Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.
 
 
 
 
 
 

463 wiersze
15 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/cipher.h>
  57. #include <openssl/nid.h>
  58. #include "../internal.h"
  59. #define c2l(c, l) \
  60. do { \
  61. (l) = ((uint32_t)(*((c)++))); \
  62. (l) |= ((uint32_t)(*((c)++))) << 8L; \
  63. (l) |= ((uint32_t)(*((c)++))) << 16L; \
  64. (l) |= ((uint32_t)(*((c)++))) << 24L; \
  65. } while (0)
  66. #define c2ln(c, l1, l2, n) \
  67. do { \
  68. (c) += (n); \
  69. (l1) = (l2) = 0; \
  70. switch (n) { \
  71. case 8: \
  72. (l2) = ((uint32_t)(*(--(c)))) << 24L; \
  73. OPENSSL_FALLTHROUGH; \
  74. case 7: \
  75. (l2) |= ((uint32_t)(*(--(c)))) << 16L; \
  76. OPENSSL_FALLTHROUGH; \
  77. case 6: \
  78. (l2) |= ((uint32_t)(*(--(c)))) << 8L; \
  79. OPENSSL_FALLTHROUGH; \
  80. case 5: \
  81. (l2) |= ((uint32_t)(*(--(c)))); \
  82. OPENSSL_FALLTHROUGH; \
  83. case 4: \
  84. (l1) = ((uint32_t)(*(--(c)))) << 24L; \
  85. OPENSSL_FALLTHROUGH; \
  86. case 3: \
  87. (l1) |= ((uint32_t)(*(--(c)))) << 16L; \
  88. OPENSSL_FALLTHROUGH; \
  89. case 2: \
  90. (l1) |= ((uint32_t)(*(--(c)))) << 8L; \
  91. OPENSSL_FALLTHROUGH; \
  92. case 1: \
  93. (l1) |= ((uint32_t)(*(--(c)))); \
  94. } \
  95. } while (0)
  96. #define l2c(l, c) \
  97. do { \
  98. *((c)++) = (uint8_t)(((l)) & 0xff); \
  99. *((c)++) = (uint8_t)(((l) >> 8L) & 0xff); \
  100. *((c)++) = (uint8_t)(((l) >> 16L) & 0xff); \
  101. *((c)++) = (uint8_t)(((l) >> 24L) & 0xff); \
  102. } while (0)
  103. #define l2cn(l1, l2, c, n) \
  104. do { \
  105. (c) += (n); \
  106. switch (n) { \
  107. case 8: \
  108. *(--(c)) = (uint8_t)(((l2) >> 24L) & 0xff); \
  109. OPENSSL_FALLTHROUGH; \
  110. case 7: \
  111. *(--(c)) = (uint8_t)(((l2) >> 16L) & 0xff); \
  112. OPENSSL_FALLTHROUGH; \
  113. case 6: \
  114. *(--(c)) = (uint8_t)(((l2) >> 8L) & 0xff); \
  115. OPENSSL_FALLTHROUGH; \
  116. case 5: \
  117. *(--(c)) = (uint8_t)(((l2)) & 0xff); \
  118. OPENSSL_FALLTHROUGH; \
  119. case 4: \
  120. *(--(c)) = (uint8_t)(((l1) >> 24L) & 0xff); \
  121. OPENSSL_FALLTHROUGH; \
  122. case 3: \
  123. *(--(c)) = (uint8_t)(((l1) >> 16L) & 0xff); \
  124. OPENSSL_FALLTHROUGH; \
  125. case 2: \
  126. *(--(c)) = (uint8_t)(((l1) >> 8L) & 0xff); \
  127. OPENSSL_FALLTHROUGH; \
  128. case 1: \
  129. *(--(c)) = (uint8_t)(((l1)) & 0xff); \
  130. } \
  131. } while (0)
  132. typedef struct rc2_key_st { uint16_t data[64]; } RC2_KEY;
  133. static void RC2_encrypt(uint32_t *d, RC2_KEY *key) {
  134. int i, n;
  135. uint16_t *p0, *p1;
  136. uint16_t x0, x1, x2, x3, t;
  137. uint32_t l;
  138. l = d[0];
  139. x0 = (uint16_t)l & 0xffff;
  140. x1 = (uint16_t)(l >> 16L);
  141. l = d[1];
  142. x2 = (uint16_t)l & 0xffff;
  143. x3 = (uint16_t)(l >> 16L);
  144. n = 3;
  145. i = 5;
  146. p0 = p1 = &key->data[0];
  147. for (;;) {
  148. t = (x0 + (x1 & ~x3) + (x2 & x3) + *(p0++)) & 0xffff;
  149. x0 = (t << 1) | (t >> 15);
  150. t = (x1 + (x2 & ~x0) + (x3 & x0) + *(p0++)) & 0xffff;
  151. x1 = (t << 2) | (t >> 14);
  152. t = (x2 + (x3 & ~x1) + (x0 & x1) + *(p0++)) & 0xffff;
  153. x2 = (t << 3) | (t >> 13);
  154. t = (x3 + (x0 & ~x2) + (x1 & x2) + *(p0++)) & 0xffff;
  155. x3 = (t << 5) | (t >> 11);
  156. if (--i == 0) {
  157. if (--n == 0) {
  158. break;
  159. }
  160. i = (n == 2) ? 6 : 5;
  161. x0 += p1[x3 & 0x3f];
  162. x1 += p1[x0 & 0x3f];
  163. x2 += p1[x1 & 0x3f];
  164. x3 += p1[x2 & 0x3f];
  165. }
  166. }
  167. d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L);
  168. d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L);
  169. }
  170. static void RC2_decrypt(uint32_t *d, RC2_KEY *key) {
  171. int i, n;
  172. uint16_t *p0, *p1;
  173. uint16_t x0, x1, x2, x3, t;
  174. uint32_t l;
  175. l = d[0];
  176. x0 = (uint16_t)l & 0xffff;
  177. x1 = (uint16_t)(l >> 16L);
  178. l = d[1];
  179. x2 = (uint16_t)l & 0xffff;
  180. x3 = (uint16_t)(l >> 16L);
  181. n = 3;
  182. i = 5;
  183. p0 = &key->data[63];
  184. p1 = &key->data[0];
  185. for (;;) {
  186. t = ((x3 << 11) | (x3 >> 5)) & 0xffff;
  187. x3 = (t - (x0 & ~x2) - (x1 & x2) - *(p0--)) & 0xffff;
  188. t = ((x2 << 13) | (x2 >> 3)) & 0xffff;
  189. x2 = (t - (x3 & ~x1) - (x0 & x1) - *(p0--)) & 0xffff;
  190. t = ((x1 << 14) | (x1 >> 2)) & 0xffff;
  191. x1 = (t - (x2 & ~x0) - (x3 & x0) - *(p0--)) & 0xffff;
  192. t = ((x0 << 15) | (x0 >> 1)) & 0xffff;
  193. x0 = (t - (x1 & ~x3) - (x2 & x3) - *(p0--)) & 0xffff;
  194. if (--i == 0) {
  195. if (--n == 0) {
  196. break;
  197. }
  198. i = (n == 2) ? 6 : 5;
  199. x3 = (x3 - p1[x2 & 0x3f]) & 0xffff;
  200. x2 = (x2 - p1[x1 & 0x3f]) & 0xffff;
  201. x1 = (x1 - p1[x0 & 0x3f]) & 0xffff;
  202. x0 = (x0 - p1[x3 & 0x3f]) & 0xffff;
  203. }
  204. }
  205. d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L);
  206. d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L);
  207. }
  208. static void RC2_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
  209. RC2_KEY *ks, uint8_t *iv, int encrypt) {
  210. uint32_t tin0, tin1;
  211. uint32_t tout0, tout1, xor0, xor1;
  212. long l = length;
  213. uint32_t tin[2];
  214. if (encrypt) {
  215. c2l(iv, tout0);
  216. c2l(iv, tout1);
  217. iv -= 8;
  218. for (l -= 8; l >= 0; l -= 8) {
  219. c2l(in, tin0);
  220. c2l(in, tin1);
  221. tin0 ^= tout0;
  222. tin1 ^= tout1;
  223. tin[0] = tin0;
  224. tin[1] = tin1;
  225. RC2_encrypt(tin, ks);
  226. tout0 = tin[0];
  227. l2c(tout0, out);
  228. tout1 = tin[1];
  229. l2c(tout1, out);
  230. }
  231. if (l != -8) {
  232. c2ln(in, tin0, tin1, l + 8);
  233. tin0 ^= tout0;
  234. tin1 ^= tout1;
  235. tin[0] = tin0;
  236. tin[1] = tin1;
  237. RC2_encrypt(tin, ks);
  238. tout0 = tin[0];
  239. l2c(tout0, out);
  240. tout1 = tin[1];
  241. l2c(tout1, out);
  242. }
  243. l2c(tout0, iv);
  244. l2c(tout1, iv);
  245. } else {
  246. c2l(iv, xor0);
  247. c2l(iv, xor1);
  248. iv -= 8;
  249. for (l -= 8; l >= 0; l -= 8) {
  250. c2l(in, tin0);
  251. tin[0] = tin0;
  252. c2l(in, tin1);
  253. tin[1] = tin1;
  254. RC2_decrypt(tin, ks);
  255. tout0 = tin[0] ^ xor0;
  256. tout1 = tin[1] ^ xor1;
  257. l2c(tout0, out);
  258. l2c(tout1, out);
  259. xor0 = tin0;
  260. xor1 = tin1;
  261. }
  262. if (l != -8) {
  263. c2l(in, tin0);
  264. tin[0] = tin0;
  265. c2l(in, tin1);
  266. tin[1] = tin1;
  267. RC2_decrypt(tin, ks);
  268. tout0 = tin[0] ^ xor0;
  269. tout1 = tin[1] ^ xor1;
  270. l2cn(tout0, tout1, out, l + 8);
  271. xor0 = tin0;
  272. xor1 = tin1;
  273. }
  274. l2c(xor0, iv);
  275. l2c(xor1, iv);
  276. }
  277. tin[0] = tin[1] = 0;
  278. }
  279. static const uint8_t key_table[256] = {
  280. 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79,
  281. 0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e,
  282. 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5,
  283. 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
  284. 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22,
  285. 0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c,
  286. 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f,
  287. 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
  288. 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b,
  289. 0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7,
  290. 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde,
  291. 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
  292. 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e,
  293. 0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc,
  294. 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85,
  295. 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
  296. 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10,
  297. 0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c,
  298. 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b,
  299. 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
  300. 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68,
  301. 0xfe, 0x7f, 0xc1, 0xad,
  302. };
  303. static void RC2_set_key(RC2_KEY *key, int len, const uint8_t *data, int bits) {
  304. int i, j;
  305. uint8_t *k;
  306. uint16_t *ki;
  307. unsigned int c, d;
  308. k = (uint8_t *)&key->data[0];
  309. *k = 0; // for if there is a zero length key
  310. if (len > 128) {
  311. len = 128;
  312. }
  313. if (bits <= 0) {
  314. bits = 1024;
  315. }
  316. if (bits > 1024) {
  317. bits = 1024;
  318. }
  319. for (i = 0; i < len; i++) {
  320. k[i] = data[i];
  321. }
  322. // expand table
  323. d = k[len - 1];
  324. j = 0;
  325. for (i = len; i < 128; i++, j++) {
  326. d = key_table[(k[j] + d) & 0xff];
  327. k[i] = d;
  328. }
  329. // hmm.... key reduction to 'bits' bits
  330. j = (bits + 7) >> 3;
  331. i = 128 - j;
  332. c = (0xff >> (-bits & 0x07));
  333. d = key_table[k[i] & c];
  334. k[i] = d;
  335. while (i--) {
  336. d = key_table[k[i + j] ^ d];
  337. k[i] = d;
  338. }
  339. // copy from bytes into uint16_t's
  340. ki = &(key->data[63]);
  341. for (i = 127; i >= 0; i -= 2) {
  342. *(ki--) = ((k[i] << 8) | k[i - 1]) & 0xffff;
  343. }
  344. }
  345. typedef struct {
  346. int key_bits; // effective key bits
  347. RC2_KEY ks; // key schedule
  348. } EVP_RC2_KEY;
  349. static int rc2_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
  350. const uint8_t *iv, int enc) {
  351. EVP_RC2_KEY *rc2_key = (EVP_RC2_KEY *)ctx->cipher_data;
  352. RC2_set_key(&rc2_key->ks, EVP_CIPHER_CTX_key_length(ctx), key,
  353. rc2_key->key_bits);
  354. return 1;
  355. }
  356. static int rc2_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
  357. size_t inl) {
  358. EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data;
  359. static const size_t kChunkSize = 0x10000;
  360. while (inl >= kChunkSize) {
  361. RC2_cbc_encrypt(in, out, kChunkSize, &key->ks, ctx->iv, ctx->encrypt);
  362. inl -= kChunkSize;
  363. in += kChunkSize;
  364. out += kChunkSize;
  365. }
  366. if (inl) {
  367. RC2_cbc_encrypt(in, out, inl, &key->ks, ctx->iv, ctx->encrypt);
  368. }
  369. return 1;
  370. }
  371. static int rc2_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) {
  372. EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data;
  373. switch (type) {
  374. case EVP_CTRL_INIT:
  375. key->key_bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  376. return 1;
  377. case EVP_CTRL_SET_RC2_KEY_BITS:
  378. // Should be overridden by later call to |EVP_CTRL_INIT|, but
  379. // people call it, so it may as well work.
  380. key->key_bits = arg;
  381. return 1;
  382. default:
  383. return -1;
  384. }
  385. }
  386. static const EVP_CIPHER rc2_40_cbc = {
  387. NID_rc2_40_cbc,
  388. 8 /* block size */,
  389. 5 /* 40 bit */,
  390. 8 /* iv len */,
  391. sizeof(EVP_RC2_KEY),
  392. EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT,
  393. NULL /* app_data */,
  394. rc2_init_key,
  395. rc2_cbc_cipher,
  396. NULL,
  397. rc2_ctrl,
  398. };
  399. const EVP_CIPHER *EVP_rc2_40_cbc(void) {
  400. return &rc2_40_cbc;
  401. }
  402. static const EVP_CIPHER rc2_cbc = {
  403. NID_rc2_cbc,
  404. 8 /* block size */,
  405. 16 /* 128 bit */,
  406. 8 /* iv len */,
  407. sizeof(EVP_RC2_KEY),
  408. EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT,
  409. NULL /* app_data */,
  410. rc2_init_key,
  411. rc2_cbc_cipher,
  412. NULL,
  413. rc2_ctrl,
  414. };
  415. const EVP_CIPHER *EVP_rc2_cbc(void) {
  416. return &rc2_cbc;
  417. }