0a211dfe91
BN_FLG_CONSTTIME is a ridiculous API and easy to mess up (CVE-2016-2178). Instead, code that needs a particular algorithm which preserves secrecy of some arguemnt should call into that algorithm directly. This is never set outside the library and is finally unused within the library! Credit for all this goes almost entirely to Brian Smith. I just took care of the last bits. Note there was one BN_FLG_CONSTTIME check that was still reachable, the BN_mod_inverse in RSA key generation. However, it used the same code in both cases for even moduli and φ(n) is even if n is not a power of two. Traditionally, RSA keys are not powers of two, even though it would make the modular reductions a lot easier. When reviewing, check that I didn't remove a BN_FLG_CONSTTIME that led to a BN_mod_exp(_mont) or BN_mod_inverse call (with the exception of the RSA one mentioned above). They should all go to functions for the algorithms themselves like BN_mod_exp_mont_consttime. This CL shows the checks are a no-op for all our tests: https://boringssl-review.googlesource.com/c/12927/ BUG=125 Change-Id: I19cbb375cc75aac202bd76b51ca098841d84f337 Reviewed-on: https://boringssl-review.googlesource.com/12926 Reviewed-by: Adam Langley <alangley@gmail.com>
957 lines
22 KiB
C
957 lines
22 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*
|
|
* The DSS routines are based on patches supplied by
|
|
* Steven Schoch <schoch@sheba.arc.nasa.gov>. */
|
|
|
|
#include <openssl/dsa.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/ex_data.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/sha.h>
|
|
#include <openssl/thread.h>
|
|
|
|
#include "../bn/internal.h"
|
|
#include "../internal.h"
|
|
|
|
|
|
#define OPENSSL_DSA_MAX_MODULUS_BITS 10000
|
|
|
|
/* Primality test according to FIPS PUB 186[-1], Appendix 2.1: 50 rounds of
|
|
* Rabin-Miller */
|
|
#define DSS_prime_checks 50
|
|
|
|
static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT;
|
|
|
|
DSA *DSA_new(void) {
|
|
DSA *dsa = OPENSSL_malloc(sizeof(DSA));
|
|
if (dsa == NULL) {
|
|
OPENSSL_PUT_ERROR(DSA, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memset(dsa, 0, sizeof(DSA));
|
|
|
|
dsa->references = 1;
|
|
|
|
CRYPTO_MUTEX_init(&dsa->method_mont_lock);
|
|
CRYPTO_new_ex_data(&dsa->ex_data);
|
|
|
|
return dsa;
|
|
}
|
|
|
|
void DSA_free(DSA *dsa) {
|
|
if (dsa == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (!CRYPTO_refcount_dec_and_test_zero(&dsa->references)) {
|
|
return;
|
|
}
|
|
|
|
CRYPTO_free_ex_data(&g_ex_data_class, dsa, &dsa->ex_data);
|
|
|
|
BN_clear_free(dsa->p);
|
|
BN_clear_free(dsa->q);
|
|
BN_clear_free(dsa->g);
|
|
BN_clear_free(dsa->pub_key);
|
|
BN_clear_free(dsa->priv_key);
|
|
BN_clear_free(dsa->kinv);
|
|
BN_clear_free(dsa->r);
|
|
BN_MONT_CTX_free(dsa->method_mont_p);
|
|
BN_MONT_CTX_free(dsa->method_mont_q);
|
|
CRYPTO_MUTEX_cleanup(&dsa->method_mont_lock);
|
|
OPENSSL_free(dsa);
|
|
}
|
|
|
|
int DSA_up_ref(DSA *dsa) {
|
|
CRYPTO_refcount_inc(&dsa->references);
|
|
return 1;
|
|
}
|
|
|
|
void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key,
|
|
const BIGNUM **out_priv_key) {
|
|
if (out_pub_key != NULL) {
|
|
*out_pub_key = dsa->pub_key;
|
|
}
|
|
if (out_priv_key != NULL) {
|
|
*out_priv_key = dsa->priv_key;
|
|
}
|
|
}
|
|
|
|
void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p, const BIGNUM **out_q,
|
|
const BIGNUM **out_g) {
|
|
if (out_p != NULL) {
|
|
*out_p = dsa->p;
|
|
}
|
|
if (out_q != NULL) {
|
|
*out_q = dsa->q;
|
|
}
|
|
if (out_g != NULL) {
|
|
*out_g = dsa->g;
|
|
}
|
|
}
|
|
|
|
int DSA_generate_parameters_ex(DSA *dsa, unsigned bits, const uint8_t *seed_in,
|
|
size_t seed_len, int *out_counter,
|
|
unsigned long *out_h, BN_GENCB *cb) {
|
|
int ok = 0;
|
|
unsigned char seed[SHA256_DIGEST_LENGTH];
|
|
unsigned char md[SHA256_DIGEST_LENGTH];
|
|
unsigned char buf[SHA256_DIGEST_LENGTH], buf2[SHA256_DIGEST_LENGTH];
|
|
BIGNUM *r0, *W, *X, *c, *test;
|
|
BIGNUM *g = NULL, *q = NULL, *p = NULL;
|
|
BN_MONT_CTX *mont = NULL;
|
|
int k, n = 0, m = 0;
|
|
unsigned i;
|
|
int counter = 0;
|
|
int r = 0;
|
|
BN_CTX *ctx = NULL;
|
|
unsigned int h = 2;
|
|
unsigned qsize;
|
|
const EVP_MD *evpmd;
|
|
|
|
evpmd = (bits >= 2048) ? EVP_sha256() : EVP_sha1();
|
|
qsize = EVP_MD_size(evpmd);
|
|
|
|
if (bits < 512) {
|
|
bits = 512;
|
|
}
|
|
|
|
bits = (bits + 63) / 64 * 64;
|
|
|
|
if (seed_in != NULL) {
|
|
if (seed_len < (size_t)qsize) {
|
|
return 0;
|
|
}
|
|
if (seed_len > (size_t)qsize) {
|
|
/* Only consume as much seed as is expected. */
|
|
seed_len = qsize;
|
|
}
|
|
OPENSSL_memcpy(seed, seed_in, seed_len);
|
|
}
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
BN_CTX_start(ctx);
|
|
|
|
mont = BN_MONT_CTX_new();
|
|
if (mont == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
r0 = BN_CTX_get(ctx);
|
|
g = BN_CTX_get(ctx);
|
|
W = BN_CTX_get(ctx);
|
|
q = BN_CTX_get(ctx);
|
|
X = BN_CTX_get(ctx);
|
|
c = BN_CTX_get(ctx);
|
|
p = BN_CTX_get(ctx);
|
|
test = BN_CTX_get(ctx);
|
|
|
|
if (test == NULL || !BN_lshift(test, BN_value_one(), bits - 1)) {
|
|
goto err;
|
|
}
|
|
|
|
for (;;) {
|
|
/* Find q. */
|
|
for (;;) {
|
|
/* step 1 */
|
|
if (!BN_GENCB_call(cb, 0, m++)) {
|
|
goto err;
|
|
}
|
|
|
|
int use_random_seed = (seed_in == NULL);
|
|
if (use_random_seed) {
|
|
if (!RAND_bytes(seed, qsize)) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
/* If we come back through, use random seed next time. */
|
|
seed_in = NULL;
|
|
}
|
|
OPENSSL_memcpy(buf, seed, qsize);
|
|
OPENSSL_memcpy(buf2, seed, qsize);
|
|
/* precompute "SEED + 1" for step 7: */
|
|
for (i = qsize - 1; i < qsize; i--) {
|
|
buf[i]++;
|
|
if (buf[i] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* step 2 */
|
|
if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL) ||
|
|
!EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL)) {
|
|
goto err;
|
|
}
|
|
for (i = 0; i < qsize; i++) {
|
|
md[i] ^= buf2[i];
|
|
}
|
|
|
|
/* step 3 */
|
|
md[0] |= 0x80;
|
|
md[qsize - 1] |= 0x01;
|
|
if (!BN_bin2bn(md, qsize, q)) {
|
|
goto err;
|
|
}
|
|
|
|
/* step 4 */
|
|
r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx, use_random_seed, cb);
|
|
if (r > 0) {
|
|
break;
|
|
}
|
|
if (r != 0) {
|
|
goto err;
|
|
}
|
|
|
|
/* do a callback call */
|
|
/* step 5 */
|
|
}
|
|
|
|
if (!BN_GENCB_call(cb, 2, 0) || !BN_GENCB_call(cb, 3, 0)) {
|
|
goto err;
|
|
}
|
|
|
|
/* step 6 */
|
|
counter = 0;
|
|
/* "offset = 2" */
|
|
|
|
n = (bits - 1) / 160;
|
|
|
|
for (;;) {
|
|
if ((counter != 0) && !BN_GENCB_call(cb, 0, counter)) {
|
|
goto err;
|
|
}
|
|
|
|
/* step 7 */
|
|
BN_zero(W);
|
|
/* now 'buf' contains "SEED + offset - 1" */
|
|
for (k = 0; k <= n; k++) {
|
|
/* obtain "SEED + offset + k" by incrementing: */
|
|
for (i = qsize - 1; i < qsize; i--) {
|
|
buf[i]++;
|
|
if (buf[i] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!EVP_Digest(buf, qsize, md, NULL, evpmd, NULL)) {
|
|
goto err;
|
|
}
|
|
|
|
/* step 8 */
|
|
if (!BN_bin2bn(md, qsize, r0) ||
|
|
!BN_lshift(r0, r0, (qsize << 3) * k) ||
|
|
!BN_add(W, W, r0)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* more of step 8 */
|
|
if (!BN_mask_bits(W, bits - 1) ||
|
|
!BN_copy(X, W) ||
|
|
!BN_add(X, X, test)) {
|
|
goto err;
|
|
}
|
|
|
|
/* step 9 */
|
|
if (!BN_lshift1(r0, q) ||
|
|
!BN_mod(c, X, r0, ctx) ||
|
|
!BN_sub(r0, c, BN_value_one()) ||
|
|
!BN_sub(p, X, r0)) {
|
|
goto err;
|
|
}
|
|
|
|
/* step 10 */
|
|
if (BN_cmp(p, test) >= 0) {
|
|
/* step 11 */
|
|
r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx, 1, cb);
|
|
if (r > 0) {
|
|
goto end; /* found it */
|
|
}
|
|
if (r != 0) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* step 13 */
|
|
counter++;
|
|
/* "offset = offset + n + 1" */
|
|
|
|
/* step 14 */
|
|
if (counter >= 4096) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
end:
|
|
if (!BN_GENCB_call(cb, 2, 1)) {
|
|
goto err;
|
|
}
|
|
|
|
/* We now need to generate g */
|
|
/* Set r0=(p-1)/q */
|
|
if (!BN_sub(test, p, BN_value_one()) ||
|
|
!BN_div(r0, NULL, test, q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_set_word(test, h) ||
|
|
!BN_MONT_CTX_set(mont, p, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
for (;;) {
|
|
/* g=test^r0%p */
|
|
if (!BN_mod_exp_mont(g, test, r0, p, ctx, mont)) {
|
|
goto err;
|
|
}
|
|
if (!BN_is_one(g)) {
|
|
break;
|
|
}
|
|
if (!BN_add(test, test, BN_value_one())) {
|
|
goto err;
|
|
}
|
|
h++;
|
|
}
|
|
|
|
if (!BN_GENCB_call(cb, 3, 1)) {
|
|
goto err;
|
|
}
|
|
|
|
ok = 1;
|
|
|
|
err:
|
|
if (ok) {
|
|
BN_free(dsa->p);
|
|
BN_free(dsa->q);
|
|
BN_free(dsa->g);
|
|
dsa->p = BN_dup(p);
|
|
dsa->q = BN_dup(q);
|
|
dsa->g = BN_dup(g);
|
|
if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
|
|
ok = 0;
|
|
goto err;
|
|
}
|
|
if (out_counter != NULL) {
|
|
*out_counter = counter;
|
|
}
|
|
if (out_h != NULL) {
|
|
*out_h = h;
|
|
}
|
|
}
|
|
|
|
if (ctx) {
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
}
|
|
|
|
BN_MONT_CTX_free(mont);
|
|
|
|
return ok;
|
|
}
|
|
|
|
DSA *DSAparams_dup(const DSA *dsa) {
|
|
DSA *ret = DSA_new();
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
ret->p = BN_dup(dsa->p);
|
|
ret->q = BN_dup(dsa->q);
|
|
ret->g = BN_dup(dsa->g);
|
|
if (ret->p == NULL || ret->q == NULL || ret->g == NULL) {
|
|
DSA_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int DSA_generate_key(DSA *dsa) {
|
|
int ok = 0;
|
|
BN_CTX *ctx = NULL;
|
|
BIGNUM *pub_key = NULL, *priv_key = NULL;
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
priv_key = dsa->priv_key;
|
|
if (priv_key == NULL) {
|
|
priv_key = BN_new();
|
|
if (priv_key == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!BN_rand_range_ex(priv_key, 1, dsa->q)) {
|
|
goto err;
|
|
}
|
|
|
|
pub_key = dsa->pub_key;
|
|
if (pub_key == NULL) {
|
|
pub_key = BN_new();
|
|
if (pub_key == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, &dsa->method_mont_lock,
|
|
dsa->p, ctx) ||
|
|
!BN_mod_exp_mont_consttime(pub_key, dsa->g, priv_key, dsa->p, ctx,
|
|
dsa->method_mont_p)) {
|
|
goto err;
|
|
}
|
|
|
|
dsa->priv_key = priv_key;
|
|
dsa->pub_key = pub_key;
|
|
ok = 1;
|
|
|
|
err:
|
|
if (dsa->pub_key == NULL) {
|
|
BN_free(pub_key);
|
|
}
|
|
if (dsa->priv_key == NULL) {
|
|
BN_free(priv_key);
|
|
}
|
|
BN_CTX_free(ctx);
|
|
|
|
return ok;
|
|
}
|
|
|
|
DSA_SIG *DSA_SIG_new(void) {
|
|
DSA_SIG *sig;
|
|
sig = OPENSSL_malloc(sizeof(DSA_SIG));
|
|
if (!sig) {
|
|
return NULL;
|
|
}
|
|
sig->r = NULL;
|
|
sig->s = NULL;
|
|
return sig;
|
|
}
|
|
|
|
void DSA_SIG_free(DSA_SIG *sig) {
|
|
if (!sig) {
|
|
return;
|
|
}
|
|
|
|
BN_free(sig->r);
|
|
BN_free(sig->s);
|
|
OPENSSL_free(sig);
|
|
}
|
|
|
|
DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len, DSA *dsa) {
|
|
BIGNUM *kinv = NULL, *r = NULL, *s = NULL;
|
|
BIGNUM m;
|
|
BIGNUM xr;
|
|
BN_CTX *ctx = NULL;
|
|
int reason = ERR_R_BN_LIB;
|
|
DSA_SIG *ret = NULL;
|
|
int noredo = 0;
|
|
|
|
BN_init(&m);
|
|
BN_init(&xr);
|
|
|
|
if (!dsa->p || !dsa->q || !dsa->g) {
|
|
reason = DSA_R_MISSING_PARAMETERS;
|
|
goto err;
|
|
}
|
|
|
|
s = BN_new();
|
|
if (s == NULL) {
|
|
goto err;
|
|
}
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
redo:
|
|
if (dsa->kinv == NULL || dsa->r == NULL) {
|
|
if (!DSA_sign_setup(dsa, ctx, &kinv, &r)) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
kinv = dsa->kinv;
|
|
dsa->kinv = NULL;
|
|
r = dsa->r;
|
|
dsa->r = NULL;
|
|
noredo = 1;
|
|
}
|
|
|
|
if (digest_len > BN_num_bytes(dsa->q)) {
|
|
/* if the digest length is greater than the size of q use the
|
|
* BN_num_bits(dsa->q) leftmost bits of the digest, see
|
|
* fips 186-3, 4.2 */
|
|
digest_len = BN_num_bytes(dsa->q);
|
|
}
|
|
|
|
if (BN_bin2bn(digest, digest_len, &m) == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
/* Compute s = inv(k) (m + xr) mod q */
|
|
if (!BN_mod_mul(&xr, dsa->priv_key, r, dsa->q, ctx)) {
|
|
goto err; /* s = xr */
|
|
}
|
|
if (!BN_add(s, &xr, &m)) {
|
|
goto err; /* s = m + xr */
|
|
}
|
|
if (BN_cmp(s, dsa->q) > 0) {
|
|
if (!BN_sub(s, s, dsa->q)) {
|
|
goto err;
|
|
}
|
|
}
|
|
if (!BN_mod_mul(s, s, kinv, dsa->q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
/* Redo if r or s is zero as required by FIPS 186-3: this is
|
|
* very unlikely. */
|
|
if (BN_is_zero(r) || BN_is_zero(s)) {
|
|
if (noredo) {
|
|
reason = DSA_R_NEED_NEW_SETUP_VALUES;
|
|
goto err;
|
|
}
|
|
goto redo;
|
|
}
|
|
ret = DSA_SIG_new();
|
|
if (ret == NULL) {
|
|
goto err;
|
|
}
|
|
ret->r = r;
|
|
ret->s = s;
|
|
|
|
err:
|
|
if (ret == NULL) {
|
|
OPENSSL_PUT_ERROR(DSA, reason);
|
|
BN_free(r);
|
|
BN_free(s);
|
|
}
|
|
BN_CTX_free(ctx);
|
|
BN_clear_free(&m);
|
|
BN_clear_free(&xr);
|
|
BN_clear_free(kinv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int DSA_do_verify(const uint8_t *digest, size_t digest_len, DSA_SIG *sig,
|
|
const DSA *dsa) {
|
|
int valid;
|
|
if (!DSA_do_check_signature(&valid, digest, digest_len, sig, dsa)) {
|
|
return -1;
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
int DSA_do_check_signature(int *out_valid, const uint8_t *digest,
|
|
size_t digest_len, DSA_SIG *sig, const DSA *dsa) {
|
|
BN_CTX *ctx;
|
|
BIGNUM u1, u2, t1;
|
|
int ret = 0;
|
|
unsigned i;
|
|
|
|
*out_valid = 0;
|
|
|
|
if (!dsa->p || !dsa->q || !dsa->g) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
|
|
return 0;
|
|
}
|
|
|
|
i = BN_num_bits(dsa->q);
|
|
/* fips 186-3 allows only different sizes for q */
|
|
if (i != 160 && i != 224 && i != 256) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_BAD_Q_VALUE);
|
|
return 0;
|
|
}
|
|
|
|
if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_MODULUS_TOO_LARGE);
|
|
return 0;
|
|
}
|
|
|
|
BN_init(&u1);
|
|
BN_init(&u2);
|
|
BN_init(&t1);
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
|
|
BN_ucmp(sig->r, dsa->q) >= 0) {
|
|
ret = 1;
|
|
goto err;
|
|
}
|
|
if (BN_is_zero(sig->s) || BN_is_negative(sig->s) ||
|
|
BN_ucmp(sig->s, dsa->q) >= 0) {
|
|
ret = 1;
|
|
goto err;
|
|
}
|
|
|
|
/* Calculate W = inv(S) mod Q
|
|
* save W in u2 */
|
|
if (BN_mod_inverse(&u2, sig->s, dsa->q, ctx) == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
/* save M in u1 */
|
|
if (digest_len > (i >> 3)) {
|
|
/* if the digest length is greater than the size of q use the
|
|
* BN_num_bits(dsa->q) leftmost bits of the digest, see
|
|
* fips 186-3, 4.2 */
|
|
digest_len = (i >> 3);
|
|
}
|
|
|
|
if (BN_bin2bn(digest, digest_len, &u1) == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
/* u1 = M * w mod q */
|
|
if (!BN_mod_mul(&u1, &u1, &u2, dsa->q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
/* u2 = r * w mod q */
|
|
if (!BN_mod_mul(&u2, sig->r, &u2, dsa->q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,
|
|
(CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p,
|
|
ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_mod_exp2_mont(&t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p, ctx,
|
|
dsa->method_mont_p)) {
|
|
goto err;
|
|
}
|
|
|
|
/* BN_copy(&u1,&t1); */
|
|
/* let u1 = u1 mod q */
|
|
if (!BN_mod(&u1, &t1, dsa->q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
/* V is now in u1. If the signature is correct, it will be
|
|
* equal to R. */
|
|
*out_valid = BN_ucmp(&u1, sig->r) == 0;
|
|
ret = 1;
|
|
|
|
err:
|
|
if (ret != 1) {
|
|
OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
|
|
}
|
|
BN_CTX_free(ctx);
|
|
BN_free(&u1);
|
|
BN_free(&u2);
|
|
BN_free(&t1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int DSA_sign(int type, const uint8_t *digest, size_t digest_len,
|
|
uint8_t *out_sig, unsigned int *out_siglen, DSA *dsa) {
|
|
DSA_SIG *s;
|
|
|
|
s = DSA_do_sign(digest, digest_len, dsa);
|
|
if (s == NULL) {
|
|
*out_siglen = 0;
|
|
return 0;
|
|
}
|
|
|
|
*out_siglen = i2d_DSA_SIG(s, &out_sig);
|
|
DSA_SIG_free(s);
|
|
return 1;
|
|
}
|
|
|
|
int DSA_verify(int type, const uint8_t *digest, size_t digest_len,
|
|
const uint8_t *sig, size_t sig_len, const DSA *dsa) {
|
|
int valid;
|
|
if (!DSA_check_signature(&valid, digest, digest_len, sig, sig_len, dsa)) {
|
|
return -1;
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
int DSA_check_signature(int *out_valid, const uint8_t *digest,
|
|
size_t digest_len, const uint8_t *sig, size_t sig_len,
|
|
const DSA *dsa) {
|
|
DSA_SIG *s = NULL;
|
|
int ret = 0;
|
|
uint8_t *der = NULL;
|
|
|
|
s = DSA_SIG_new();
|
|
if (s == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
const uint8_t *sigp = sig;
|
|
if (d2i_DSA_SIG(&s, &sigp, sig_len) == NULL || sigp != sig + sig_len) {
|
|
goto err;
|
|
}
|
|
|
|
/* Ensure that the signature uses DER and doesn't have trailing garbage. */
|
|
int der_len = i2d_DSA_SIG(s, &der);
|
|
if (der_len < 0 || (size_t)der_len != sig_len ||
|
|
OPENSSL_memcmp(sig, der, sig_len)) {
|
|
goto err;
|
|
}
|
|
|
|
ret = DSA_do_check_signature(out_valid, digest, digest_len, s, dsa);
|
|
|
|
err:
|
|
OPENSSL_free(der);
|
|
DSA_SIG_free(s);
|
|
return ret;
|
|
}
|
|
|
|
/* der_len_len returns the number of bytes needed to represent a length of |len|
|
|
* in DER. */
|
|
static size_t der_len_len(size_t len) {
|
|
if (len < 0x80) {
|
|
return 1;
|
|
}
|
|
size_t ret = 1;
|
|
while (len > 0) {
|
|
ret++;
|
|
len >>= 8;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int DSA_size(const DSA *dsa) {
|
|
size_t order_len = BN_num_bytes(dsa->q);
|
|
/* Compute the maximum length of an |order_len| byte integer. Defensively
|
|
* assume that the leading 0x00 is included. */
|
|
size_t integer_len = 1 /* tag */ + der_len_len(order_len + 1) + 1 + order_len;
|
|
if (integer_len < order_len) {
|
|
return 0;
|
|
}
|
|
/* A DSA signature is two INTEGERs. */
|
|
size_t value_len = 2 * integer_len;
|
|
if (value_len < integer_len) {
|
|
return 0;
|
|
}
|
|
/* Add the header. */
|
|
size_t ret = 1 /* tag */ + der_len_len(value_len) + value_len;
|
|
if (ret < value_len) {
|
|
return 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int DSA_sign_setup(const DSA *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv,
|
|
BIGNUM **out_r) {
|
|
BN_CTX *ctx;
|
|
BIGNUM k, kq, *kinv = NULL, *r = NULL;
|
|
int ret = 0;
|
|
|
|
if (!dsa->p || !dsa->q || !dsa->g) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
|
|
return 0;
|
|
}
|
|
|
|
BN_init(&k);
|
|
BN_init(&kq);
|
|
|
|
ctx = ctx_in;
|
|
if (ctx == NULL) {
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
r = BN_new();
|
|
if (r == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
/* Get random k */
|
|
if (!BN_rand_range_ex(&k, 1, dsa->q)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,
|
|
(CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p,
|
|
ctx) ||
|
|
!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q,
|
|
(CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q,
|
|
ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
/* Compute r = (g^k mod p) mod q */
|
|
if (!BN_copy(&kq, &k)) {
|
|
goto err;
|
|
}
|
|
|
|
/* We do not want timing information to leak the length of k,
|
|
* so we compute g^k using an equivalent exponent of fixed length.
|
|
*
|
|
* (This is a kludge that we need because the BN_mod_exp_mont()
|
|
* does not let us specify the desired timing behaviour.) */
|
|
|
|
if (!BN_add(&kq, &kq, dsa->q)) {
|
|
goto err;
|
|
}
|
|
if (BN_num_bits(&kq) <= BN_num_bits(dsa->q) && !BN_add(&kq, &kq, dsa->q)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_mod_exp_mont_consttime(r, dsa->g, &kq, dsa->p, ctx,
|
|
dsa->method_mont_p)) {
|
|
goto err;
|
|
}
|
|
if (!BN_mod(r, r, dsa->q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
/* Compute part of 's = inv(k) (m + xr) mod q' using Fermat's Little
|
|
* Theorem. */
|
|
kinv = BN_new();
|
|
if (kinv == NULL ||
|
|
!bn_mod_inverse_prime(kinv, &k, dsa->q, ctx, dsa->method_mont_q)) {
|
|
goto err;
|
|
}
|
|
|
|
BN_clear_free(*out_kinv);
|
|
*out_kinv = kinv;
|
|
kinv = NULL;
|
|
BN_clear_free(*out_r);
|
|
*out_r = r;
|
|
ret = 1;
|
|
|
|
err:
|
|
if (!ret) {
|
|
OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
|
|
if (r != NULL) {
|
|
BN_clear_free(r);
|
|
}
|
|
}
|
|
|
|
if (ctx_in == NULL) {
|
|
BN_CTX_free(ctx);
|
|
}
|
|
BN_clear_free(&k);
|
|
BN_clear_free(&kq);
|
|
BN_clear_free(kinv);
|
|
return ret;
|
|
}
|
|
|
|
int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
|
|
CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) {
|
|
int index;
|
|
if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp, dup_func,
|
|
free_func)) {
|
|
return -1;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
int DSA_set_ex_data(DSA *d, int idx, void *arg) {
|
|
return CRYPTO_set_ex_data(&d->ex_data, idx, arg);
|
|
}
|
|
|
|
void *DSA_get_ex_data(const DSA *d, int idx) {
|
|
return CRYPTO_get_ex_data(&d->ex_data, idx);
|
|
}
|
|
|
|
DH *DSA_dup_DH(const DSA *r) {
|
|
DH *ret = NULL;
|
|
|
|
if (r == NULL) {
|
|
goto err;
|
|
}
|
|
ret = DH_new();
|
|
if (ret == NULL) {
|
|
goto err;
|
|
}
|
|
if (r->q != NULL) {
|
|
ret->priv_length = BN_num_bits(r->q);
|
|
if ((ret->q = BN_dup(r->q)) == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
if ((r->p != NULL && (ret->p = BN_dup(r->p)) == NULL) ||
|
|
(r->g != NULL && (ret->g = BN_dup(r->g)) == NULL) ||
|
|
(r->pub_key != NULL && (ret->pub_key = BN_dup(r->pub_key)) == NULL) ||
|
|
(r->priv_key != NULL && (ret->priv_key = BN_dup(r->priv_key)) == NULL)) {
|
|
goto err;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err:
|
|
DH_free(ret);
|
|
return NULL;
|
|
}
|