boringssl/ssl/ssl_rsa.c
David Benjamin 7944a9f008 Account for key size when selecting RSA-PSS.
RSASSA-PSS with SHA-512 is slightly too large for 1024-bit RSA. One
should not be using 1024-bit RSA, but it's common enough for tests
(including our own in runner before they were regenerated), that we
should probably do the size check and avoid unnecessary turbulence to
everyone else's test setups.

Change-Id: If0c7e401d7d05404755cba4cbff76de3bc65c138
Reviewed-on: https://boringssl-review.googlesource.com/8746
Reviewed-by: Steven Valdez <svaldez@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-07-13 15:32:05 +00:00

749 lines
23 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/ssl.h>
#include <limits.h>
#include <openssl/ec.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/type_check.h>
#include <openssl/x509.h>
#include "internal.h"
static int ssl_set_cert(CERT *c, X509 *x509);
static int ssl_set_pkey(CERT *c, EVP_PKEY *pkey);
static int is_key_type_supported(int key_type) {
return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC;
}
int SSL_use_certificate(SSL *ssl, X509 *x) {
if (x == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return ssl_set_cert(ssl->cert, x);
}
int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
X509 *x509 = d2i_X509(NULL, &p, (long)der_len);
if (x509 == NULL || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
X509_free(x509);
return 0;
}
int ret = SSL_use_certificate(ssl, x509);
X509_free(x509);
return ret;
}
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
EVP_PKEY *pkey;
int ret;
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
pkey = EVP_PKEY_new();
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
return 0;
}
RSA_up_ref(rsa);
EVP_PKEY_assign_RSA(pkey, rsa);
ret = ssl_set_pkey(ssl->cert, pkey);
EVP_PKEY_free(pkey);
return ret;
}
static int ssl_set_pkey(CERT *c, EVP_PKEY *pkey) {
if (!is_key_type_supported(pkey->type)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
return 0;
}
if (c->x509 != NULL) {
/* Sanity-check that the private key and the certificate match, unless the
* key is opaque (in case of, say, a smartcard). */
if (!EVP_PKEY_is_opaque(pkey) &&
!X509_check_private_key(c->x509, pkey)) {
X509_free(c->x509);
c->x509 = NULL;
return 0;
}
}
EVP_PKEY_free(c->privatekey);
EVP_PKEY_up_ref(pkey);
c->privatekey = pkey;
return 1;
}
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
RSA *rsa = RSA_private_key_from_bytes(der, der_len);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
int ret = SSL_use_RSAPrivateKey(ssl, rsa);
RSA_free(rsa);
return ret;
}
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
int ret;
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
ret = ssl_set_pkey(ssl->cert, pkey);
return ret;
}
int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
size_t der_len) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
EVP_PKEY *pkey = d2i_PrivateKey(type, NULL, &p, (long)der_len);
if (pkey == NULL || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
EVP_PKEY_free(pkey);
return 0;
}
int ret = SSL_use_PrivateKey(ssl, pkey);
EVP_PKEY_free(pkey);
return ret;
}
int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x) {
if (x == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return ssl_set_cert(ctx->cert, x);
}
static int ssl_set_cert(CERT *c, X509 *x) {
EVP_PKEY *pkey = X509_get_pubkey(x);
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_X509_LIB);
return 0;
}
if (!is_key_type_supported(pkey->type)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
EVP_PKEY_free(pkey);
return 0;
}
if (c->privatekey != NULL) {
/* Sanity-check that the private key and the certificate match, unless the
* key is opaque (in case of, say, a smartcard). */
if (!EVP_PKEY_is_opaque(c->privatekey) &&
!X509_check_private_key(x, c->privatekey)) {
/* don't fail for a cert/key mismatch, just free current private key
* (when switching to a different cert & key, first this function should
* be used, then ssl_set_pkey */
EVP_PKEY_free(c->privatekey);
c->privatekey = NULL;
/* clear error queue */
ERR_clear_error();
}
}
EVP_PKEY_free(pkey);
X509_free(c->x509);
c->x509 = X509_up_ref(x);
return 1;
}
int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, size_t der_len,
const uint8_t *der) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
X509 *x509 = d2i_X509(NULL, &p, (long)der_len);
if (x509 == NULL || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
X509_free(x509);
return 0;
}
int ret = SSL_CTX_use_certificate(ctx, x509);
X509_free(x509);
return ret;
}
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
int ret;
EVP_PKEY *pkey;
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
pkey = EVP_PKEY_new();
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
return 0;
}
RSA_up_ref(rsa);
EVP_PKEY_assign_RSA(pkey, rsa);
ret = ssl_set_pkey(ctx->cert, pkey);
EVP_PKEY_free(pkey);
return ret;
}
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
size_t der_len) {
RSA *rsa = RSA_private_key_from_bytes(der, der_len);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
int ret = SSL_CTX_use_RSAPrivateKey(ctx, rsa);
RSA_free(rsa);
return ret;
}
int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return ssl_set_pkey(ctx->cert, pkey);
}
int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
size_t der_len) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
EVP_PKEY *pkey = d2i_PrivateKey(type, NULL, &p, (long)der_len);
if (pkey == NULL || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
EVP_PKEY_free(pkey);
return 0;
}
int ret = SSL_CTX_use_PrivateKey(ctx, pkey);
EVP_PKEY_free(pkey);
return ret;
}
void SSL_set_private_key_method(SSL *ssl,
const SSL_PRIVATE_KEY_METHOD *key_method) {
ssl->cert->key_method = key_method;
}
void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
const SSL_PRIVATE_KEY_METHOD *key_method) {
ctx->cert->key_method = key_method;
}
OPENSSL_COMPILE_ASSERT(sizeof(int) >= 2 * sizeof(uint16_t),
digest_list_conversion_cannot_overflow);
int SSL_set_private_key_digest_prefs(SSL *ssl, const int *digest_nids,
size_t num_digests) {
OPENSSL_free(ssl->cert->sigalgs);
ssl->cert->sigalgs_len = 0;
ssl->cert->sigalgs = OPENSSL_malloc(sizeof(uint16_t) * 2 * num_digests);
if (ssl->cert->sigalgs == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
/* Convert the digest list to a signature algorithms list.
*
* TODO(davidben): Replace this API with one that can express RSA-PSS, etc. */
for (size_t i = 0; i < num_digests; i++) {
switch (digest_nids[i]) {
case NID_sha1:
ssl->cert->sigalgs[ssl->cert->sigalgs_len] = SSL_SIGN_RSA_PKCS1_SHA1;
ssl->cert->sigalgs[ssl->cert->sigalgs_len + 1] = SSL_SIGN_ECDSA_SHA1;
ssl->cert->sigalgs_len += 2;
break;
case NID_sha256:
ssl->cert->sigalgs[ssl->cert->sigalgs_len] = SSL_SIGN_RSA_PKCS1_SHA256;
ssl->cert->sigalgs[ssl->cert->sigalgs_len + 1] =
SSL_SIGN_ECDSA_SECP256R1_SHA256;
ssl->cert->sigalgs_len += 2;
break;
case NID_sha384:
ssl->cert->sigalgs[ssl->cert->sigalgs_len] = SSL_SIGN_RSA_PKCS1_SHA384;
ssl->cert->sigalgs[ssl->cert->sigalgs_len + 1] =
SSL_SIGN_ECDSA_SECP384R1_SHA384;
ssl->cert->sigalgs_len += 2;
break;
case NID_sha512:
ssl->cert->sigalgs[ssl->cert->sigalgs_len] = SSL_SIGN_RSA_PKCS1_SHA512;
ssl->cert->sigalgs[ssl->cert->sigalgs_len + 1] =
SSL_SIGN_ECDSA_SECP521R1_SHA512;
ssl->cert->sigalgs_len += 2;
break;
}
}
return 1;
}
int ssl_has_private_key(SSL *ssl) {
return ssl->cert->privatekey != NULL || ssl->cert->key_method != NULL;
}
int ssl_private_key_type(SSL *ssl) {
if (ssl->cert->key_method != NULL) {
return ssl->cert->key_method->type(ssl);
}
return EVP_PKEY_id(ssl->cert->privatekey);
}
size_t ssl_private_key_max_signature_len(SSL *ssl) {
if (ssl->cert->key_method != NULL) {
return ssl->cert->key_method->max_signature_len(ssl);
}
return EVP_PKEY_size(ssl->cert->privatekey);
}
/* TODO(davidben): Forbid RSA-PKCS1 in TLS 1.3. For now we allow it because NSS
* has yet to start doing RSA-PSS, so enforcing it would complicate interop
* testing. */
static int is_rsa_pkcs1(const EVP_MD **out_md, uint16_t sigalg) {
switch (sigalg) {
case SSL_SIGN_RSA_PKCS1_MD5_SHA1:
*out_md = EVP_md5_sha1();
return 1;
case SSL_SIGN_RSA_PKCS1_SHA1:
*out_md = EVP_sha1();
return 1;
case SSL_SIGN_RSA_PKCS1_SHA256:
*out_md = EVP_sha256();
return 1;
case SSL_SIGN_RSA_PKCS1_SHA384:
*out_md = EVP_sha384();
return 1;
case SSL_SIGN_RSA_PKCS1_SHA512:
*out_md = EVP_sha512();
return 1;
default:
return 0;
}
}
static int ssl_sign_rsa_pkcs1(SSL *ssl, uint8_t *out, size_t *out_len,
size_t max_out, const EVP_MD *md,
const uint8_t *in, size_t in_len) {
EVP_MD_CTX ctx;
EVP_MD_CTX_init(&ctx);
*out_len = max_out;
int ret = EVP_DigestSignInit(&ctx, NULL, md, NULL, ssl->cert->privatekey) &&
EVP_DigestSignUpdate(&ctx, in, in_len) &&
EVP_DigestSignFinal(&ctx, out, out_len);
EVP_MD_CTX_cleanup(&ctx);
return ret;
}
static int ssl_verify_rsa_pkcs1(SSL *ssl, const uint8_t *signature,
size_t signature_len, const EVP_MD *md,
EVP_PKEY *pkey, const uint8_t *in,
size_t in_len) {
if (pkey->type != EVP_PKEY_RSA) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
EVP_MD_CTX md_ctx;
EVP_MD_CTX_init(&md_ctx);
int ret = EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) &&
EVP_DigestVerifyUpdate(&md_ctx, in, in_len) &&
EVP_DigestVerifyFinal(&md_ctx, signature, signature_len);
EVP_MD_CTX_cleanup(&md_ctx);
return ret;
}
static int is_ecdsa(int *out_curve, const EVP_MD **out_md, uint16_t sigalg) {
switch (sigalg) {
case SSL_SIGN_ECDSA_SHA1:
*out_curve = NID_undef;
*out_md = EVP_sha1();
return 1;
case SSL_SIGN_ECDSA_SECP256R1_SHA256:
*out_curve = NID_X9_62_prime256v1;
*out_md = EVP_sha256();
return 1;
case SSL_SIGN_ECDSA_SECP384R1_SHA384:
*out_curve = NID_secp384r1;
*out_md = EVP_sha384();
return 1;
case SSL_SIGN_ECDSA_SECP521R1_SHA512:
*out_curve = NID_secp521r1;
*out_md = EVP_sha512();
return 1;
default:
return 0;
}
}
static int ssl_sign_ecdsa(SSL *ssl, uint8_t *out, size_t *out_len,
size_t max_out, int curve, const EVP_MD *md,
const uint8_t *in, size_t in_len) {
EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(ssl->cert->privatekey);
if (ec_key == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* In TLS 1.3, the curve is also specified by the signature algorithm. */
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION &&
(curve == NID_undef ||
EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) != curve)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
EVP_MD_CTX ctx;
EVP_MD_CTX_init(&ctx);
*out_len = max_out;
int ret = EVP_DigestSignInit(&ctx, NULL, md, NULL, ssl->cert->privatekey) &&
EVP_DigestSignUpdate(&ctx, in, in_len) &&
EVP_DigestSignFinal(&ctx, out, out_len);
EVP_MD_CTX_cleanup(&ctx);
return ret;
}
static int ssl_verify_ecdsa(SSL *ssl, const uint8_t *signature,
size_t signature_len, int curve, const EVP_MD *md,
EVP_PKEY *pkey, const uint8_t *in, size_t in_len) {
EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(pkey);
if (ec_key == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* In TLS 1.3, the curve is also specified by the signature algorithm. */
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION &&
(curve == NID_undef ||
EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) != curve)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
EVP_MD_CTX md_ctx;
EVP_MD_CTX_init(&md_ctx);
int ret = EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) &&
EVP_DigestVerifyUpdate(&md_ctx, in, in_len) &&
EVP_DigestVerifyFinal(&md_ctx, signature, signature_len);
EVP_MD_CTX_cleanup(&md_ctx);
return ret;
}
static int is_rsa_pss(const EVP_MD **out_md, uint16_t sigalg) {
switch (sigalg) {
case SSL_SIGN_RSA_PSS_SHA256:
*out_md = EVP_sha256();
return 1;
case SSL_SIGN_RSA_PSS_SHA384:
*out_md = EVP_sha384();
return 1;
case SSL_SIGN_RSA_PSS_SHA512:
*out_md = EVP_sha512();
return 1;
default:
return 0;
}
}
static int ssl_sign_rsa_pss(SSL *ssl, uint8_t *out, size_t *out_len,
size_t max_out, const EVP_MD *md,
const uint8_t *in, size_t in_len) {
EVP_MD_CTX ctx;
EVP_MD_CTX_init(&ctx);
*out_len = max_out;
EVP_PKEY_CTX *pctx;
int ret =
EVP_DigestSignInit(&ctx, &pctx, md, NULL, ssl->cert->privatekey) &&
EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) &&
EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */) &&
EVP_DigestSignUpdate(&ctx, in, in_len) &&
EVP_DigestSignFinal(&ctx, out, out_len);
EVP_MD_CTX_cleanup(&ctx);
return ret;
}
static int ssl_verify_rsa_pss(SSL *ssl, const uint8_t *signature,
size_t signature_len, const EVP_MD *md,
EVP_PKEY *pkey, const uint8_t *in,
size_t in_len) {
if (pkey->type != EVP_PKEY_RSA) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
EVP_MD_CTX md_ctx;
EVP_MD_CTX_init(&md_ctx);
EVP_PKEY_CTX *pctx;
int ret =
EVP_DigestVerifyInit(&md_ctx, &pctx, md, NULL, pkey) &&
EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) &&
EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */) &&
EVP_DigestVerifyUpdate(&md_ctx, in, in_len) &&
EVP_DigestVerifyFinal(&md_ctx, signature, signature_len);
EVP_MD_CTX_cleanup(&md_ctx);
return ret;
}
enum ssl_private_key_result_t ssl_private_key_sign(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
uint16_t signature_algorithm, const uint8_t *in, size_t in_len) {
if (ssl->cert->key_method != NULL) {
/* For now, custom private keys can only handle pre-TLS-1.3 signature
* algorithms.
*
* TODO(davidben): Switch SSL_PRIVATE_KEY_METHOD to message-based APIs. */
const EVP_MD *md;
int curve;
if (!is_rsa_pkcs1(&md, signature_algorithm) &&
!is_ecdsa(&curve, &md, signature_algorithm)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL_FOR_CUSTOM_KEY);
return ssl_private_key_failure;
}
uint8_t hash[EVP_MAX_MD_SIZE];
unsigned hash_len;
if (!EVP_Digest(in, in_len, hash, &hash_len, md, NULL)) {
return ssl_private_key_failure;
}
return ssl->cert->key_method->sign(ssl, out, out_len, max_out, md, hash,
hash_len);
}
const EVP_MD *md;
if (is_rsa_pkcs1(&md, signature_algorithm)) {
return ssl_sign_rsa_pkcs1(ssl, out, out_len, max_out, md, in, in_len)
? ssl_private_key_success
: ssl_private_key_failure;
}
int curve;
if (is_ecdsa(&curve, &md, signature_algorithm)) {
return ssl_sign_ecdsa(ssl, out, out_len, max_out, curve, md, in, in_len)
? ssl_private_key_success
: ssl_private_key_failure;
}
if (is_rsa_pss(&md, signature_algorithm) &&
ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
return ssl_sign_rsa_pss(ssl, out, out_len, max_out, md, in, in_len)
? ssl_private_key_success
: ssl_private_key_failure;
}
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return ssl_private_key_failure;
}
enum ssl_private_key_result_t ssl_private_key_sign_complete(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) {
/* Only custom keys may be asynchronous. */
return ssl->cert->key_method->sign_complete(ssl, out, out_len, max_out);
}
int ssl_public_key_verify(SSL *ssl, const uint8_t *signature,
size_t signature_len, uint16_t signature_algorithm,
EVP_PKEY *pkey, const uint8_t *in, size_t in_len) {
const EVP_MD *md;
if (is_rsa_pkcs1(&md, signature_algorithm)) {
return ssl_verify_rsa_pkcs1(ssl, signature, signature_len, md, pkey, in,
in_len);
}
int curve;
if (is_ecdsa(&curve, &md, signature_algorithm)) {
return ssl_verify_ecdsa(ssl, signature, signature_len, curve, md, pkey, in,
in_len);
}
if (is_rsa_pss(&md, signature_algorithm) &&
ssl3_protocol_version(ssl) >= TLS1_3_VERSION) {
return ssl_verify_rsa_pss(ssl, signature, signature_len, md, pkey, in,
in_len);
}
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
enum ssl_private_key_result_t ssl_private_key_decrypt(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
const uint8_t *in, size_t in_len) {
if (ssl->cert->key_method != NULL) {
return ssl->cert->key_method->decrypt(ssl, out, out_len, max_out, in,
in_len);
}
RSA *rsa = EVP_PKEY_get0_RSA(ssl->cert->privatekey);
if (rsa == NULL) {
/* Decrypt operations are only supported for RSA keys. */
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return ssl_private_key_failure;
}
/* Decrypt with no padding. PKCS#1 padding will be removed as part
* of the timing-sensitive code by the caller. */
if (!RSA_decrypt(rsa, out_len, out, max_out, in, in_len, RSA_NO_PADDING)) {
return ssl_private_key_failure;
}
return ssl_private_key_success;
}
enum ssl_private_key_result_t ssl_private_key_decrypt_complete(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) {
/* Only custom keys may be asynchronous. */
return ssl->cert->key_method->decrypt_complete(ssl, out, out_len, max_out);
}
int ssl_private_key_supports_signature_algorithm(SSL *ssl,
uint16_t signature_algorithm) {
const EVP_MD *md;
if (is_rsa_pkcs1(&md, signature_algorithm)) {
return ssl_private_key_type(ssl) == EVP_PKEY_RSA;
}
int curve;
if (is_ecdsa(&curve, &md, signature_algorithm)) {
if (ssl_private_key_type(ssl) != EVP_PKEY_EC) {
return 0;
}
/* For non-custom keys, also check the curve matches. Custom private keys
* must instead configure the signature algorithms accordingly. */
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION &&
ssl->cert->key_method == NULL) {
EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(ssl->cert->privatekey);
if (curve == NID_undef ||
EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) != curve) {
return 0;
}
}
return 1;
}
if (is_rsa_pss(&md, signature_algorithm)) {
if (ssl3_protocol_version(ssl) < TLS1_3_VERSION ||
ssl_private_key_type(ssl) != EVP_PKEY_RSA) {
return 0;
}
/* Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
* emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
* hash in TLS. Reasonable RSA key sizes are large enough for the largest
* defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too large for
* SHA-512. 1024-bit RSA is sometimes used for test credentials, so check
* the size to fall back to another algorithm. */
if (ssl_private_key_max_signature_len(ssl) < 2 * EVP_MD_size(md) + 2) {
return 0;
}
return 1;
}
return 0;
}