boringssl/crypto/rsa/padding.c
Adam Langley 7d0a1d680c Fix padding side-channels.
This patch tweaks the OAEP padding check to be slightly more constant
time and rewrites the PKCS#1 v1.5 padding check to the same end.
2014-06-20 13:17:34 -07:00

876 lines
23 KiB
C

/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 2005.
*/
/* ====================================================================
* Copyright (c) 2005 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/rsa.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/rand.h>
#include <openssl/sha.h>
#include "internal.h"
/* TODO(fork): don't the check functions have to be constant time? */
int RSA_padding_add_PKCS1_type_1(uint8_t *to, unsigned tlen,
const uint8_t *from, unsigned flen) {
unsigned j;
uint8_t *p;
if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_type_1,
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
}
p = (uint8_t *)to;
*(p++) = 0;
*(p++) = 1; /* Private Key BT (Block Type) */
/* pad out with 0xff data */
j = tlen - 3 - flen;
memset(p, 0xff, j);
p += j;
*(p++) = 0;
memcpy(p, from, (unsigned int)flen);
return 1;
}
int RSA_padding_check_PKCS1_type_1(uint8_t *to, unsigned tlen, const uint8_t *from,
unsigned flen, unsigned num) {
unsigned i, j;
const uint8_t *p;
if (flen == 0) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1,
RSA_R_EMPTY_PUBLIC_KEY);
return -1;
}
p = from;
if ((num != (flen + 1)) || (*(p++) != 1)) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1,
RSA_R_BLOCK_TYPE_IS_NOT_01);
return -1;
}
/* scan over padding data */
j = flen - 1; /* one for type. */
for (i = 0; i < j; i++) {
if (*p != 0xff) /* should decrypt to 0xff */
{
if (*p == 0) {
p++;
break;
} else {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1,
RSA_R_BAD_FIXED_HEADER_DECRYPT);
return -1;
}
}
p++;
}
if (i == j) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1,
RSA_R_NULL_BEFORE_BLOCK_MISSING);
return -1;
}
if (i < 8) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1,
RSA_R_BAD_PAD_BYTE_COUNT);
return -1;
}
i++; /* Skip over the '\0' */
j -= i;
if (j > tlen) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_1,
RSA_R_DATA_TOO_LARGE);
return -1;
}
memcpy(to, p, j);
return j;
}
int RSA_padding_add_PKCS1_type_2(uint8_t *to, unsigned tlen,
const uint8_t *from, unsigned flen) {
unsigned i, j;
uint8_t *p;
if (flen > (tlen - 11)) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_type_2,
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
}
p = (unsigned char *)to;
*(p++) = 0;
*(p++) = 2; /* Public Key BT (Block Type) */
/* pad out with non-zero random data */
j = tlen - 3 - flen;
if (RAND_pseudo_bytes(p, j) <= 0) {
return 0;
}
for (i = 0; i < j; i++) {
if (*p == 0) {
do {
if (RAND_pseudo_bytes(p, 1) <= 0) {
return 0;
}
} while (*p == 0);
}
p++;
}
*(p++) = 0;
memcpy(p, from, (unsigned int)flen);
return 1;
}
/* constant_time_byte_eq returns 1 if x == y and 0 otherwise. */
static int constant_time_byte_eq(unsigned char a, unsigned char b) {
unsigned char z = ~(a ^ b);
z &= z >> 4;
z &= z >> 2;
z &= z >> 1;
return z;
}
/* constant_time_select returns x if v is 1 and y if v is 0.
* Its behavior is undefined if v takes any other value. */
static int constant_time_select(int v, int x, int y) {
return ((~(v - 1)) & x) | ((v - 1) & y);
}
/* constant_time_le returns 1 if x < y and 0 otherwise.
* x and y must be positive. */
static int constant_time_le(int x, int y) {
return ((x - y - 1) >> (sizeof(int) * 8 - 1)) & 1;
}
int RSA_padding_check_PKCS1_type_2(uint8_t *to, unsigned tlen, const uint8_t *from,
unsigned flen, unsigned num) {
int i;
unsigned char *em = NULL;
int ret = -1;
int first_byte_is_zero, second_byte_is_two, looking_for_index;
int valid_index, zero_index = 0, msg_index;
if (flen == 0) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_2,
RSA_R_EMPTY_PUBLIC_KEY);
return -1;
}
/* PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography
* Standard", section 7.2.2. */
if (flen > num) {
goto err;
}
if (num < 11) {
goto err;
}
em = OPENSSL_malloc(num);
if (em == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_2,
ERR_R_MALLOC_FAILURE);
return -1;
}
memset(em, 0, num);
/* This unavoidably leaks timing information about |flen| because we
* cannot have a constant memory access pattern without accessing
* outside the bounds of |from|. */
memcpy(em + num - flen, from, flen);
first_byte_is_zero = constant_time_byte_eq(em[0], 0);
second_byte_is_two = constant_time_byte_eq(em[1], 2);
looking_for_index = 1;
for (i = 2; i < num; i++) {
int equals0 = constant_time_byte_eq(em[i], 0);
zero_index =
constant_time_select(looking_for_index & equals0, i, zero_index);
looking_for_index = constant_time_select(equals0, 0, looking_for_index);
}
/* PS must be at least 8 bytes long, and it starts two bytes into |em|. */
valid_index = constant_time_le(2 + 8, zero_index);
/* Skip the zero byte. */
msg_index = zero_index + 1;
valid_index &= constant_time_le(num - msg_index, tlen);
if (!(first_byte_is_zero & second_byte_is_two & ~looking_for_index &
valid_index)) {
goto err;
}
ret = num - msg_index;
memcpy(to, &em[msg_index], ret);
err:
if (em != NULL) {
OPENSSL_free(em);
}
if (ret == -1) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_type_2,
RSA_R_PKCS_DECODING_ERROR);
}
return ret;
}
int RSA_padding_add_none(uint8_t *to, unsigned tlen, const uint8_t *from, unsigned flen) {
if (flen > tlen) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_none,
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
}
if (flen < tlen) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_none,
RSA_R_DATA_TOO_SMALL_FOR_KEY_SIZE);
return 0;
}
memcpy(to, from, (unsigned int)flen);
return 1;
}
int RSA_padding_check_none(uint8_t *to, unsigned tlen, const uint8_t *from,
unsigned flen, unsigned num) {
if (flen > tlen) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_none, RSA_R_DATA_TOO_LARGE);
return -1;
}
memset(to, 0, tlen - flen);
memcpy(to + tlen - flen, from, flen);
return tlen;
}
int RSA_padding_add_SSLv23(uint8_t *to, unsigned tlen, const uint8_t *from,
unsigned flen) {
unsigned i, j;
uint8_t *p;
if (flen > (tlen - 11)) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_SSLv23,
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
}
p = to;
*(p++) = 0;
*(p++) = 2; /* Public Key BT (Block Type) */
/* pad out with non-zero random data */
j = tlen - 3 - 8 - flen;
if (RAND_pseudo_bytes(p, j) <= 0) {
return 0;
}
for (i = 0; i < j; i++) {
if (*p == '\0') {
do {
if (RAND_pseudo_bytes(p, 1) <= 0)
return 0;
} while (*p == '\0');
}
p++;
}
memset(p, 3, 8);
p += 8;
*(p++) = '\0';
memcpy(p, from, flen);
return 1;
}
int RSA_padding_check_SSLv23(uint8_t *to, unsigned tlen, const uint8_t *from,
unsigned flen, unsigned num) {
unsigned i, j, k;
const uint8_t *p;
p = from;
if (flen < 10) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_SSLv23, RSA_R_DATA_TOO_SMALL);
return -1;
}
if ((num != (flen + 1)) || (*(p++) != 02)) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_SSLv23,
RSA_R_BLOCK_TYPE_IS_NOT_02);
return -1;
}
/* scan over padding data */
j = flen - 1; /* one for type */
for (i = 0; i < j; i++) {
if (*(p++) == 0) {
break;
}
}
if ((i == j) || (i < 8)) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_SSLv23,
RSA_R_NULL_BEFORE_BLOCK_MISSING);
return -1;
}
for (k = -9; k < -1; k++) {
if (p[k] != 0x03) {
break;
}
}
if (k == -1) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_SSLv23,
RSA_R_SSLV3_ROLLBACK_ATTACK);
return -1;
}
i++; /* Skip over the '\0' */
j -= i;
if (j > tlen) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_SSLv23, RSA_R_DATA_TOO_LARGE);
return -1;
}
memcpy(to, p, (unsigned int)j);
return j;
}
int PKCS1_MGF1(uint8_t *mask, unsigned len, const uint8_t *seed,
unsigned seedlen, const EVP_MD *dgst) {
unsigned outlen = 0;
uint32_t i;
uint8_t cnt[4];
EVP_MD_CTX c;
uint8_t md[EVP_MAX_MD_SIZE];
unsigned mdlen;
int ret = -1;
EVP_MD_CTX_init(&c);
mdlen = EVP_MD_size(dgst);
for (i = 0; outlen < len; i++) {
cnt[0] = (uint8_t)((i >> 24) & 255);
cnt[1] = (uint8_t)((i >> 16) & 255);
cnt[2] = (uint8_t)((i >> 8)) & 255;
cnt[3] = (uint8_t)(i & 255);
if (!EVP_DigestInit_ex(&c, dgst, NULL) ||
!EVP_DigestUpdate(&c, seed, seedlen) || !EVP_DigestUpdate(&c, cnt, 4)) {
goto err;
}
if (outlen + mdlen <= len) {
if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL)) {
goto err;
}
outlen += mdlen;
} else {
if (!EVP_DigestFinal_ex(&c, md, NULL)) {
goto err;
}
memcpy(mask + outlen, md, len - outlen);
outlen = len;
}
}
ret = 0;
err:
EVP_MD_CTX_cleanup(&c);
return ret;
}
int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, unsigned tlen,
const uint8_t *from, unsigned flen,
const uint8_t *param, unsigned plen,
const EVP_MD *md, const EVP_MD *mgf1md) {
unsigned i, emlen = tlen - 1, mdlen;
uint8_t *db, *seed;
uint8_t *dbmask = NULL, seedmask[SHA_DIGEST_LENGTH];
int ret = 0;
if (md == NULL) {
md = EVP_sha1();
}
if (mgf1md == NULL) {
mgf1md = md;
}
mdlen = EVP_MD_size(md);
if (flen > emlen - 2 * mdlen - 1) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_OAEP_mgf1,
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
return 0;
}
if (emlen < 2 * mdlen + 1) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_OAEP_mgf1,
RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
to[0] = 0;
seed = to + 1;
db = to + mdlen + 1;
if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL)) {
return 0;
}
memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1);
db[emlen - flen - mdlen - 1] = 0x01;
memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen);
if (RAND_pseudo_bytes(seed, mdlen) <= 0) {
return 0;
}
dbmask = OPENSSL_malloc(emlen - mdlen);
if (dbmask == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_OAEP_mgf1,
ERR_R_MALLOC_FAILURE);
return 0;
}
if (PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md) < 0) {
goto out;
}
for (i = 0; i < emlen - mdlen; i++) {
db[i] ^= dbmask[i];
}
if (PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md) < 0) {
goto out;
}
for (i = 0; i < SHA_DIGEST_LENGTH; i++) {
seed[i] ^= seedmask[i];
}
ret = 1;
out:
if (dbmask != NULL) {
OPENSSL_free(dbmask);
}
return ret;
}
int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *to, unsigned tlen,
const uint8_t *from, unsigned flen,
unsigned num, const uint8_t *param,
unsigned plen, const EVP_MD *md,
const EVP_MD *mgf1md) {
unsigned i, dblen, mlen = -1, bad, mdlen;
const uint8_t *maskeddb;
unsigned lzero;
uint8_t *db = NULL, seed[SHA_DIGEST_LENGTH], phash[SHA_DIGEST_LENGTH];
uint8_t *padded_from;
if (md == NULL) {
md = EVP_sha1();
}
if (mgf1md == NULL) {
mgf1md = md;
}
mdlen = EVP_MD_size(md);
if (--num < 2 * mdlen + 1) {
/* 'num' is the length of the modulus, i.e. does not depend on the
* particular ciphertext. */
goto decoding_err;
}
/* TODO(fork): this code differs significantly between 1.0.1 and 1.0.2. We
* need to understand why and pick the best one. */
/* lzero is the number of leading zeros. We must not leak in the case
* that this is negative. See James H. Manger, "A Chosen Ciphertext
* Attack on RSA Optimal Asymmetric Encryption Padding (OAEP) [...]",
* CRYPTO 2001). */
lzero = num - flen;
/* If lzero is negative then the MSB will be set and this arithmetic
* right shift will set bad to all ones. Otherwise it'll be all
* zeros. */
bad = ((int)lzero) >> (sizeof(int) * 8 - 1);
lzero &= ~bad;
flen = (bad & num) | (~bad & flen);
dblen = num - mdlen;
db = OPENSSL_malloc(dblen + num);
if (db == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_OAEP_mgf1,
ERR_R_MALLOC_FAILURE);
return -1;
}
/* Always do this zero-padding copy (even when lzero == 0) to avoid
* leaking timing info about the value of lzero. This sadly leaks
* side-channel information, but it's not possible to have a fixed
* memory access pattern since we can't read out of the bounds of
* |from|. */
padded_from = db + dblen;
memset(padded_from, 0, num);
memcpy(padded_from + lzero, from, flen);
maskeddb = padded_from + mdlen;
if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) {
return -1;
}
for (i = 0; i < mdlen; i++) {
seed[i] ^= padded_from[i];
}
if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) {
return -1;
}
for (i = 0; i < dblen; i++) {
db[i] ^= maskeddb[i];
}
if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL)) {
return -1;
}
if (CRYPTO_memcmp(db, phash, mdlen) != 0 || bad) {
goto decoding_err;
} else {
/* At this point we consider timing side-channels to be moot
* because the plaintext contained the correct phash. */
for (i = mdlen; i < dblen; i++) {
if (db[i] != 0x00) {
break;
}
}
if (i == dblen || db[i] != 0x01) {
goto decoding_err;
} else {
/* everything looks OK */
mlen = dblen - ++i;
if (tlen < mlen) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_OAEP_mgf1,
RSA_R_DATA_TOO_LARGE);
mlen = -1;
} else {
memcpy(to, db + i, mlen);
}
}
}
OPENSSL_free(db);
return mlen;
decoding_err:
/* to avoid chosen ciphertext attacks, the error message should not reveal
* which kind of decoding error happened */
OPENSSL_PUT_ERROR(RSA, RSA_padding_check_PKCS1_OAEP_mgf1,
RSA_R_OAEP_DECODING_ERROR);
if (db != NULL) {
OPENSSL_free(db);
}
return -1;
}
int RSA_padding_add_PKCS1_OAEP(uint8_t *to, unsigned tlen,
const uint8_t *from, unsigned flen,
const uint8_t *param, unsigned plen) {
return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen, param, plen,
NULL, NULL);
}
int RSA_padding_check_PKCS1_OAEP(uint8_t *to, unsigned tlen,
const uint8_t *from, unsigned flen,
unsigned num, const uint8_t *param,
unsigned plen) {
return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num, param,
plen, NULL, NULL);
}
static const unsigned char zeroes[] = {0,0,0,0,0,0,0,0};
int RSA_verify_PKCS1_PSS_mgf1(RSA *rsa, const uint8_t *mHash,
const EVP_MD *Hash, const EVP_MD *mgf1Hash,
const uint8_t *EM, int sLen) {
int i;
int ret = 0;
int maskedDBLen, MSBits, emLen;
size_t hLen;
const uint8_t *H;
uint8_t *DB = NULL;
EVP_MD_CTX ctx;
uint8_t H_[EVP_MAX_MD_SIZE];
EVP_MD_CTX_init(&ctx);
if (mgf1Hash == NULL) {
mgf1Hash = Hash;
}
hLen = EVP_MD_size(Hash);
/* Negative sLen has special meanings:
* -1 sLen == hLen
* -2 salt length is autorecovered from signature
* -N reserved */
if (sLen == -1) {
sLen = hLen;
} else if (sLen == -2) {
sLen = -2;
} else if (sLen < -2) {
OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, RSA_R_SLEN_CHECK_FAILED);
goto err;
}
MSBits = (BN_num_bits(rsa->n) - 1) & 0x7;
emLen = RSA_size(rsa);
if (EM[0] & (0xFF << MSBits)) {
OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1,
RSA_R_FIRST_OCTET_INVALID);
goto err;
}
if (MSBits == 0) {
EM++;
emLen--;
}
if (emLen < ((int)hLen + sLen + 2)) {
/* sLen can be small negative */
OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, RSA_R_DATA_TOO_LARGE);
goto err;
}
if (EM[emLen - 1] != 0xbc) {
OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, RSA_R_LAST_OCTET_INVALID);
goto err;
}
maskedDBLen = emLen - hLen - 1;
H = EM + maskedDBLen;
DB = OPENSSL_malloc(maskedDBLen);
if (!DB) {
OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, ERR_R_MALLOC_FAILURE);
goto err;
}
if (PKCS1_MGF1(DB, maskedDBLen, H, hLen, mgf1Hash) < 0) {
goto err;
}
for (i = 0; i < maskedDBLen; i++) {
DB[i] ^= EM[i];
}
if (MSBits) {
DB[0] &= 0xFF >> (8 - MSBits);
}
for (i = 0; DB[i] == 0 && i < (maskedDBLen - 1); i++)
;
if (DB[i++] != 0x1) {
OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1,
RSA_R_SLEN_RECOVERY_FAILED);
goto err;
}
if (sLen >= 0 && (maskedDBLen - i) != sLen) {
OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, RSA_R_SLEN_CHECK_FAILED);
goto err;
}
if (!EVP_DigestInit_ex(&ctx, Hash, NULL) ||
!EVP_DigestUpdate(&ctx, zeroes, sizeof zeroes) ||
!EVP_DigestUpdate(&ctx, mHash, hLen)) {
goto err;
}
if (maskedDBLen - i) {
if (!EVP_DigestUpdate(&ctx, DB + i, maskedDBLen - i)) {
goto err;
}
}
if (!EVP_DigestFinal_ex(&ctx, H_, NULL)) {
goto err;
}
if (memcmp(H_, H, hLen)) {
OPENSSL_PUT_ERROR(RSA, RSA_verify_PKCS1_PSS_mgf1, RSA_R_BAD_SIGNATURE);
ret = 0;
} else {
ret = 1;
}
err:
if (DB) {
OPENSSL_free(DB);
}
EVP_MD_CTX_cleanup(&ctx);
return ret;
}
int RSA_padding_add_PKCS1_PSS_mgf1(RSA *rsa, unsigned char *EM,
const unsigned char *mHash,
const EVP_MD *Hash, const EVP_MD *mgf1Hash,
int sLen) {
int i;
int ret = 0;
int maskedDBLen, MSBits, emLen;
size_t hLen;
unsigned char *H, *salt = NULL, *p;
EVP_MD_CTX ctx;
if (mgf1Hash == NULL) {
mgf1Hash = Hash;
}
hLen = EVP_MD_size(Hash);
/* Negative sLen has special meanings:
* -1 sLen == hLen
* -2 salt length is maximized
* -N reserved */
if (sLen == -1) {
sLen = hLen;
} else if (sLen == -2) {
sLen = -2;
} else if (sLen < -2) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_PSS_mgf1,
RSA_R_SLEN_CHECK_FAILED);
goto err;
}
MSBits = (BN_num_bits(rsa->n) - 1) & 0x7;
emLen = RSA_size(rsa);
if (MSBits == 0) {
*EM++ = 0;
emLen--;
}
if (sLen == -2) {
sLen = emLen - hLen - 2;
} else if (emLen < (hLen + sLen + 2)) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_PSS_mgf1,
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
goto err;
}
if (sLen > 0) {
salt = OPENSSL_malloc(sLen);
if (!salt) {
OPENSSL_PUT_ERROR(RSA, RSA_padding_add_PKCS1_PSS_mgf1,
ERR_R_MALLOC_FAILURE);
goto err;
}
if (RAND_pseudo_bytes(salt, sLen) <= 0) {
goto err;
}
}
maskedDBLen = emLen - hLen - 1;
H = EM + maskedDBLen;
EVP_MD_CTX_init(&ctx);
if (!EVP_DigestInit_ex(&ctx, Hash, NULL) ||
!EVP_DigestUpdate(&ctx, zeroes, sizeof zeroes) ||
!EVP_DigestUpdate(&ctx, mHash, hLen)) {
goto err;
}
if (sLen && !EVP_DigestUpdate(&ctx, salt, sLen)) {
goto err;
}
if (!EVP_DigestFinal_ex(&ctx, H, NULL)) {
goto err;
}
EVP_MD_CTX_cleanup(&ctx);
/* Generate dbMask in place then perform XOR on it */
if (PKCS1_MGF1(EM, maskedDBLen, H, hLen, mgf1Hash)) {
goto err;
}
p = EM;
/* Initial PS XORs with all zeroes which is a NOP so just update
* pointer. Note from a test above this value is guaranteed to
* be non-negative. */
p += emLen - sLen - hLen - 2;
*p++ ^= 0x1;
if (sLen > 0) {
for (i = 0; i < sLen; i++) {
*p++ ^= salt[i];
}
}
if (MSBits) {
EM[0] &= 0xFF >> (8 - MSBits);
}
/* H is already in place so just set final 0xbc */
EM[emLen - 1] = 0xbc;
ret = 1;
err:
if (salt) {
OPENSSL_free(salt);
}
return ret;
}