp[7];
x12 = counter+BPI*iters+(BPI-1); x13 = np[0];
x14 = np[1]; x15 = np[2];
#endif
for (i = CHACHA_RNDS/2; i; i--)
{
DQROUND_VECTORS(v0,v1,v2,v3)
DQROUND_VECTORS(v4,v5,v6,v7)
#if VBPI > 2
DQROUND_VECTORS(v8,v9,v10,v11)
#endif
#if VBPI > 3
DQROUND_VECTORS(v12,v13,v14,v15)
#endif
#if GPR_TOO
QROUND_WORDS( x0, x4, x8,x12)
QROUND_WORDS( x1, x5, x9,x13)
QROUND_WORDS( x2, x6,x10,x14)
QROUND_WORDS( x3, x7,x11,x15)
QROUND_WORDS( x0, x5,x10,x15)
QROUND_WORDS( x1, x6,x11,x12)
QROUND_WORDS( x2, x7, x8,x13)
QROUND_WORDS( x3, x4, x9,x14)
#endif
}
WRITE_XOR(ip, op, 0, v0+s0, v1+s1, v2+s2, v3+s3)
s3 += ONE;
WRITE_XOR(ip, op, 16, v4+s0, v5+s1, v6+s2, v7+s3)
s3 += ONE;
#if VBPI > 2
WRITE_XOR(ip, op, 32, v8+s0, v9+s1, v10+s2, v11+s3)
s3 += ONE;
#endif
#if VBPI > 3
WRITE_XOR(ip, op, 48, v12+s0, v13+s1, v14+s2, v15+s3)
s3 += ONE;
#endif
ip += VBPI*16;
op += VBPI*16;
#if GPR_TOO
op[0] = REVW_BE(REVW_BE(ip[0]) ^ (x0 + chacha_const[0]));
op[1] = REVW_BE(REVW_BE(ip[1]) ^ (x1 + chacha_const[1]));
op[2] = REVW_BE(REVW_BE(ip[2]) ^ (x2 + chacha_const[2]));
op[3] = REVW_BE(REVW_BE(ip[3]) ^ (x3 + chacha_const[3]));
op[4] = REVW_BE(REVW_BE(ip[4]) ^ (x4 + kp[0]));
op[5] = REVW_BE(REVW_BE(ip[5]) ^ (x5 + kp[1]));
op[6] = REVW_BE(REVW_BE(ip[6]) ^ (x6 + kp[2]));
op[7] = REVW_BE(REVW_BE(ip[7]) ^ (x7 + kp[3]));
op[8] = REVW_BE(REVW_BE(ip[8]) ^ (x8 + kp[4]));
op[9] = REVW_BE(REVW_BE(ip[9]) ^ (x9 + kp[5]));
op[10] = REVW_BE(REVW_BE(ip[10]) ^ (x10 + kp[6]));
op[11] = REVW_BE(REVW_BE(ip[11]) ^ (x11 + kp[7]));
op[12] = REVW_BE(REVW_BE(ip[12]) ^ (x12 + counter+BPI*iters+(BPI-1)));
op[13] = REVW_BE(REVW_BE(ip[13]) ^ (x13 + np[0]));
op[14] = REVW_BE(REVW_BE(ip[14]) ^ (x14 + np[1]));
op[15] = REVW_BE(REVW_BE(ip[15]) ^ (x15 + np[2]));
s3 += ONE;
ip += 16;
op += 16;
#endif
}
for (iters = inlen%(BPI*64)/64; iters != 0; iters--)
{
vec v0 = s0, v1 = s1, v2 = s2, v3 = s3;
for (i = CHACHA_RNDS/2; i; i--)
{
DQROUND_VECTORS(v0,v1,v2,v3);
}
WRITE_XOR(ip, op, 0, v0+s0, v1+s1, v2+s2, v3+s3)
s3 += ONE;
ip += 16;
op += 16;
}
inlen = inlen % 64;
if (inlen)
{
__attribute__ ((aligned (16))) vec buf[4];
vec v0,v1,v2,v3;
v0 = s0; v1 = s1; v2 = s2; v3 = s3;
for (i = CHACHA_RNDS/2; i; i--)
{
DQROUND_VECTORS(v0,v1,v2,v3);
}
if (inlen >= 16)
{
STORE(op + 0, LOAD(ip + 0) ^ REVV_BE(v0 + s0));
if (inlen >= 32)
{
STORE(op + 4, LOAD(ip + 4) ^ REVV_BE(v1 + s1));
if (inlen >= 48)
{
STORE(op + 8, LOAD(ip + 8) ^
REVV_BE(v2 + s2));
buf[3] = REVV_BE(v3 + s3);
}
else
buf[2] = REVV_BE(v2 + s2);
}
else
buf[1] = REVV_BE(v1 + s1);
}
else
buf[0] = REVV_BE(v0 + s0);
for (i=inlen & ~15; i<inlen; i++)
((char *)op)[i] = ((const char *)ip)[i] ^ ((const char *)buf)[i];
}
}
#endif /* ASM_GEN || !OPENSSL_WINDOWS && (OPENSSL_X86_64 || OPENSSL_X86) && SSE2 */