86c2b854b0
Hasse's theorem implies at most one subtraction is necessary. This is still using BIGNUM for now because field elements (EC_POINT_get_affine_coordinates_GFp) are BIGNUMs. This gives an additional 2% speedup for signing. Before: Did 16000 ECDSA P-224 signing operations in 1064799us (15026.3 ops/sec) Did 19000 ECDSA P-256 signing operations in 1007839us (18852.2 ops/sec) Did 1078 ECDSA P-384 signing operations in 1079413us (998.7 ops/sec) Did 484 ECDSA P-521 signing operations in 1083616us (446.7 ops/sec) After: Did 16000 ECDSA P-224 signing operations in 1054918us (15167.1 ops/sec) Did 20000 ECDSA P-256 signing operations in 1037338us (19280.1 ops/sec) Did 1045 ECDSA P-384 signing operations in 1049073us (996.1 ops/sec) Did 484 ECDSA P-521 signing operations in 1085492us (445.9 ops/sec) Change-Id: I2bfe214f968eca7a8e317928c0f3daf1a14bca90 Reviewed-on: https://boringssl-review.googlesource.com/23076 Reviewed-by: Adam Langley <agl@google.com>
441 lines
14 KiB
C
441 lines
14 KiB
C
/* ====================================================================
|
||
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
*
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
*
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in
|
||
* the documentation and/or other materials provided with the
|
||
* distribution.
|
||
*
|
||
* 3. All advertising materials mentioning features or use of this
|
||
* software must display the following acknowledgment:
|
||
* "This product includes software developed by the OpenSSL Project
|
||
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
||
*
|
||
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||
* endorse or promote products derived from this software without
|
||
* prior written permission. For written permission, please contact
|
||
* openssl-core@OpenSSL.org.
|
||
*
|
||
* 5. Products derived from this software may not be called "OpenSSL"
|
||
* nor may "OpenSSL" appear in their names without prior written
|
||
* permission of the OpenSSL Project.
|
||
*
|
||
* 6. Redistributions of any form whatsoever must retain the following
|
||
* acknowledgment:
|
||
* "This product includes software developed by the OpenSSL Project
|
||
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
* ====================================================================
|
||
*
|
||
* This product includes cryptographic software written by Eric Young
|
||
* (eay@cryptsoft.com). This product includes software written by Tim
|
||
* Hudson (tjh@cryptsoft.com). */
|
||
|
||
#include <openssl/ecdsa.h>
|
||
|
||
#include <assert.h>
|
||
#include <string.h>
|
||
|
||
#include <openssl/bn.h>
|
||
#include <openssl/err.h>
|
||
#include <openssl/mem.h>
|
||
#include <openssl/sha.h>
|
||
#include <openssl/type_check.h>
|
||
|
||
#include "../bn/internal.h"
|
||
#include "../ec/internal.h"
|
||
#include "../../internal.h"
|
||
|
||
|
||
// digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
|
||
// ECDSA. Note this value is not fully reduced modulo the order, only the
|
||
// correct number of bits.
|
||
static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
|
||
const uint8_t *digest, size_t digest_len) {
|
||
const BIGNUM *order = &group->order;
|
||
size_t num_bits = BN_num_bits(order);
|
||
// Need to truncate digest if it is too long: first truncate whole bytes.
|
||
if (8 * digest_len > num_bits) {
|
||
digest_len = (num_bits + 7) / 8;
|
||
}
|
||
OPENSSL_memset(out, 0, sizeof(EC_SCALAR));
|
||
for (size_t i = 0; i < digest_len; i++) {
|
||
out->bytes[i] = digest[digest_len - 1 - i];
|
||
}
|
||
|
||
// If still too long truncate remaining bits with a shift
|
||
if (8 * digest_len > num_bits) {
|
||
size_t shift = 8 - (num_bits & 0x7);
|
||
for (int i = 0; i < order->top - 1; i++) {
|
||
out->words[i] =
|
||
(out->words[i] >> shift) | (out->words[i + 1] << (BN_BITS2 - shift));
|
||
}
|
||
out->words[order->top - 1] >>= shift;
|
||
}
|
||
}
|
||
|
||
// field_element_to_scalar reduces |r| modulo |group->order|. |r| must
|
||
// previously have been reduced modulo |group->field|.
|
||
static int field_element_to_scalar(const EC_GROUP *group, BIGNUM *r) {
|
||
// We must have p < 2×order, assuming p is not tiny (p >= 17). Thus rather we
|
||
// can reduce by performing at most one subtraction.
|
||
//
|
||
// Proof: We only work with prime order curves, so the number of points on
|
||
// the curve is the order. Thus Hasse's theorem gives:
|
||
//
|
||
// |order - (p + 1)| <= 2×sqrt(p)
|
||
// p + 1 - order <= 2×sqrt(p)
|
||
// p + 1 - 2×sqrt(p) <= order
|
||
// p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17)
|
||
// p/2 < p/2 + 1 < order
|
||
// p < 2×order
|
||
//
|
||
// Additionally, one can manually check this property for built-in curves. It
|
||
// is enforced for legacy custom curves in |EC_GROUP_set_generator|.
|
||
//
|
||
// TODO(davidben): Introduce |EC_FIELD_ELEMENT|, make this a function from
|
||
// |EC_FIELD_ELEMENT| to |EC_SCALAR|, and cut out the |BIGNUM|. Does this need
|
||
// to be constant-time for signing? |r| is the x-coordinate for kG, which is
|
||
// public unless k was rerolled because |s| was zero.
|
||
assert(!BN_is_negative(r));
|
||
assert(BN_cmp(r, &group->field) < 0);
|
||
if (BN_cmp(r, &group->order) >= 0 &&
|
||
!BN_sub(r, r, &group->order)) {
|
||
return 0;
|
||
}
|
||
assert(!BN_is_negative(r));
|
||
assert(BN_cmp(r, &group->order) < 0);
|
||
return 1;
|
||
}
|
||
|
||
ECDSA_SIG *ECDSA_SIG_new(void) {
|
||
ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
|
||
if (sig == NULL) {
|
||
return NULL;
|
||
}
|
||
sig->r = BN_new();
|
||
sig->s = BN_new();
|
||
if (sig->r == NULL || sig->s == NULL) {
|
||
ECDSA_SIG_free(sig);
|
||
return NULL;
|
||
}
|
||
return sig;
|
||
}
|
||
|
||
void ECDSA_SIG_free(ECDSA_SIG *sig) {
|
||
if (sig == NULL) {
|
||
return;
|
||
}
|
||
|
||
BN_free(sig->r);
|
||
BN_free(sig->s);
|
||
OPENSSL_free(sig);
|
||
}
|
||
|
||
void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
|
||
const BIGNUM **out_s) {
|
||
if (out_r != NULL) {
|
||
*out_r = sig->r;
|
||
}
|
||
if (out_s != NULL) {
|
||
*out_s = sig->s;
|
||
}
|
||
}
|
||
|
||
int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
|
||
if (r == NULL || s == NULL) {
|
||
return 0;
|
||
}
|
||
BN_free(sig->r);
|
||
BN_free(sig->s);
|
||
sig->r = r;
|
||
sig->s = s;
|
||
return 1;
|
||
}
|
||
|
||
int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
|
||
const ECDSA_SIG *sig, const EC_KEY *eckey) {
|
||
int ret = 0;
|
||
BN_CTX *ctx;
|
||
BIGNUM *u1, *u2, *m, *X;
|
||
EC_POINT *point = NULL;
|
||
const EC_GROUP *group;
|
||
const EC_POINT *pub_key;
|
||
|
||
// check input values
|
||
if ((group = EC_KEY_get0_group(eckey)) == NULL ||
|
||
(pub_key = EC_KEY_get0_public_key(eckey)) == NULL ||
|
||
sig == NULL) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
|
||
return 0;
|
||
}
|
||
|
||
ctx = BN_CTX_new();
|
||
if (!ctx) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
|
||
return 0;
|
||
}
|
||
BN_CTX_start(ctx);
|
||
u1 = BN_CTX_get(ctx);
|
||
u2 = BN_CTX_get(ctx);
|
||
m = BN_CTX_get(ctx);
|
||
X = BN_CTX_get(ctx);
|
||
if (u1 == NULL || u2 == NULL || m == NULL || X == NULL) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
|
||
const BIGNUM *order = EC_GROUP_get0_order(group);
|
||
if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
|
||
BN_ucmp(sig->r, order) >= 0 || BN_is_zero(sig->s) ||
|
||
BN_is_negative(sig->s) || BN_ucmp(sig->s, order) >= 0) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
|
||
goto err;
|
||
}
|
||
// tmp = inv(s) mod order
|
||
int no_inverse;
|
||
if (!BN_mod_inverse_odd(u2, &no_inverse, sig->s, order, ctx)) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
EC_SCALAR m_scalar;
|
||
digest_to_scalar(group, &m_scalar, digest, digest_len);
|
||
if (!bn_set_words(m, m_scalar.words, order->top)) {
|
||
goto err;
|
||
}
|
||
// u1 = m * tmp mod order
|
||
if (!BN_mod_mul(u1, m, u2, order, ctx)) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
// u2 = r * tmp mod order
|
||
if (!BN_mod_mul(u2, sig->r, u2, order, ctx)) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
|
||
point = EC_POINT_new(group);
|
||
if (point == NULL) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
|
||
goto err;
|
||
}
|
||
if (!EC_POINT_mul(group, point, u1, pub_key, u2, ctx)) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
|
||
goto err;
|
||
}
|
||
if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
|
||
goto err;
|
||
}
|
||
if (!field_element_to_scalar(group, X)) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
// The signature is correct iff |X| is equal to |sig->r|.
|
||
if (BN_ucmp(X, sig->r) != 0) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
|
||
goto err;
|
||
}
|
||
|
||
ret = 1;
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
BN_CTX_free(ctx);
|
||
EC_POINT_free(point);
|
||
return ret;
|
||
}
|
||
|
||
static int ecdsa_sign_setup(const EC_KEY *eckey, BN_CTX *ctx,
|
||
EC_SCALAR *out_kinv_mont, BIGNUM **rp,
|
||
const uint8_t *digest, size_t digest_len,
|
||
const EC_SCALAR *priv_key) {
|
||
EC_POINT *tmp_point = NULL;
|
||
int ret = 0;
|
||
EC_SCALAR k;
|
||
BIGNUM *r = BN_new(); // this value is later returned in *rp
|
||
if (r == NULL) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
|
||
goto err;
|
||
}
|
||
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
||
const BIGNUM *order = EC_GROUP_get0_order(group);
|
||
tmp_point = EC_POINT_new(group);
|
||
if (tmp_point == NULL) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
|
||
goto err;
|
||
}
|
||
|
||
// Check that the size of the group order is FIPS compliant (FIPS 186-4
|
||
// B.5.2).
|
||
if (BN_num_bits(order) < 160) {
|
||
OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
|
||
goto err;
|
||
}
|
||
|
||
do {
|
||
// Include the private key and message digest in the k generation.
|
||
if (eckey->fixed_k != NULL) {
|
||
if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) {
|
||
goto err;
|
||
}
|
||
} else {
|
||
// Pass a SHA512 hash of the private key and digest as additional data
|
||
// into the RBG. This is a hardening measure against entropy failure.
|
||
OPENSSL_COMPILE_ASSERT(SHA512_DIGEST_LENGTH >= 32,
|
||
additional_data_is_too_large_for_sha512);
|
||
SHA512_CTX sha;
|
||
uint8_t additional_data[SHA512_DIGEST_LENGTH];
|
||
SHA512_Init(&sha);
|
||
SHA512_Update(&sha, priv_key->words, order->top * sizeof(BN_ULONG));
|
||
SHA512_Update(&sha, digest, digest_len);
|
||
SHA512_Final(additional_data, &sha);
|
||
if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
// Compute k^-1. We leave it in the Montgomery domain as an optimization for
|
||
// later operations.
|
||
if (!bn_to_montgomery_small(out_kinv_mont->words, order->top, k.words,
|
||
order->top, group->order_mont) ||
|
||
!bn_mod_inverse_prime_mont_small(out_kinv_mont->words, order->top,
|
||
out_kinv_mont->words, order->top,
|
||
group->order_mont)) {
|
||
goto err;
|
||
}
|
||
|
||
// Compute r, the x-coordinate of generator * k.
|
||
if (!ec_point_mul_scalar(group, tmp_point, &k, NULL, NULL, ctx) ||
|
||
!EC_POINT_get_affine_coordinates_GFp(group, tmp_point, r, NULL,
|
||
ctx)) {
|
||
goto err;
|
||
}
|
||
|
||
if (!field_element_to_scalar(group, r)) {
|
||
goto err;
|
||
}
|
||
} while (BN_is_zero(r));
|
||
|
||
BN_clear_free(*rp);
|
||
*rp = r;
|
||
r = NULL;
|
||
ret = 1;
|
||
|
||
err:
|
||
OPENSSL_cleanse(&k, sizeof(k));
|
||
BN_clear_free(r);
|
||
EC_POINT_free(tmp_point);
|
||
return ret;
|
||
}
|
||
|
||
ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
|
||
const EC_KEY *eckey) {
|
||
if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
|
||
return NULL;
|
||
}
|
||
|
||
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
||
const BIGNUM *priv_key_bn = EC_KEY_get0_private_key(eckey);
|
||
if (group == NULL || priv_key_bn == NULL) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
|
||
return NULL;
|
||
}
|
||
const BIGNUM *order = EC_GROUP_get0_order(group);
|
||
|
||
int ok = 0;
|
||
ECDSA_SIG *ret = ECDSA_SIG_new();
|
||
BN_CTX *ctx = BN_CTX_new();
|
||
EC_SCALAR kinv_mont, priv_key, r_mont, s, tmp, m;
|
||
if (ret == NULL || ctx == NULL) {
|
||
OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
|
||
return NULL;
|
||
}
|
||
|
||
digest_to_scalar(group, &m, digest, digest_len);
|
||
if (!ec_bignum_to_scalar(group, &priv_key, priv_key_bn)) {
|
||
goto err;
|
||
}
|
||
for (;;) {
|
||
if (!ecdsa_sign_setup(eckey, ctx, &kinv_mont, &ret->r, digest, digest_len,
|
||
&priv_key)) {
|
||
goto err;
|
||
}
|
||
|
||
// Compute priv_key * r (mod order). Note if only one parameter is in the
|
||
// Montgomery domain, |bn_mod_mul_montgomery_small| will compute the answer
|
||
// in the normal domain.
|
||
if (!ec_bignum_to_scalar(group, &r_mont, ret->r) ||
|
||
!bn_to_montgomery_small(r_mont.words, order->top, r_mont.words,
|
||
order->top, group->order_mont) ||
|
||
!bn_mod_mul_montgomery_small(s.words, order->top, priv_key.words,
|
||
order->top, r_mont.words, order->top,
|
||
group->order_mont)) {
|
||
goto err;
|
||
}
|
||
|
||
// Compute s += m in constant time. Reduce one copy of |order| if necessary.
|
||
// Note this does not leave |s| fully reduced. We have
|
||
// |m| < 2^BN_num_bits(order), so subtracting |order| leaves
|
||
// 0 <= |s| < 2^BN_num_bits(order).
|
||
BN_ULONG carry = bn_add_words(s.words, s.words, m.words, order->top);
|
||
BN_ULONG v = bn_sub_words(tmp.words, s.words, order->d, order->top) - carry;
|
||
v = 0u - v;
|
||
for (int i = 0; i < order->top; i++) {
|
||
s.words[i] = constant_time_select_w(v, s.words[i], tmp.words[i]);
|
||
}
|
||
|
||
// Finally, multiply s by k^-1. That was retained in Montgomery form, so the
|
||
// same technique as the previous multiplication works. Although the
|
||
// previous step did not fully reduce |s|, |bn_mod_mul_montgomery_small|
|
||
// only requires the product not exceed R * |order|. |kinv_mont| is fully
|
||
// reduced and |s| < 2^BN_num_bits(order) <= R, so this holds.
|
||
if (!bn_mod_mul_montgomery_small(s.words, order->top, s.words, order->top,
|
||
kinv_mont.words, order->top,
|
||
group->order_mont) ||
|
||
!bn_set_words(ret->s, s.words, order->top)) {
|
||
goto err;
|
||
}
|
||
if (!BN_is_zero(ret->s)) {
|
||
// s != 0 => we have a valid signature
|
||
break;
|
||
}
|
||
}
|
||
|
||
ok = 1;
|
||
|
||
err:
|
||
if (!ok) {
|
||
ECDSA_SIG_free(ret);
|
||
ret = NULL;
|
||
}
|
||
BN_CTX_free(ctx);
|
||
OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont));
|
||
OPENSSL_cleanse(&priv_key, sizeof(priv_key));
|
||
OPENSSL_cleanse(&r_mont, sizeof(r_mont));
|
||
OPENSSL_cleanse(&s, sizeof(s));
|
||
OPENSSL_cleanse(&tmp, sizeof(tmp));
|
||
OPENSSL_cleanse(&m, sizeof(m));
|
||
return ret;
|
||
}
|