boringssl/ssl/test
David Benjamin 81f030b106 Switch OPENSSL_VERSION_NUMBER to 1.1.0.
Although we are derived from 1.0.2, we mimic 1.1.0 in some ways around
our FOO_up_ref functions and opaque libssl types. This causes some
difficulties when porting third-party code as any OPENSSL_VERSION_NUMBER
checks for 1.1.0 APIs we have will be wrong.

Moreover, adding accessors without changing OPENSSL_VERSION_NUMBER can
break external projects. It is common to implement a compatibility
version of an accessor under #ifdef as a static function. This then
conflicts with our headers if we, unlike OpenSSL 1.0.2, have this
function.

This change switches OPENSSL_VERSION_NUMBER to 1.1.0 and atomically adds
enough accessors for software with 1.1.0 support already. The hope is
this will unblock hiding SSL_CTX and SSL_SESSION, which will be
especially useful with C++-ficiation. The cost is we will hit some
growing pains as more 1.1.0 consumers enter the ecosystem and we
converge on the right set of APIs to import from upstream.

It does not remove any 1.0.2 APIs, so we will not require that all
projects support 1.1.0. The exception is APIs which changed in 1.1.0 but
did not change the function signature. Those are breaking changes.
Specifically:

- SSL_CTX_sess_set_get_cb is now const-correct.

- X509_get0_signature is now const-correct.

For C++ consumers only, this change temporarily includes an overload
hack for SSL_CTX_sess_set_get_cb that keeps the old callback working.
This is a workaround for Node not yet supporting OpenSSL 1.1.0.

The version number is set at (the as yet unreleased) 1.1.0g to denote
that this change includes https://github.com/openssl/openssl/pull/4384.

Bug: 91
Change-Id: I5eeb27448a6db4c25c244afac37f9604d9608a76
Reviewed-on: https://boringssl-review.googlesource.com/10340
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
2017-09-29 04:51:27 +00:00
..
runner Revert "Work around a Java client bug when rotating certificates." 2017-09-26 22:27:47 +00:00
async_bio.cc Work around language and compiler bug in memcpy, etc. 2016-12-21 20:34:47 +00:00
async_bio.h Replace Scoped* heap types with bssl::UniquePtr. 2016-09-01 22:22:54 +00:00
bssl_shim.cc Switch OPENSSL_VERSION_NUMBER to 1.1.0. 2017-09-29 04:51:27 +00:00
CMakeLists.txt
fuzzer_tags.h Share all of fuzz/{client,server}.cc into fuzzer.h. 2017-09-07 22:14:12 +00:00
fuzzer.h Add DTLS fuzzers. 2017-09-07 22:26:50 +00:00
packeted_bio.cc Remove support for blocking DTLS timeout handling. 2017-03-01 19:59:28 +00:00
packeted_bio.h Remove support for blocking DTLS timeout handling. 2017-03-01 19:59:28 +00:00
PORTING.md Document that malloc tests require a longer timeout. 2016-09-30 19:13:05 +00:00
README.md Adding PORTING.md for instructions on how to port the test runner 2016-08-16 17:53:28 +00:00
test_config.cc Cut down on some redundant flags. 2017-08-24 16:18:32 +00:00
test_config.h Cut down on some redundant flags. 2017-08-24 16:18:32 +00:00

BoringSSL SSL Tests

This directory contains BoringSSL's protocol-level test suite.

Testing a TLS implementation can be difficult. We need to produce invalid but sufficiently correct handshakes to get our implementation close to its edge cases. TLS's cryptographic steps mean we cannot use a transcript and effectively need a TLS implementation on the other end. But we do not wish to litter BoringSSL with options for bugs to test against.

Instead, we use a fork of the Go crypto/tls package, heavily patched with configurable bugs. This code, along with a test suite and harness written in Go, lives in the runner directory. The harness runs BoringSSL via a C/C++ shim binary which lives in this directory. All communication with the shim binary occurs with command-line flags, sockets, and standard I/O.

This strategy also ensures we always test against a second implementation. All features should be implemented twice, once in C for BoringSSL and once in Go for testing. If possible, the Go code should be suitable for potentially upstreaming. However, sometimes test code has different needs. For example, our test DTLS code enforces strict ordering on sequence numbers and has controlled packet drop simulation.

To run the tests manually, run go test from the runner directory. It takes command-line flags found at the top of runner/runner.go. The -help option also works after using go test -c to make a runner.test binary first.

If adding a new test, these files may be a good starting point:

  • runner/runner.go: the test harness and all the individual tests.
  • runner/common.go: contains the Config and ProtocolBugs struct which control the Go TLS implementation's behavior.
  • test_config.h, test_config.cc: the command-line flags which control the shim's behavior.
  • bssl_shim.cc: the shim binary itself.

For porting the test suite to a different implementation see PORTING.md.