boringssl/crypto/fipsmodule/modes/gcm_test.cc
David Benjamin 73535ab252 Fix undefined block128_f, etc., casts.
This one is a little thorny. All the various block cipher modes
functions and callbacks take a void *key. This allows them to be used
with multiple kinds of block ciphers.

However, the implementations of those callbacks are the normal typed
functions, like AES_encrypt. Those take AES_KEY *key. While, at the ABI
level, this is perfectly fine, C considers this undefined behavior.

If we wish to preserve this genericness, we could either instantiate
multiple versions of these mode functions or create wrappers of
AES_encrypt, etc., that take void *key.

The former means more code and is tedious without C++ templates (maybe
someday...). The latter would not be difficult for a compiler to
optimize out. C mistakenly allowed comparing function pointers for
equality, which means a compiler cannot replace pointers to wrapper
functions with the real thing. (That said, the performance-sensitive
bits already act in chunks, e.g. ctr128_f, so the function call overhead
shouldn't matter.)

But our only 128-bit block cipher is AES anyway, so I just switched
things to use AES_KEY throughout. AES is doing fine, and hopefully we
would have the sense not to pair a hypothetical future block cipher with
so many modes!

Change-Id: Ied3e843f0e3042a439f09e655b29847ade9d4c7d
Reviewed-on: https://boringssl-review.googlesource.com/32107
Reviewed-by: Adam Langley <agl@google.com>
2018-10-01 17:35:02 +00:00

122 lines
4.9 KiB
C++

/* ====================================================================
* Copyright (c) 2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==================================================================== */
// Per C99, various stdint.h and inttypes.h macros (the latter used by
// internal.h) are unavailable in C++ unless some macros are defined. C++11
// overruled this decision, but older Android NDKs still require it.
#if !defined(__STDC_CONSTANT_MACROS)
#define __STDC_CONSTANT_MACROS
#endif
#include <stdio.h>
#include <string.h>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/aes.h>
#include "internal.h"
#include "../../test/file_test.h"
#include "../../test/test_util.h"
TEST(GCMTest, TestVectors) {
FileTestGTest("crypto/fipsmodule/modes/gcm_tests.txt", [](FileTest *t) {
std::vector<uint8_t> key, plaintext, additional_data, nonce, ciphertext,
tag;
ASSERT_TRUE(t->GetBytes(&key, "Key"));
ASSERT_TRUE(t->GetBytes(&plaintext, "Plaintext"));
ASSERT_TRUE(t->GetBytes(&additional_data, "AdditionalData"));
ASSERT_TRUE(t->GetBytes(&nonce, "Nonce"));
ASSERT_TRUE(t->GetBytes(&ciphertext, "Ciphertext"));
ASSERT_TRUE(t->GetBytes(&tag, "Tag"));
ASSERT_EQ(plaintext.size(), ciphertext.size());
ASSERT_TRUE(key.size() == 16 || key.size() == 24 || key.size() == 32);
ASSERT_EQ(16u, tag.size());
std::vector<uint8_t> out(plaintext.size());
AES_KEY aes_key;
ASSERT_EQ(0, AES_set_encrypt_key(key.data(), key.size() * 8, &aes_key));
GCM128_CONTEXT ctx;
OPENSSL_memset(&ctx, 0, sizeof(ctx));
CRYPTO_gcm128_init_key(&ctx.gcm_key, &aes_key, AES_encrypt, 0);
CRYPTO_gcm128_setiv(&ctx, &aes_key, nonce.data(), nonce.size());
if (!additional_data.empty()) {
CRYPTO_gcm128_aad(&ctx, additional_data.data(), additional_data.size());
}
if (!plaintext.empty()) {
CRYPTO_gcm128_encrypt(&ctx, &aes_key, plaintext.data(), out.data(),
plaintext.size());
}
ASSERT_TRUE(CRYPTO_gcm128_finish(&ctx, tag.data(), tag.size()));
EXPECT_EQ(Bytes(ciphertext), Bytes(out));
CRYPTO_gcm128_setiv(&ctx, &aes_key, nonce.data(), nonce.size());
OPENSSL_memset(out.data(), 0, out.size());
if (!additional_data.empty()) {
CRYPTO_gcm128_aad(&ctx, additional_data.data(), additional_data.size());
}
if (!ciphertext.empty()) {
CRYPTO_gcm128_decrypt(&ctx, &aes_key, ciphertext.data(), out.data(),
ciphertext.size());
}
ASSERT_TRUE(CRYPTO_gcm128_finish(&ctx, tag.data(), tag.size()));
EXPECT_EQ(Bytes(plaintext), Bytes(out));
});
}
TEST(GCMTest, ByteSwap) {
EXPECT_EQ(0x04030201u, CRYPTO_bswap4(0x01020304u));
EXPECT_EQ(UINT64_C(0x0807060504030201),
CRYPTO_bswap8(UINT64_C(0x0102030405060708)));
}