69a01608f3
This commit fixes a number of crashes caused by malloc failures. They were found using the -malloc-test=0 option to runner.go which runs tests many times, causing a different allocation call to fail in each case. (This test only works on Linux and only looks for crashes caused by allocation failures, not memory leaks or other errors.) This is not the complete set of crashes! More can be found by collecting core dumps from running with -malloc-test=0. Change-Id: Ia61d19f51e373bccb7bc604642c51e043a74bd83 Reviewed-on: https://boringssl-review.googlesource.com/2320 Reviewed-by: Adam Langley <agl@google.com>
1367 lines
39 KiB
C
1367 lines
39 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2005 Nokia. All rights reserved.
|
|
*
|
|
* The portions of the attached software ("Contribution") is developed by
|
|
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
|
|
* license.
|
|
*
|
|
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
|
|
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
|
|
* support (see RFC 4279) to OpenSSL.
|
|
*
|
|
* No patent licenses or other rights except those expressly stated in
|
|
* the OpenSSL open source license shall be deemed granted or received
|
|
* expressly, by implication, estoppel, or otherwise.
|
|
*
|
|
* No assurances are provided by Nokia that the Contribution does not
|
|
* infringe the patent or other intellectual property rights of any third
|
|
* party or that the license provides you with all the necessary rights
|
|
* to make use of the Contribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
|
|
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
|
|
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
|
|
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
|
|
* OTHERWISE. */
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/hmac.h>
|
|
#include <openssl/md5.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/obj.h>
|
|
#include <openssl/rand.h>
|
|
|
|
#include "ssl_locl.h"
|
|
|
|
/* seed1 through seed5 are virtually concatenated */
|
|
static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec,
|
|
int sec_len,
|
|
const void *seed1, int seed1_len,
|
|
const void *seed2, int seed2_len,
|
|
const void *seed3, int seed3_len,
|
|
unsigned char *out, int olen)
|
|
{
|
|
int chunk;
|
|
size_t j;
|
|
EVP_MD_CTX ctx, ctx_tmp, ctx_init;
|
|
EVP_PKEY *mac_key;
|
|
unsigned char A1[EVP_MAX_MD_SIZE];
|
|
size_t A1_len;
|
|
int ret = 0;
|
|
|
|
chunk=EVP_MD_size(md);
|
|
|
|
EVP_MD_CTX_init(&ctx);
|
|
EVP_MD_CTX_init(&ctx_tmp);
|
|
EVP_MD_CTX_init(&ctx_init);
|
|
mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len);
|
|
if (!mac_key)
|
|
goto err;
|
|
if (!EVP_DigestSignInit(&ctx_init,NULL,md, NULL, mac_key))
|
|
goto err;
|
|
if (!EVP_MD_CTX_copy_ex(&ctx,&ctx_init))
|
|
goto err;
|
|
if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len))
|
|
goto err;
|
|
if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len))
|
|
goto err;
|
|
if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len))
|
|
goto err;
|
|
A1_len = EVP_MAX_MD_SIZE;
|
|
if (!EVP_DigestSignFinal(&ctx,A1,&A1_len))
|
|
goto err;
|
|
|
|
for (;;)
|
|
{
|
|
/* Reinit mac contexts */
|
|
if (!EVP_MD_CTX_copy_ex(&ctx,&ctx_init))
|
|
goto err;
|
|
if (!EVP_DigestSignUpdate(&ctx,A1,A1_len))
|
|
goto err;
|
|
if (olen>chunk && !EVP_MD_CTX_copy_ex(&ctx_tmp,&ctx))
|
|
goto err;
|
|
if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len))
|
|
goto err;
|
|
if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len))
|
|
goto err;
|
|
if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len))
|
|
goto err;
|
|
|
|
if (olen > chunk)
|
|
{
|
|
j = olen;
|
|
if (!EVP_DigestSignFinal(&ctx,out,&j))
|
|
goto err;
|
|
out+=j;
|
|
olen-=j;
|
|
/* calc the next A1 value */
|
|
A1_len = EVP_MAX_MD_SIZE;
|
|
if (!EVP_DigestSignFinal(&ctx_tmp,A1,&A1_len))
|
|
goto err;
|
|
}
|
|
else /* last one */
|
|
{
|
|
A1_len = EVP_MAX_MD_SIZE;
|
|
if (!EVP_DigestSignFinal(&ctx,A1,&A1_len))
|
|
goto err;
|
|
memcpy(out,A1,olen);
|
|
break;
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
EVP_PKEY_free(mac_key);
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
EVP_MD_CTX_cleanup(&ctx_tmp);
|
|
EVP_MD_CTX_cleanup(&ctx_init);
|
|
OPENSSL_cleanse(A1,sizeof(A1));
|
|
return ret;
|
|
}
|
|
|
|
/* seed1 through seed5 are virtually concatenated */
|
|
static int tls1_PRF(long digest_mask,
|
|
const void *seed1, int seed1_len,
|
|
const void *seed2, int seed2_len,
|
|
const void *seed3, int seed3_len,
|
|
const unsigned char *sec, int slen,
|
|
unsigned char *out1,
|
|
unsigned char *out2, int olen)
|
|
{
|
|
int len,i,idx,count;
|
|
const unsigned char *S1;
|
|
long m;
|
|
const EVP_MD *md;
|
|
int ret = 0;
|
|
|
|
/* Count number of digests and partition sec evenly */
|
|
count=0;
|
|
for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) {
|
|
if ((m<<TLS1_PRF_DGST_SHIFT) & digest_mask) count++;
|
|
}
|
|
len=slen/count;
|
|
if (count == 1)
|
|
slen = 0;
|
|
S1=sec;
|
|
memset(out1,0,olen);
|
|
for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) {
|
|
if ((m<<TLS1_PRF_DGST_SHIFT) & digest_mask) {
|
|
if (!md) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_PRF, SSL_R_UNSUPPORTED_DIGEST_TYPE);
|
|
goto err;
|
|
}
|
|
if (!tls1_P_hash(md ,S1,len+(slen&1),
|
|
seed1,seed1_len,seed2,seed2_len,seed3,seed3_len,
|
|
out2,olen))
|
|
goto err;
|
|
S1+=len;
|
|
for (i=0; i<olen; i++)
|
|
{
|
|
out1[i]^=out2[i];
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int tls1_generate_key_block(SSL *s, unsigned char *km,
|
|
unsigned char *tmp, int num)
|
|
{
|
|
int ret;
|
|
ret = tls1_PRF(ssl_get_algorithm2(s),
|
|
TLS_MD_KEY_EXPANSION_CONST,TLS_MD_KEY_EXPANSION_CONST_SIZE,
|
|
s->s3->server_random,SSL3_RANDOM_SIZE,
|
|
s->s3->client_random,SSL3_RANDOM_SIZE,
|
|
s->session->master_key,s->session->master_key_length,
|
|
km,tmp,num);
|
|
return ret;
|
|
}
|
|
|
|
/* tls1_aead_ctx_init allocates |*aead_ctx|, if needed and returns 1. It
|
|
* returns 0 on malloc error. */
|
|
static int tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx)
|
|
{
|
|
if (*aead_ctx != NULL)
|
|
EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx);
|
|
else
|
|
{
|
|
*aead_ctx = (SSL_AEAD_CTX*) OPENSSL_malloc(sizeof(SSL_AEAD_CTX));
|
|
if (*aead_ctx == NULL)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, tls1_aead_ctx_init, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void tls1_cleanup_enc_ctx(EVP_CIPHER_CTX **ctx)
|
|
{
|
|
if (*ctx != NULL)
|
|
EVP_CIPHER_CTX_free(*ctx);
|
|
*ctx = NULL;
|
|
}
|
|
|
|
static void tls1_cleanup_hash_ctx(EVP_MD_CTX **ctx)
|
|
{
|
|
if (*ctx != NULL)
|
|
EVP_MD_CTX_destroy(*ctx);
|
|
*ctx = NULL;
|
|
}
|
|
|
|
static int tls1_change_cipher_state_aead(SSL *s, char is_read,
|
|
const unsigned char *key, unsigned key_len,
|
|
const unsigned char *iv, unsigned iv_len,
|
|
const unsigned char *mac_secret, unsigned mac_secret_len)
|
|
{
|
|
const EVP_AEAD *aead = s->s3->tmp.new_aead;
|
|
SSL_AEAD_CTX *aead_ctx;
|
|
/* mac_key_and_key is used to merge the MAC and cipher keys for an AEAD
|
|
* which simulates pre-AEAD cipher suites. It needs to be large enough
|
|
* to cope with the largest pair of keys. */
|
|
uint8_t mac_key_and_key[32 /* HMAC(SHA256) */ + 32 /* AES-256 */];
|
|
|
|
if (is_read)
|
|
{
|
|
tls1_cleanup_enc_ctx(&s->enc_read_ctx);
|
|
tls1_cleanup_hash_ctx(&s->read_hash);
|
|
}
|
|
else
|
|
{
|
|
tls1_cleanup_enc_ctx(&s->enc_write_ctx);
|
|
tls1_cleanup_hash_ctx(&s->write_hash);
|
|
}
|
|
|
|
if (mac_secret_len > 0)
|
|
{
|
|
/* This is a "stateful" AEAD (for compatibility with pre-AEAD
|
|
* cipher suites). */
|
|
if (mac_secret_len + key_len > sizeof(mac_key_and_key))
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
memcpy(mac_key_and_key, mac_secret, mac_secret_len);
|
|
memcpy(mac_key_and_key + mac_secret_len, key, key_len);
|
|
key = mac_key_and_key;
|
|
key_len += mac_secret_len;
|
|
}
|
|
|
|
if (is_read)
|
|
{
|
|
if (!tls1_aead_ctx_init(&s->aead_read_ctx))
|
|
return 0;
|
|
aead_ctx = s->aead_read_ctx;
|
|
}
|
|
else
|
|
{
|
|
if (!tls1_aead_ctx_init(&s->aead_write_ctx))
|
|
return 0;
|
|
aead_ctx = s->aead_write_ctx;
|
|
}
|
|
|
|
if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len,
|
|
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL /* engine */))
|
|
{
|
|
OPENSSL_free(aead_ctx);
|
|
if (is_read)
|
|
s->aead_read_ctx = NULL;
|
|
else
|
|
s->aead_write_ctx = NULL;
|
|
return 0;
|
|
}
|
|
if (iv_len > sizeof(aead_ctx->fixed_nonce))
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
memcpy(aead_ctx->fixed_nonce, iv, iv_len);
|
|
aead_ctx->fixed_nonce_len = iv_len;
|
|
aead_ctx->variable_nonce_len = 8; /* correct for all true AEADs so far. */
|
|
if (s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD)
|
|
aead_ctx->variable_nonce_len = 0;
|
|
aead_ctx->variable_nonce_included_in_record =
|
|
(s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD) != 0;
|
|
if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead))
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_aead, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
aead_ctx->tag_len = EVP_AEAD_max_overhead(aead);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void tls1_cleanup_aead_ctx(SSL_AEAD_CTX **ctx)
|
|
{
|
|
if (*ctx != NULL)
|
|
{
|
|
EVP_AEAD_CTX_cleanup(&(*ctx)->ctx);
|
|
OPENSSL_free(*ctx);
|
|
}
|
|
*ctx = NULL;
|
|
}
|
|
|
|
/* tls1_change_cipher_state_cipher performs the work needed to switch cipher
|
|
* states when using EVP_CIPHER. The argument |is_read| is true iff this
|
|
* function is being called due to reading, as opposed to writing, a
|
|
* ChangeCipherSpec message. In order to support export ciphersuites,
|
|
* use_client_keys indicates whether the key material provided is in the
|
|
* "client write" direction. */
|
|
static int tls1_change_cipher_state_cipher(
|
|
SSL *s, char is_read, char use_client_keys,
|
|
const unsigned char *mac_secret, unsigned mac_secret_len,
|
|
const unsigned char *key, unsigned key_len,
|
|
const unsigned char *iv, unsigned iv_len)
|
|
{
|
|
const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc;
|
|
EVP_CIPHER_CTX *cipher_ctx;
|
|
EVP_MD_CTX *mac_ctx;
|
|
|
|
if (is_read)
|
|
tls1_cleanup_aead_ctx(&s->aead_read_ctx);
|
|
else
|
|
tls1_cleanup_aead_ctx(&s->aead_write_ctx);
|
|
|
|
if (is_read)
|
|
{
|
|
if (s->enc_read_ctx != NULL && !SSL_IS_DTLS(s))
|
|
EVP_CIPHER_CTX_cleanup(s->enc_read_ctx);
|
|
else if ((s->enc_read_ctx=EVP_CIPHER_CTX_new()) == NULL)
|
|
goto err;
|
|
|
|
cipher_ctx = s->enc_read_ctx;
|
|
mac_ctx = ssl_replace_hash(&s->read_hash, NULL);
|
|
if (mac_ctx == NULL)
|
|
goto err;
|
|
|
|
memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_len);
|
|
s->s3->read_mac_secret_size = mac_secret_len;
|
|
}
|
|
else
|
|
{
|
|
/* When updating the write contexts for DTLS, we do not wish to
|
|
* free the old ones because DTLS stores pointers to them in
|
|
* order to implement retransmission. */
|
|
|
|
if (s->enc_write_ctx != NULL && !SSL_IS_DTLS(s))
|
|
EVP_CIPHER_CTX_cleanup(s->enc_write_ctx);
|
|
else if ((s->enc_write_ctx=OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
|
|
goto err;
|
|
else
|
|
/* make sure it's intialized in case we exit later with an error */
|
|
EVP_CIPHER_CTX_init(s->enc_write_ctx);
|
|
|
|
cipher_ctx = s->enc_write_ctx;
|
|
if (SSL_IS_DTLS(s))
|
|
{
|
|
/* This is the same as ssl_replace_hash, but doesn't
|
|
* free the old |s->write_hash|. */
|
|
mac_ctx = EVP_MD_CTX_create();
|
|
if (!mac_ctx)
|
|
goto err;
|
|
s->write_hash = mac_ctx;
|
|
}
|
|
else
|
|
{
|
|
mac_ctx = ssl_replace_hash(&s->write_hash, NULL);
|
|
if (mac_ctx == NULL)
|
|
goto err;
|
|
}
|
|
|
|
memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_len);
|
|
s->s3->write_mac_secret_size = mac_secret_len;
|
|
}
|
|
|
|
EVP_PKEY *mac_key =
|
|
EVP_PKEY_new_mac_key(s->s3->tmp.new_mac_pkey_type,
|
|
NULL, mac_secret, mac_secret_len);
|
|
if (!mac_key)
|
|
return 0;
|
|
if (!EVP_DigestSignInit(mac_ctx, NULL, s->s3->tmp.new_hash, NULL, mac_key))
|
|
{
|
|
EVP_PKEY_free(mac_key);
|
|
goto err;
|
|
}
|
|
EVP_PKEY_free(mac_key);
|
|
|
|
if (!EVP_CipherInit_ex(cipher_ctx, cipher, NULL /* engine */, key, iv, !is_read))
|
|
goto err;
|
|
|
|
return 1;
|
|
|
|
err:
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state_cipher, ERR_R_MALLOC_FAILURE);
|
|
return 0;
|
|
}
|
|
|
|
int tls1_change_cipher_state(SSL *s, int which)
|
|
{
|
|
/* is_read is true if we have just read a ChangeCipherSpec message -
|
|
* i.e. we need to update the read cipherspec. Otherwise we have just
|
|
* written one. */
|
|
const char is_read = (which & SSL3_CC_READ) != 0;
|
|
/* use_client_keys is true if we wish to use the keys for the "client
|
|
* write" direction. This is the case if we're a client sending a
|
|
* ChangeCipherSpec, or a server reading a client's ChangeCipherSpec. */
|
|
const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE ||
|
|
which == SSL3_CHANGE_CIPHER_SERVER_READ;
|
|
const unsigned char *client_write_mac_secret, *server_write_mac_secret, *mac_secret;
|
|
const unsigned char *client_write_key, *server_write_key, *key;
|
|
const unsigned char *client_write_iv, *server_write_iv, *iv;
|
|
const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc;
|
|
const EVP_AEAD *aead = s->s3->tmp.new_aead;
|
|
unsigned key_len, iv_len, mac_secret_len;
|
|
const unsigned char *key_data;
|
|
|
|
/* Reset sequence number to zero. */
|
|
if (!SSL_IS_DTLS(s))
|
|
memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8);
|
|
|
|
mac_secret_len = s->s3->tmp.new_mac_secret_size;
|
|
|
|
if (aead != NULL)
|
|
{
|
|
key_len = EVP_AEAD_key_length(aead);
|
|
/* For "stateful" AEADs (i.e. compatibility with pre-AEAD
|
|
* cipher suites) the key length reported by
|
|
* |EVP_AEAD_key_length| will include the MAC key bytes. */
|
|
if (key_len < mac_secret_len)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
key_len -= mac_secret_len;
|
|
iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->s3->tmp.new_cipher);
|
|
}
|
|
else
|
|
{
|
|
key_len = EVP_CIPHER_key_length(cipher);
|
|
iv_len = EVP_CIPHER_iv_length(cipher);
|
|
}
|
|
|
|
key_data = s->s3->tmp.key_block;
|
|
client_write_mac_secret = key_data; key_data += mac_secret_len;
|
|
server_write_mac_secret = key_data; key_data += mac_secret_len;
|
|
client_write_key = key_data; key_data += key_len;
|
|
server_write_key = key_data; key_data += key_len;
|
|
client_write_iv = key_data; key_data += iv_len;
|
|
server_write_iv = key_data; key_data += iv_len;
|
|
|
|
if (use_client_keys)
|
|
{
|
|
mac_secret = client_write_mac_secret;
|
|
key = client_write_key;
|
|
iv = client_write_iv;
|
|
}
|
|
else
|
|
{
|
|
mac_secret = server_write_mac_secret;
|
|
key = server_write_key;
|
|
iv = server_write_iv;
|
|
}
|
|
|
|
if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if (aead != NULL)
|
|
{
|
|
if (!tls1_change_cipher_state_aead(s, is_read,
|
|
key, key_len, iv, iv_len,
|
|
mac_secret, mac_secret_len))
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
if (!tls1_change_cipher_state_cipher(s, is_read, use_client_keys,
|
|
mac_secret, mac_secret_len,
|
|
key, key_len,
|
|
iv, iv_len))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int tls1_setup_key_block(SSL *s)
|
|
{
|
|
unsigned char *p1,*p2=NULL;
|
|
const EVP_CIPHER *c = NULL;
|
|
const EVP_MD *hash = NULL;
|
|
const EVP_AEAD *aead = NULL;
|
|
int num;
|
|
int mac_type= NID_undef,mac_secret_size=0;
|
|
int ret=0;
|
|
unsigned key_len, iv_len;
|
|
|
|
|
|
if (s->s3->tmp.key_block_length != 0)
|
|
return(1);
|
|
|
|
if (s->session->cipher &&
|
|
((s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) ||
|
|
(s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD)))
|
|
{
|
|
if (!ssl_cipher_get_evp_aead(s->session, &aead))
|
|
goto cipher_unavailable_err;
|
|
key_len = EVP_AEAD_key_length(aead);
|
|
iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher);
|
|
if ((s->session->cipher->algorithm2 &
|
|
SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD) &&
|
|
!ssl_cipher_get_mac(s->session, &hash, &mac_type, &mac_secret_size))
|
|
goto cipher_unavailable_err;
|
|
/* For "stateful" AEADs (i.e. compatibility with pre-AEAD
|
|
* cipher suites) the key length reported by
|
|
* |EVP_AEAD_key_length| will include the MAC key bytes. */
|
|
if (key_len < (size_t)mac_secret_size)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, tls1_change_cipher_state, ERR_R_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
key_len -= mac_secret_size;
|
|
}
|
|
else
|
|
{
|
|
if (!ssl_cipher_get_evp(s->session,&c,&hash,&mac_type,&mac_secret_size))
|
|
goto cipher_unavailable_err;
|
|
key_len = EVP_CIPHER_key_length(c);
|
|
iv_len = EVP_CIPHER_iv_length(c);
|
|
}
|
|
|
|
s->s3->tmp.new_aead=aead;
|
|
s->s3->tmp.new_sym_enc=c;
|
|
s->s3->tmp.new_hash=hash;
|
|
s->s3->tmp.new_mac_pkey_type = mac_type;
|
|
s->s3->tmp.new_mac_secret_size = mac_secret_size;
|
|
|
|
num=key_len+mac_secret_size+iv_len;
|
|
num*=2;
|
|
|
|
ssl3_cleanup_key_block(s);
|
|
|
|
if ((p1=(unsigned char *)OPENSSL_malloc(num)) == NULL)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
s->s3->tmp.key_block_length=num;
|
|
s->s3->tmp.key_block=p1;
|
|
|
|
if ((p2=(unsigned char *)OPENSSL_malloc(num)) == NULL)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
#ifdef TLS_DEBUG
|
|
printf("client random\n");
|
|
{ int z; for (z=0; z<SSL3_RANDOM_SIZE; z++) printf("%02X%c",s->s3->client_random[z],((z+1)%16)?' ':'\n'); }
|
|
printf("server random\n");
|
|
{ int z; for (z=0; z<SSL3_RANDOM_SIZE; z++) printf("%02X%c",s->s3->server_random[z],((z+1)%16)?' ':'\n'); }
|
|
printf("pre-master\n");
|
|
{ int z; for (z=0; z<s->session->master_key_length; z++) printf("%02X%c",s->session->master_key[z],((z+1)%16)?' ':'\n'); }
|
|
#endif
|
|
if (!tls1_generate_key_block(s,p1,p2,num))
|
|
goto err;
|
|
#ifdef TLS_DEBUG
|
|
printf("\nkey block\n");
|
|
{ int z; for (z=0; z<num; z++) printf("%02X%c",p1[z],((z+1)%16)?' ':'\n'); }
|
|
#endif
|
|
|
|
if (s->method->version <= TLS1_VERSION &&
|
|
(s->mode & SSL_MODE_CBC_RECORD_SPLITTING) != 0)
|
|
{
|
|
/* enable vulnerability countermeasure for CBC ciphers with
|
|
* known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt)
|
|
*/
|
|
s->s3->need_record_splitting = 1;
|
|
|
|
if (s->session->cipher != NULL)
|
|
{
|
|
if (s->session->cipher->algorithm_enc == SSL_RC4)
|
|
s->s3->need_record_splitting = 0;
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
err:
|
|
if (p2)
|
|
{
|
|
OPENSSL_cleanse(p2,num);
|
|
OPENSSL_free(p2);
|
|
}
|
|
return(ret);
|
|
|
|
cipher_unavailable_err:
|
|
OPENSSL_PUT_ERROR(SSL, tls1_setup_key_block, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
|
|
return 0;
|
|
}
|
|
|
|
/* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
|
|
*
|
|
* Returns:
|
|
* 0: (in non-constant time) if the record is publically invalid (i.e. too
|
|
* short etc).
|
|
* 1: if the record's padding is valid / the encryption was successful.
|
|
* -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
|
|
* an internal error occured.
|
|
*/
|
|
int tls1_enc(SSL *s, int send)
|
|
{
|
|
SSL3_RECORD *rec;
|
|
EVP_CIPHER_CTX *ds;
|
|
unsigned long l;
|
|
int bs,i,j,k,pad=0,ret,mac_size=0;
|
|
const EVP_CIPHER *enc;
|
|
const SSL_AEAD_CTX *aead;
|
|
|
|
if (send)
|
|
rec = &s->s3->wrec;
|
|
else
|
|
rec = &s->s3->rrec;
|
|
|
|
if (send)
|
|
aead = s->aead_write_ctx;
|
|
else
|
|
aead = s->aead_read_ctx;
|
|
|
|
if (aead)
|
|
{
|
|
unsigned char ad[13], *seq, *in, *out, nonce[16];
|
|
unsigned nonce_used;
|
|
size_t n;
|
|
|
|
seq = send ? s->s3->write_sequence : s->s3->read_sequence;
|
|
|
|
if (SSL_IS_DTLS(s))
|
|
{
|
|
unsigned char dtlsseq[9], *p = dtlsseq;
|
|
|
|
s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p);
|
|
memcpy(p, &seq[2], 6);
|
|
memcpy(ad, dtlsseq, 8);
|
|
}
|
|
else
|
|
{
|
|
memcpy(ad, seq, 8);
|
|
for (i=7; i>=0; i--) /* increment */
|
|
{
|
|
++seq[i];
|
|
if (seq[i] != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
ad[8] = rec->type;
|
|
ad[9] = (unsigned char)(s->version>>8);
|
|
ad[10] = (unsigned char)(s->version);
|
|
|
|
if (aead->fixed_nonce_len + aead->variable_nonce_len > sizeof(nonce) ||
|
|
aead->variable_nonce_len > 8)
|
|
return -1; /* internal error - should never happen. */
|
|
|
|
memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len);
|
|
nonce_used = aead->fixed_nonce_len;
|
|
|
|
if (send)
|
|
{
|
|
size_t len = rec->length;
|
|
size_t eivlen = 0;
|
|
in = rec->input;
|
|
out = rec->data;
|
|
|
|
/* When sending we use the sequence number as the
|
|
* variable part of the nonce. */
|
|
if (aead->variable_nonce_len > 8)
|
|
return -1;
|
|
memcpy(nonce + nonce_used, ad, aead->variable_nonce_len);
|
|
nonce_used += aead->variable_nonce_len;
|
|
|
|
/* in do_ssl3_write, rec->input is moved forward by
|
|
* variable_nonce_len in order to leave space for the
|
|
* variable nonce. Thus we can copy the sequence number
|
|
* bytes into place without overwriting any of the
|
|
* plaintext. */
|
|
if (aead->variable_nonce_included_in_record)
|
|
{
|
|
memcpy(out, ad, aead->variable_nonce_len);
|
|
len -= aead->variable_nonce_len;
|
|
eivlen = aead->variable_nonce_len;
|
|
}
|
|
|
|
ad[11] = len >> 8;
|
|
ad[12] = len & 0xff;
|
|
|
|
if (!EVP_AEAD_CTX_seal(
|
|
&aead->ctx,
|
|
out + eivlen, &n, len + aead->tag_len,
|
|
nonce, nonce_used,
|
|
in + eivlen, len,
|
|
ad, sizeof(ad)))
|
|
{
|
|
return -1;
|
|
}
|
|
if (aead->variable_nonce_included_in_record)
|
|
n += aead->variable_nonce_len;
|
|
}
|
|
else
|
|
{
|
|
/* receive */
|
|
size_t len = rec->length;
|
|
|
|
if (rec->data != rec->input)
|
|
return -1; /* internal error - should never happen. */
|
|
out = in = rec->input;
|
|
|
|
if (len < aead->variable_nonce_len)
|
|
return 0;
|
|
memcpy(nonce + nonce_used,
|
|
aead->variable_nonce_included_in_record ? in : ad,
|
|
aead->variable_nonce_len);
|
|
nonce_used += aead->variable_nonce_len;
|
|
|
|
if (aead->variable_nonce_included_in_record)
|
|
{
|
|
in += aead->variable_nonce_len;
|
|
len -= aead->variable_nonce_len;
|
|
out += aead->variable_nonce_len;
|
|
}
|
|
|
|
if (len < aead->tag_len)
|
|
return 0;
|
|
len -= aead->tag_len;
|
|
|
|
ad[11] = len >> 8;
|
|
ad[12] = len & 0xff;
|
|
|
|
if (!EVP_AEAD_CTX_open(
|
|
&aead->ctx,
|
|
out, &n, len,
|
|
nonce, nonce_used,
|
|
in, len + aead->tag_len,
|
|
ad, sizeof(ad)))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
rec->data = rec->input = out;
|
|
}
|
|
|
|
rec->length = n;
|
|
return 1;
|
|
}
|
|
|
|
if (send)
|
|
{
|
|
ds=s->enc_write_ctx;
|
|
rec= &(s->s3->wrec);
|
|
if (s->enc_write_ctx == NULL)
|
|
enc=NULL;
|
|
else
|
|
{
|
|
int ivlen;
|
|
enc=EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
|
|
/* For TLSv1.1 and later explicit IV */
|
|
if (SSL_USE_EXPLICIT_IV(s)
|
|
&& EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
|
|
ivlen = EVP_CIPHER_iv_length(enc);
|
|
else
|
|
ivlen = 0;
|
|
if (ivlen > 1)
|
|
{
|
|
if ( rec->data != rec->input)
|
|
/* we can't write into the input stream:
|
|
* Can this ever happen?? (steve)
|
|
*/
|
|
fprintf(stderr,
|
|
"%s:%d: rec->data != rec->input\n",
|
|
__FILE__, __LINE__);
|
|
else if (RAND_bytes(rec->input, ivlen) <= 0)
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ds=s->enc_read_ctx;
|
|
rec= &(s->s3->rrec);
|
|
if (s->enc_read_ctx == NULL)
|
|
enc=NULL;
|
|
else
|
|
enc=EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
|
|
}
|
|
|
|
if ((s->session == NULL) || (ds == NULL) || (enc == NULL))
|
|
{
|
|
memmove(rec->data,rec->input,rec->length);
|
|
rec->input=rec->data;
|
|
ret = 1;
|
|
}
|
|
else
|
|
{
|
|
l=rec->length;
|
|
bs=EVP_CIPHER_block_size(ds->cipher);
|
|
|
|
if ((bs != 1) && send)
|
|
{
|
|
i=bs-((int)l%bs);
|
|
|
|
/* Add weird padding of upto 256 bytes */
|
|
|
|
/* we need to add 'i' padding bytes of value j */
|
|
j=i-1;
|
|
for (k=(int)l; k<(int)(l+i); k++)
|
|
rec->input[k]=j;
|
|
l+=i;
|
|
rec->length+=i;
|
|
}
|
|
|
|
if (!send)
|
|
{
|
|
if (l == 0 || l%bs != 0)
|
|
return 0;
|
|
}
|
|
|
|
i = EVP_Cipher(ds,rec->data,rec->input,l);
|
|
if ((EVP_CIPHER_flags(ds->cipher)&EVP_CIPH_FLAG_CUSTOM_CIPHER)
|
|
?(i<0)
|
|
:(i==0))
|
|
return -1; /* AEAD can fail to verify MAC */
|
|
|
|
ret = 1;
|
|
if (EVP_MD_CTX_md(s->read_hash) != NULL)
|
|
mac_size = EVP_MD_CTX_size(s->read_hash);
|
|
if ((bs != 1) && !send)
|
|
ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
|
|
if (pad && !send)
|
|
rec->length -= pad;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out)
|
|
{
|
|
unsigned int ret;
|
|
EVP_MD_CTX ctx, *d=NULL;
|
|
int i;
|
|
|
|
if (s->s3->handshake_buffer)
|
|
if (!ssl3_digest_cached_records(s, free_handshake_buffer))
|
|
return 0;
|
|
|
|
for (i=0;i<SSL_MAX_DIGEST;i++)
|
|
{
|
|
if (s->s3->handshake_dgst[i]&&EVP_MD_CTX_type(s->s3->handshake_dgst[i])==md_nid)
|
|
{
|
|
d=s->s3->handshake_dgst[i];
|
|
break;
|
|
}
|
|
}
|
|
if (!d) {
|
|
OPENSSL_PUT_ERROR(SSL, tls1_cert_verify_mac, SSL_R_NO_REQUIRED_DIGEST);
|
|
return 0;
|
|
}
|
|
|
|
EVP_MD_CTX_init(&ctx);
|
|
EVP_MD_CTX_copy_ex(&ctx,d);
|
|
EVP_DigestFinal_ex(&ctx,out,&ret);
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
return((int)ret);
|
|
}
|
|
|
|
/* tls1_handshake_digest calculates the current handshake hash and writes it to
|
|
* |out|, which has space for |out_len| bytes. It returns the number of bytes
|
|
* written or -1 in the event of an error. This function works on a copy of the
|
|
* underlying digests so can be called multiple times and prior to the final
|
|
* update etc. */
|
|
int tls1_handshake_digest(SSL *s, unsigned char *out, size_t out_len)
|
|
{
|
|
const EVP_MD *md;
|
|
EVP_MD_CTX ctx;
|
|
int i, err = 0, len = 0;
|
|
long mask;
|
|
|
|
EVP_MD_CTX_init(&ctx);
|
|
|
|
for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++)
|
|
{
|
|
int hash_size;
|
|
unsigned int digest_len;
|
|
EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i];
|
|
|
|
if ((mask & ssl_get_algorithm2(s)) == 0)
|
|
continue;
|
|
|
|
hash_size = EVP_MD_size(md);
|
|
if (!hdgst || hash_size < 0 || (size_t)hash_size > out_len)
|
|
{
|
|
err = 1;
|
|
break;
|
|
}
|
|
|
|
if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
|
|
!EVP_DigestFinal_ex(&ctx, out, &digest_len) ||
|
|
digest_len != (unsigned int)hash_size) /* internal error */
|
|
{
|
|
err = 1;
|
|
break;
|
|
}
|
|
out += digest_len;
|
|
out_len -= digest_len;
|
|
len += digest_len;
|
|
}
|
|
|
|
EVP_MD_CTX_cleanup(&ctx);
|
|
|
|
if (err != 0)
|
|
return -1;
|
|
return len;
|
|
}
|
|
|
|
int tls1_final_finish_mac(SSL *s,
|
|
const char *str, int slen, unsigned char *out)
|
|
{
|
|
unsigned char buf[2*EVP_MAX_MD_SIZE];
|
|
unsigned char buf2[12];
|
|
int err=0;
|
|
int digests_len;
|
|
|
|
if (s->s3->handshake_buffer)
|
|
if (!ssl3_digest_cached_records(s, free_handshake_buffer))
|
|
return 0;
|
|
|
|
digests_len = tls1_handshake_digest(s, buf, sizeof(buf));
|
|
if (digests_len < 0)
|
|
{
|
|
err = 1;
|
|
digests_len = 0;
|
|
}
|
|
|
|
if (!tls1_PRF(ssl_get_algorithm2(s),
|
|
str,slen, buf, digests_len, NULL,0,
|
|
s->session->master_key,s->session->master_key_length,
|
|
out,buf2,sizeof buf2))
|
|
err = 1;
|
|
|
|
if (err)
|
|
return 0;
|
|
else
|
|
return sizeof buf2;
|
|
}
|
|
|
|
int tls1_mac(SSL *ssl, unsigned char *md, int send)
|
|
{
|
|
SSL3_RECORD *rec;
|
|
unsigned char *seq;
|
|
EVP_MD_CTX *hash;
|
|
size_t md_size, orig_len;
|
|
int i, ok;
|
|
EVP_MD_CTX hmac, *mac_ctx;
|
|
unsigned char header[13];
|
|
int t;
|
|
|
|
if (send)
|
|
{
|
|
rec= &(ssl->s3->wrec);
|
|
seq= &(ssl->s3->write_sequence[0]);
|
|
hash=ssl->write_hash;
|
|
}
|
|
else
|
|
{
|
|
rec= &(ssl->s3->rrec);
|
|
seq= &(ssl->s3->read_sequence[0]);
|
|
hash=ssl->read_hash;
|
|
}
|
|
|
|
t=EVP_MD_CTX_size(hash);
|
|
assert(t >= 0);
|
|
md_size=t;
|
|
|
|
mac_ctx = &hmac;
|
|
if (!EVP_MD_CTX_copy(mac_ctx, hash))
|
|
return -1;
|
|
|
|
if (SSL_IS_DTLS(ssl))
|
|
{
|
|
unsigned char dtlsseq[8],*p=dtlsseq;
|
|
|
|
s2n(send?ssl->d1->w_epoch:ssl->d1->r_epoch, p);
|
|
memcpy (p,&seq[2],6);
|
|
|
|
memcpy(header, dtlsseq, 8);
|
|
}
|
|
else
|
|
memcpy(header, seq, 8);
|
|
|
|
/* kludge: tls1_cbc_remove_padding passes padding length in rec->type */
|
|
orig_len = rec->length+md_size+((unsigned int)rec->type>>8);
|
|
rec->type &= 0xff;
|
|
|
|
header[8]=rec->type;
|
|
header[9]=(unsigned char)(ssl->version>>8);
|
|
header[10]=(unsigned char)(ssl->version);
|
|
header[11]=(rec->length)>>8;
|
|
header[12]=(rec->length)&0xff;
|
|
|
|
if (!send &&
|
|
EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
|
|
ssl3_cbc_record_digest_supported(mac_ctx))
|
|
{
|
|
/* This is a CBC-encrypted record. We must avoid leaking any
|
|
* timing-side channel information about how many blocks of
|
|
* data we are hashing because that gives an attacker a
|
|
* timing-oracle. */
|
|
ok = ssl3_cbc_digest_record(
|
|
mac_ctx,
|
|
md, &md_size,
|
|
header, rec->input,
|
|
rec->length + md_size, orig_len,
|
|
ssl->s3->read_mac_secret,
|
|
ssl->s3->read_mac_secret_size,
|
|
0 /* not SSLv3 */);
|
|
}
|
|
else
|
|
{
|
|
EVP_DigestSignUpdate(mac_ctx,header,sizeof(header));
|
|
EVP_DigestSignUpdate(mac_ctx,rec->input,rec->length);
|
|
ok = EVP_DigestSignFinal(mac_ctx,md,&md_size);
|
|
}
|
|
|
|
EVP_MD_CTX_cleanup(mac_ctx);
|
|
|
|
if (!ok)
|
|
return -1;
|
|
|
|
if (!SSL_IS_DTLS(ssl))
|
|
{
|
|
for (i=7; i>=0; i--)
|
|
{
|
|
++seq[i];
|
|
if (seq[i] != 0) break;
|
|
}
|
|
}
|
|
|
|
return md_size;
|
|
}
|
|
|
|
int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
|
|
int len)
|
|
{
|
|
unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH];
|
|
|
|
if (s->s3->tmp.extended_master_secret)
|
|
{
|
|
uint8_t digests[2*EVP_MAX_MD_SIZE];
|
|
int digests_len;
|
|
|
|
if (s->s3->handshake_buffer)
|
|
{
|
|
/* The master secret is based on the handshake hash
|
|
* just after sending the ClientKeyExchange. However,
|
|
* we might have a client certificate to send, in which
|
|
* case we might need different hashes for the
|
|
* verification and thus still need the handshake
|
|
* buffer around. Keeping both a handshake buffer *and*
|
|
* running hashes isn't yet supported so, when it comes
|
|
* to calculating the Finished hash, we'll have to hash
|
|
* the handshake buffer again. */
|
|
if (!ssl3_digest_cached_records(s, dont_free_handshake_buffer))
|
|
return 0;
|
|
}
|
|
|
|
digests_len = tls1_handshake_digest(s, digests, sizeof(digests));
|
|
|
|
if (digests_len == -1)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
tls1_PRF(ssl_get_algorithm2(s),
|
|
TLS_MD_EXTENDED_MASTER_SECRET_CONST,
|
|
TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE,
|
|
digests, digests_len,
|
|
NULL, 0,
|
|
p, len,
|
|
s->session->master_key,
|
|
buff, sizeof(buff));
|
|
}
|
|
else
|
|
{
|
|
tls1_PRF(ssl_get_algorithm2(s),
|
|
TLS_MD_MASTER_SECRET_CONST,TLS_MD_MASTER_SECRET_CONST_SIZE,
|
|
s->s3->client_random,SSL3_RANDOM_SIZE,
|
|
s->s3->server_random,SSL3_RANDOM_SIZE,
|
|
p, len,
|
|
s->session->master_key,buff,sizeof buff);
|
|
}
|
|
|
|
#ifdef SSL_DEBUG
|
|
fprintf(stderr, "Premaster Secret:\n");
|
|
BIO_dump_fp(stderr, (char *)p, len);
|
|
fprintf(stderr, "Client Random:\n");
|
|
BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE);
|
|
fprintf(stderr, "Server Random:\n");
|
|
BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE);
|
|
fprintf(stderr, "Master Secret:\n");
|
|
BIO_dump_fp(stderr, (char *)s->session->master_key, SSL3_MASTER_SECRET_SIZE);
|
|
#endif
|
|
|
|
#ifdef OPENSSL_SSL_TRACE_CRYPTO
|
|
if (s->msg_callback)
|
|
{
|
|
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_PREMASTER,
|
|
p, len, s, s->msg_callback_arg);
|
|
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_CLIENT_RANDOM,
|
|
s->s3->client_random, SSL3_RANDOM_SIZE,
|
|
s, s->msg_callback_arg);
|
|
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_SERVER_RANDOM,
|
|
s->s3->server_random, SSL3_RANDOM_SIZE,
|
|
s, s->msg_callback_arg);
|
|
s->msg_callback(2, s->version, TLS1_RT_CRYPTO_MASTER,
|
|
s->session->master_key,
|
|
SSL3_MASTER_SECRET_SIZE,
|
|
s, s->msg_callback_arg);
|
|
}
|
|
#endif
|
|
|
|
return(SSL3_MASTER_SECRET_SIZE);
|
|
}
|
|
|
|
int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
|
|
const char *label, size_t llen, const unsigned char *context,
|
|
size_t contextlen, int use_context)
|
|
{
|
|
unsigned char *buff;
|
|
unsigned char *val = NULL;
|
|
size_t vallen, currentvalpos;
|
|
int rv;
|
|
|
|
buff = OPENSSL_malloc(olen);
|
|
if (buff == NULL) goto err2;
|
|
|
|
/* construct PRF arguments
|
|
* we construct the PRF argument ourself rather than passing separate
|
|
* values into the TLS PRF to ensure that the concatenation of values
|
|
* does not create a prohibited label.
|
|
*/
|
|
vallen = llen + SSL3_RANDOM_SIZE * 2;
|
|
if (use_context)
|
|
{
|
|
vallen += 2 + contextlen;
|
|
}
|
|
|
|
val = OPENSSL_malloc(vallen);
|
|
if (val == NULL) goto err2;
|
|
currentvalpos = 0;
|
|
memcpy(val + currentvalpos, (unsigned char *) label, llen);
|
|
currentvalpos += llen;
|
|
memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
|
|
currentvalpos += SSL3_RANDOM_SIZE;
|
|
memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
|
|
currentvalpos += SSL3_RANDOM_SIZE;
|
|
|
|
if (use_context)
|
|
{
|
|
val[currentvalpos] = (contextlen >> 8) & 0xff;
|
|
currentvalpos++;
|
|
val[currentvalpos] = contextlen & 0xff;
|
|
currentvalpos++;
|
|
if ((contextlen > 0) || (context != NULL))
|
|
{
|
|
memcpy(val + currentvalpos, context, contextlen);
|
|
}
|
|
}
|
|
|
|
/* disallow prohibited labels
|
|
* note that SSL3_RANDOM_SIZE > max(prohibited label len) =
|
|
* 15, so size of val > max(prohibited label len) = 15 and the
|
|
* comparisons won't have buffer overflow
|
|
*/
|
|
if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
|
|
TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) goto err1;
|
|
if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
|
|
TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) goto err1;
|
|
if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
|
|
TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) goto err1;
|
|
if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
|
|
TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) goto err1;
|
|
|
|
rv = tls1_PRF(ssl_get_algorithm2(s),
|
|
val, vallen,
|
|
NULL, 0,
|
|
NULL, 0,
|
|
s->session->master_key,s->session->master_key_length,
|
|
out,buff,olen);
|
|
|
|
goto ret;
|
|
err1:
|
|
OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
|
|
rv = 0;
|
|
goto ret;
|
|
err2:
|
|
OPENSSL_PUT_ERROR(SSL, tls1_export_keying_material, ERR_R_MALLOC_FAILURE);
|
|
rv = 0;
|
|
ret:
|
|
if (buff != NULL) OPENSSL_free(buff);
|
|
if (val != NULL) OPENSSL_free(val);
|
|
return(rv);
|
|
}
|
|
|
|
int tls1_alert_code(int code)
|
|
{
|
|
switch (code)
|
|
{
|
|
case SSL_AD_CLOSE_NOTIFY: return(SSL3_AD_CLOSE_NOTIFY);
|
|
case SSL_AD_UNEXPECTED_MESSAGE: return(SSL3_AD_UNEXPECTED_MESSAGE);
|
|
case SSL_AD_BAD_RECORD_MAC: return(SSL3_AD_BAD_RECORD_MAC);
|
|
case SSL_AD_DECRYPTION_FAILED: return(TLS1_AD_DECRYPTION_FAILED);
|
|
case SSL_AD_RECORD_OVERFLOW: return(TLS1_AD_RECORD_OVERFLOW);
|
|
case SSL_AD_DECOMPRESSION_FAILURE:return(SSL3_AD_DECOMPRESSION_FAILURE);
|
|
case SSL_AD_HANDSHAKE_FAILURE: return(SSL3_AD_HANDSHAKE_FAILURE);
|
|
case SSL_AD_NO_CERTIFICATE: return(-1);
|
|
case SSL_AD_BAD_CERTIFICATE: return(SSL3_AD_BAD_CERTIFICATE);
|
|
case SSL_AD_UNSUPPORTED_CERTIFICATE:return(SSL3_AD_UNSUPPORTED_CERTIFICATE);
|
|
case SSL_AD_CERTIFICATE_REVOKED:return(SSL3_AD_CERTIFICATE_REVOKED);
|
|
case SSL_AD_CERTIFICATE_EXPIRED:return(SSL3_AD_CERTIFICATE_EXPIRED);
|
|
case SSL_AD_CERTIFICATE_UNKNOWN:return(SSL3_AD_CERTIFICATE_UNKNOWN);
|
|
case SSL_AD_ILLEGAL_PARAMETER: return(SSL3_AD_ILLEGAL_PARAMETER);
|
|
case SSL_AD_UNKNOWN_CA: return(TLS1_AD_UNKNOWN_CA);
|
|
case SSL_AD_ACCESS_DENIED: return(TLS1_AD_ACCESS_DENIED);
|
|
case SSL_AD_DECODE_ERROR: return(TLS1_AD_DECODE_ERROR);
|
|
case SSL_AD_DECRYPT_ERROR: return(TLS1_AD_DECRYPT_ERROR);
|
|
case SSL_AD_EXPORT_RESTRICTION: return(TLS1_AD_EXPORT_RESTRICTION);
|
|
case SSL_AD_PROTOCOL_VERSION: return(TLS1_AD_PROTOCOL_VERSION);
|
|
case SSL_AD_INSUFFICIENT_SECURITY:return(TLS1_AD_INSUFFICIENT_SECURITY);
|
|
case SSL_AD_INTERNAL_ERROR: return(TLS1_AD_INTERNAL_ERROR);
|
|
case SSL_AD_USER_CANCELLED: return(TLS1_AD_USER_CANCELLED);
|
|
case SSL_AD_NO_RENEGOTIATION: return(TLS1_AD_NO_RENEGOTIATION);
|
|
case SSL_AD_UNSUPPORTED_EXTENSION: return(TLS1_AD_UNSUPPORTED_EXTENSION);
|
|
case SSL_AD_CERTIFICATE_UNOBTAINABLE: return(TLS1_AD_CERTIFICATE_UNOBTAINABLE);
|
|
case SSL_AD_UNRECOGNIZED_NAME: return(TLS1_AD_UNRECOGNIZED_NAME);
|
|
case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return(TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
|
|
case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return(TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
|
|
case SSL_AD_UNKNOWN_PSK_IDENTITY:return(TLS1_AD_UNKNOWN_PSK_IDENTITY);
|
|
case SSL_AD_INAPPROPRIATE_FALLBACK:return(SSL3_AD_INAPPROPRIATE_FALLBACK);
|
|
default: return(-1);
|
|
}
|
|
}
|