17cf2cb1d2
Most C standard library functions are undefined if passed NULL, even when the corresponding length is zero. This gives them (and, in turn, all functions which call them) surprising behavior on empty arrays. Some compilers will miscompile code due to this rule. See also https://www.imperialviolet.org/2016/06/26/nonnull.html Add OPENSSL_memcpy, etc., wrappers which avoid this problem. BUG=23 Change-Id: I95f42b23e92945af0e681264fffaf578e7f8465e Reviewed-on: https://boringssl-review.googlesource.com/12928 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
872 lines
21 KiB
C
872 lines
21 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/bn.h>
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
#define BN_MUL_RECURSIVE_SIZE_NORMAL 16
|
|
#define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL
|
|
|
|
|
|
static void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
|
|
int nb) {
|
|
BN_ULONG *rr;
|
|
|
|
if (na < nb) {
|
|
int itmp;
|
|
BN_ULONG *ltmp;
|
|
|
|
itmp = na;
|
|
na = nb;
|
|
nb = itmp;
|
|
ltmp = a;
|
|
a = b;
|
|
b = ltmp;
|
|
}
|
|
rr = &(r[na]);
|
|
if (nb <= 0) {
|
|
(void)bn_mul_words(r, a, na, 0);
|
|
return;
|
|
} else {
|
|
rr[0] = bn_mul_words(r, a, na, b[0]);
|
|
}
|
|
|
|
for (;;) {
|
|
if (--nb <= 0) {
|
|
return;
|
|
}
|
|
rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
|
|
if (--nb <= 0) {
|
|
return;
|
|
}
|
|
rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
|
|
if (--nb <= 0) {
|
|
return;
|
|
}
|
|
rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
|
|
if (--nb <= 0) {
|
|
return;
|
|
}
|
|
rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
|
|
rr += 4;
|
|
r += 4;
|
|
b += 4;
|
|
}
|
|
}
|
|
|
|
#if !defined(OPENSSL_X86) || defined(OPENSSL_NO_ASM)
|
|
/* Here follows specialised variants of bn_add_words() and bn_sub_words(). They
|
|
* have the property performing operations on arrays of different sizes. The
|
|
* sizes of those arrays is expressed through cl, which is the common length (
|
|
* basicall, min(len(a),len(b)) ), and dl, which is the delta between the two
|
|
* lengths, calculated as len(a)-len(b). All lengths are the number of
|
|
* BN_ULONGs... For the operations that require a result array as parameter,
|
|
* it must have the length cl+abs(dl). These functions should probably end up
|
|
* in bn_asm.c as soon as there are assembler counterparts for the systems that
|
|
* use assembler files. */
|
|
|
|
static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
|
|
const BN_ULONG *b, int cl, int dl) {
|
|
BN_ULONG c, t;
|
|
|
|
assert(cl >= 0);
|
|
c = bn_sub_words(r, a, b, cl);
|
|
|
|
if (dl == 0) {
|
|
return c;
|
|
}
|
|
|
|
r += cl;
|
|
a += cl;
|
|
b += cl;
|
|
|
|
if (dl < 0) {
|
|
for (;;) {
|
|
t = b[0];
|
|
r[0] = (0 - t - c) & BN_MASK2;
|
|
if (t != 0) {
|
|
c = 1;
|
|
}
|
|
if (++dl >= 0) {
|
|
break;
|
|
}
|
|
|
|
t = b[1];
|
|
r[1] = (0 - t - c) & BN_MASK2;
|
|
if (t != 0) {
|
|
c = 1;
|
|
}
|
|
if (++dl >= 0) {
|
|
break;
|
|
}
|
|
|
|
t = b[2];
|
|
r[2] = (0 - t - c) & BN_MASK2;
|
|
if (t != 0) {
|
|
c = 1;
|
|
}
|
|
if (++dl >= 0) {
|
|
break;
|
|
}
|
|
|
|
t = b[3];
|
|
r[3] = (0 - t - c) & BN_MASK2;
|
|
if (t != 0) {
|
|
c = 1;
|
|
}
|
|
if (++dl >= 0) {
|
|
break;
|
|
}
|
|
|
|
b += 4;
|
|
r += 4;
|
|
}
|
|
} else {
|
|
int save_dl = dl;
|
|
while (c) {
|
|
t = a[0];
|
|
r[0] = (t - c) & BN_MASK2;
|
|
if (t != 0) {
|
|
c = 0;
|
|
}
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
|
|
t = a[1];
|
|
r[1] = (t - c) & BN_MASK2;
|
|
if (t != 0) {
|
|
c = 0;
|
|
}
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
|
|
t = a[2];
|
|
r[2] = (t - c) & BN_MASK2;
|
|
if (t != 0) {
|
|
c = 0;
|
|
}
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
|
|
t = a[3];
|
|
r[3] = (t - c) & BN_MASK2;
|
|
if (t != 0) {
|
|
c = 0;
|
|
}
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
|
|
save_dl = dl;
|
|
a += 4;
|
|
r += 4;
|
|
}
|
|
if (dl > 0) {
|
|
if (save_dl > dl) {
|
|
switch (save_dl - dl) {
|
|
case 1:
|
|
r[1] = a[1];
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
case 2:
|
|
r[2] = a[2];
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
case 3:
|
|
r[3] = a[3];
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
}
|
|
a += 4;
|
|
r += 4;
|
|
}
|
|
}
|
|
|
|
if (dl > 0) {
|
|
for (;;) {
|
|
r[0] = a[0];
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
r[1] = a[1];
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
r[2] = a[2];
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
r[3] = a[3];
|
|
if (--dl <= 0) {
|
|
break;
|
|
}
|
|
|
|
a += 4;
|
|
r += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
return c;
|
|
}
|
|
#else
|
|
/* On other platforms the function is defined in asm. */
|
|
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
|
|
int cl, int dl);
|
|
#endif
|
|
|
|
/* Karatsuba recursive multiplication algorithm
|
|
* (cf. Knuth, The Art of Computer Programming, Vol. 2) */
|
|
|
|
/* r is 2*n2 words in size,
|
|
* a and b are both n2 words in size.
|
|
* n2 must be a power of 2.
|
|
* We multiply and return the result.
|
|
* t must be 2*n2 words in size
|
|
* We calculate
|
|
* a[0]*b[0]
|
|
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
|
|
* a[1]*b[1]
|
|
*/
|
|
/* dnX may not be positive, but n2/2+dnX has to be */
|
|
static void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
|
int dna, int dnb, BN_ULONG *t) {
|
|
int n = n2 / 2, c1, c2;
|
|
int tna = n + dna, tnb = n + dnb;
|
|
unsigned int neg, zero;
|
|
BN_ULONG ln, lo, *p;
|
|
|
|
/* Only call bn_mul_comba 8 if n2 == 8 and the
|
|
* two arrays are complete [steve]
|
|
*/
|
|
if (n2 == 8 && dna == 0 && dnb == 0) {
|
|
bn_mul_comba8(r, a, b);
|
|
return;
|
|
}
|
|
|
|
/* Else do normal multiply */
|
|
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
|
|
bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
|
|
if ((dna + dnb) < 0) {
|
|
OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
|
|
sizeof(BN_ULONG) * -(dna + dnb));
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* r=(a[0]-a[1])*(b[1]-b[0]) */
|
|
c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
|
|
c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
|
|
zero = neg = 0;
|
|
switch (c1 * 3 + c2) {
|
|
case -4:
|
|
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
|
|
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
|
|
break;
|
|
case -3:
|
|
zero = 1;
|
|
break;
|
|
case -2:
|
|
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
|
|
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
|
|
neg = 1;
|
|
break;
|
|
case -1:
|
|
case 0:
|
|
case 1:
|
|
zero = 1;
|
|
break;
|
|
case 2:
|
|
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
|
|
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
|
|
neg = 1;
|
|
break;
|
|
case 3:
|
|
zero = 1;
|
|
break;
|
|
case 4:
|
|
bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
|
|
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
|
|
break;
|
|
}
|
|
|
|
if (n == 4 && dna == 0 && dnb == 0) {
|
|
/* XXX: bn_mul_comba4 could take extra args to do this well */
|
|
if (!zero) {
|
|
bn_mul_comba4(&(t[n2]), t, &(t[n]));
|
|
} else {
|
|
OPENSSL_memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
|
|
}
|
|
|
|
bn_mul_comba4(r, a, b);
|
|
bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
|
|
} else if (n == 8 && dna == 0 && dnb == 0) {
|
|
/* XXX: bn_mul_comba8 could take extra args to do this well */
|
|
if (!zero) {
|
|
bn_mul_comba8(&(t[n2]), t, &(t[n]));
|
|
} else {
|
|
OPENSSL_memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
|
|
}
|
|
|
|
bn_mul_comba8(r, a, b);
|
|
bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
|
|
} else {
|
|
p = &(t[n2 * 2]);
|
|
if (!zero) {
|
|
bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
|
|
} else {
|
|
OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
|
|
}
|
|
bn_mul_recursive(r, a, b, n, 0, 0, p);
|
|
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
|
|
}
|
|
|
|
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
|
|
* r[10] holds (a[0]*b[0])
|
|
* r[32] holds (b[1]*b[1]) */
|
|
|
|
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
|
|
|
|
if (neg) {
|
|
/* if t[32] is negative */
|
|
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
|
|
} else {
|
|
/* Might have a carry */
|
|
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
|
|
}
|
|
|
|
/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
|
|
* r[10] holds (a[0]*b[0])
|
|
* r[32] holds (b[1]*b[1])
|
|
* c1 holds the carry bits */
|
|
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
|
|
if (c1) {
|
|
p = &(r[n + n2]);
|
|
lo = *p;
|
|
ln = (lo + c1) & BN_MASK2;
|
|
*p = ln;
|
|
|
|
/* The overflow will stop before we over write
|
|
* words we should not overwrite */
|
|
if (ln < (BN_ULONG)c1) {
|
|
do {
|
|
p++;
|
|
lo = *p;
|
|
ln = (lo + 1) & BN_MASK2;
|
|
*p = ln;
|
|
} while (ln == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* n+tn is the word length
|
|
* t needs to be n*4 is size, as does r */
|
|
/* tnX may not be negative but less than n */
|
|
static void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
|
|
int tna, int tnb, BN_ULONG *t) {
|
|
int i, j, n2 = n * 2;
|
|
int c1, c2, neg;
|
|
BN_ULONG ln, lo, *p;
|
|
|
|
if (n < 8) {
|
|
bn_mul_normal(r, a, n + tna, b, n + tnb);
|
|
return;
|
|
}
|
|
|
|
/* r=(a[0]-a[1])*(b[1]-b[0]) */
|
|
c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
|
|
c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
|
|
neg = 0;
|
|
switch (c1 * 3 + c2) {
|
|
case -4:
|
|
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
|
|
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
|
|
break;
|
|
case -3:
|
|
/* break; */
|
|
case -2:
|
|
bn_sub_part_words(t, &(a[n]), a, tna, tna - n); /* - */
|
|
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); /* + */
|
|
neg = 1;
|
|
break;
|
|
case -1:
|
|
case 0:
|
|
case 1:
|
|
/* break; */
|
|
case 2:
|
|
bn_sub_part_words(t, a, &(a[n]), tna, n - tna); /* + */
|
|
bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); /* - */
|
|
neg = 1;
|
|
break;
|
|
case 3:
|
|
/* break; */
|
|
case 4:
|
|
bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
|
|
bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
|
|
break;
|
|
}
|
|
|
|
if (n == 8) {
|
|
bn_mul_comba8(&(t[n2]), t, &(t[n]));
|
|
bn_mul_comba8(r, a, b);
|
|
bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
|
|
OPENSSL_memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
|
|
} else {
|
|
p = &(t[n2 * 2]);
|
|
bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
|
|
bn_mul_recursive(r, a, b, n, 0, 0, p);
|
|
i = n / 2;
|
|
/* If there is only a bottom half to the number,
|
|
* just do it */
|
|
if (tna > tnb) {
|
|
j = tna - i;
|
|
} else {
|
|
j = tnb - i;
|
|
}
|
|
|
|
if (j == 0) {
|
|
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
|
|
OPENSSL_memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));
|
|
} else if (j > 0) {
|
|
/* eg, n == 16, i == 8 and tn == 11 */
|
|
bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
|
|
OPENSSL_memset(&(r[n2 + tna + tnb]), 0,
|
|
sizeof(BN_ULONG) * (n2 - tna - tnb));
|
|
} else {
|
|
/* (j < 0) eg, n == 16, i == 8 and tn == 5 */
|
|
OPENSSL_memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
|
|
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
|
|
tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
|
|
bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
|
|
} else {
|
|
for (;;) {
|
|
i /= 2;
|
|
/* these simplified conditions work
|
|
* exclusively because difference
|
|
* between tna and tnb is 1 or 0 */
|
|
if (i < tna || i < tnb) {
|
|
bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i,
|
|
tnb - i, p);
|
|
break;
|
|
} else if (i == tna || i == tnb) {
|
|
bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i,
|
|
p);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
|
|
* r[10] holds (a[0]*b[0])
|
|
* r[32] holds (b[1]*b[1])
|
|
*/
|
|
|
|
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
|
|
|
|
if (neg) {
|
|
/* if t[32] is negative */
|
|
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
|
|
} else {
|
|
/* Might have a carry */
|
|
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
|
|
}
|
|
|
|
/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
|
|
* r[10] holds (a[0]*b[0])
|
|
* r[32] holds (b[1]*b[1])
|
|
* c1 holds the carry bits */
|
|
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
|
|
if (c1) {
|
|
p = &(r[n + n2]);
|
|
lo = *p;
|
|
ln = (lo + c1) & BN_MASK2;
|
|
*p = ln;
|
|
|
|
/* The overflow will stop before we over write
|
|
* words we should not overwrite */
|
|
if (ln < (BN_ULONG)c1) {
|
|
do {
|
|
p++;
|
|
lo = *p;
|
|
ln = (lo + 1) & BN_MASK2;
|
|
*p = ln;
|
|
} while (ln == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
|
|
int ret = 0;
|
|
int top, al, bl;
|
|
BIGNUM *rr;
|
|
int i;
|
|
BIGNUM *t = NULL;
|
|
int j = 0, k;
|
|
|
|
al = a->top;
|
|
bl = b->top;
|
|
|
|
if ((al == 0) || (bl == 0)) {
|
|
BN_zero(r);
|
|
return 1;
|
|
}
|
|
top = al + bl;
|
|
|
|
BN_CTX_start(ctx);
|
|
if ((r == a) || (r == b)) {
|
|
if ((rr = BN_CTX_get(ctx)) == NULL) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
rr = r;
|
|
}
|
|
rr->neg = a->neg ^ b->neg;
|
|
|
|
i = al - bl;
|
|
if (i == 0) {
|
|
if (al == 8) {
|
|
if (bn_wexpand(rr, 16) == NULL) {
|
|
goto err;
|
|
}
|
|
rr->top = 16;
|
|
bn_mul_comba8(rr->d, a->d, b->d);
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
static const int kMulNormalSize = 16;
|
|
if (al >= kMulNormalSize && bl >= kMulNormalSize) {
|
|
if (i >= -1 && i <= 1) {
|
|
/* Find out the power of two lower or equal
|
|
to the longest of the two numbers */
|
|
if (i >= 0) {
|
|
j = BN_num_bits_word((BN_ULONG)al);
|
|
}
|
|
if (i == -1) {
|
|
j = BN_num_bits_word((BN_ULONG)bl);
|
|
}
|
|
j = 1 << (j - 1);
|
|
assert(j <= al || j <= bl);
|
|
k = j + j;
|
|
t = BN_CTX_get(ctx);
|
|
if (t == NULL) {
|
|
goto err;
|
|
}
|
|
if (al > j || bl > j) {
|
|
if (bn_wexpand(t, k * 4) == NULL) {
|
|
goto err;
|
|
}
|
|
if (bn_wexpand(rr, k * 4) == NULL) {
|
|
goto err;
|
|
}
|
|
bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
|
|
} else {
|
|
/* al <= j || bl <= j */
|
|
if (bn_wexpand(t, k * 2) == NULL) {
|
|
goto err;
|
|
}
|
|
if (bn_wexpand(rr, k * 2) == NULL) {
|
|
goto err;
|
|
}
|
|
bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
|
|
}
|
|
rr->top = top;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
if (bn_wexpand(rr, top) == NULL) {
|
|
goto err;
|
|
}
|
|
rr->top = top;
|
|
bn_mul_normal(rr->d, a->d, al, b->d, bl);
|
|
|
|
end:
|
|
bn_correct_top(rr);
|
|
if (r != rr && !BN_copy(r, rr)) {
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/* tmp must have 2*n words */
|
|
static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp) {
|
|
int i, j, max;
|
|
const BN_ULONG *ap;
|
|
BN_ULONG *rp;
|
|
|
|
max = n * 2;
|
|
ap = a;
|
|
rp = r;
|
|
rp[0] = rp[max - 1] = 0;
|
|
rp++;
|
|
j = n;
|
|
|
|
if (--j > 0) {
|
|
ap++;
|
|
rp[j] = bn_mul_words(rp, ap, j, ap[-1]);
|
|
rp += 2;
|
|
}
|
|
|
|
for (i = n - 2; i > 0; i--) {
|
|
j--;
|
|
ap++;
|
|
rp[j] = bn_mul_add_words(rp, ap, j, ap[-1]);
|
|
rp += 2;
|
|
}
|
|
|
|
bn_add_words(r, r, r, max);
|
|
|
|
/* There will not be a carry */
|
|
|
|
bn_sqr_words(tmp, a, n);
|
|
|
|
bn_add_words(r, r, tmp, max);
|
|
}
|
|
|
|
/* r is 2*n words in size,
|
|
* a and b are both n words in size. (There's not actually a 'b' here ...)
|
|
* n must be a power of 2.
|
|
* We multiply and return the result.
|
|
* t must be 2*n words in size
|
|
* We calculate
|
|
* a[0]*b[0]
|
|
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
|
|
* a[1]*b[1]
|
|
*/
|
|
static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t) {
|
|
int n = n2 / 2;
|
|
int zero, c1;
|
|
BN_ULONG ln, lo, *p;
|
|
|
|
if (n2 == 4) {
|
|
bn_sqr_comba4(r, a);
|
|
return;
|
|
} else if (n2 == 8) {
|
|
bn_sqr_comba8(r, a);
|
|
return;
|
|
}
|
|
if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
|
|
bn_sqr_normal(r, a, n2, t);
|
|
return;
|
|
}
|
|
/* r=(a[0]-a[1])*(a[1]-a[0]) */
|
|
c1 = bn_cmp_words(a, &(a[n]), n);
|
|
zero = 0;
|
|
if (c1 > 0) {
|
|
bn_sub_words(t, a, &(a[n]), n);
|
|
} else if (c1 < 0) {
|
|
bn_sub_words(t, &(a[n]), a, n);
|
|
} else {
|
|
zero = 1;
|
|
}
|
|
|
|
/* The result will always be negative unless it is zero */
|
|
p = &(t[n2 * 2]);
|
|
|
|
if (!zero) {
|
|
bn_sqr_recursive(&(t[n2]), t, n, p);
|
|
} else {
|
|
OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
|
|
}
|
|
bn_sqr_recursive(r, a, n, p);
|
|
bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
|
|
|
|
/* t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
|
|
* r[10] holds (a[0]*b[0])
|
|
* r[32] holds (b[1]*b[1]) */
|
|
|
|
c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
|
|
|
|
/* t[32] is negative */
|
|
c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
|
|
|
|
/* t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
|
|
* r[10] holds (a[0]*a[0])
|
|
* r[32] holds (a[1]*a[1])
|
|
* c1 holds the carry bits */
|
|
c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
|
|
if (c1) {
|
|
p = &(r[n + n2]);
|
|
lo = *p;
|
|
ln = (lo + c1) & BN_MASK2;
|
|
*p = ln;
|
|
|
|
/* The overflow will stop before we over write
|
|
* words we should not overwrite */
|
|
if (ln < (BN_ULONG)c1) {
|
|
do {
|
|
p++;
|
|
lo = *p;
|
|
ln = (lo + 1) & BN_MASK2;
|
|
*p = ln;
|
|
} while (ln == 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
|
|
BN_ULONG ll;
|
|
|
|
w &= BN_MASK2;
|
|
if (!bn->top) {
|
|
return 1;
|
|
}
|
|
|
|
if (w == 0) {
|
|
BN_zero(bn);
|
|
return 1;
|
|
}
|
|
|
|
ll = bn_mul_words(bn->d, bn->d, bn->top, w);
|
|
if (ll) {
|
|
if (bn_wexpand(bn, bn->top + 1) == NULL) {
|
|
return 0;
|
|
}
|
|
bn->d[bn->top++] = ll;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
|
|
int max, al;
|
|
int ret = 0;
|
|
BIGNUM *tmp, *rr;
|
|
|
|
al = a->top;
|
|
if (al <= 0) {
|
|
r->top = 0;
|
|
r->neg = 0;
|
|
return 1;
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
rr = (a != r) ? r : BN_CTX_get(ctx);
|
|
tmp = BN_CTX_get(ctx);
|
|
if (!rr || !tmp) {
|
|
goto err;
|
|
}
|
|
|
|
max = 2 * al; /* Non-zero (from above) */
|
|
if (bn_wexpand(rr, max) == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
if (al == 4) {
|
|
bn_sqr_comba4(rr->d, a->d);
|
|
} else if (al == 8) {
|
|
bn_sqr_comba8(rr->d, a->d);
|
|
} else {
|
|
if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
|
|
BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
|
|
bn_sqr_normal(rr->d, a->d, al, t);
|
|
} else {
|
|
int j, k;
|
|
|
|
j = BN_num_bits_word((BN_ULONG)al);
|
|
j = 1 << (j - 1);
|
|
k = j + j;
|
|
if (al == j) {
|
|
if (bn_wexpand(tmp, k * 2) == NULL) {
|
|
goto err;
|
|
}
|
|
bn_sqr_recursive(rr->d, a->d, al, tmp->d);
|
|
} else {
|
|
if (bn_wexpand(tmp, max) == NULL) {
|
|
goto err;
|
|
}
|
|
bn_sqr_normal(rr->d, a->d, al, tmp->d);
|
|
}
|
|
}
|
|
}
|
|
|
|
rr->neg = 0;
|
|
/* If the most-significant half of the top word of 'a' is zero, then
|
|
* the square of 'a' will max-1 words. */
|
|
if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) {
|
|
rr->top = max - 1;
|
|
} else {
|
|
rr->top = max;
|
|
}
|
|
|
|
if (rr != r && !BN_copy(r, rr)) {
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|