boringssl/crypto/bytestring/cbb.c
David Benjamin 1db42fb3ca Clarify CBS/CBB with respect to high tag number form.
We may need to implement high tag number form someday. CBS_get_asn1 has
an unsigned output to allow for this, but CBB_add_asn1 takes a uint8_t
(I think this might be my fault). Fix that which also fixes a
-Wconversion warning.

Simply leaving room in tag representation will still cause troubles
because the class and constructed bits overlap with bits for tag numbers
above 31. Probably the cleanest option would be to shift them to the top
3 bits of a u32 and thus not quite match the DER representation. Then
CBS_get_asn1 and CBB_add_asn1 will internally munge that into the DER
representation and consumers may continue to write things like:

   tag_number | CBS_ASN1_CONTEXT_SPECIFIC

I haven't done that here, but in preparation for that, document that
consumers need to use the values and should refrain from assuming the
correspond to DER.

Change-Id: Ibc76e51f0bc3b843e48e89adddfe2eaba4843d12
Reviewed-on: https://boringssl-review.googlesource.com/10502
Reviewed-by: Adam Langley <agl@google.com>
Commit-Queue: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-08-26 17:48:48 +00:00

476 lines
10 KiB
C

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/bytestring.h>
#include <assert.h>
#include <string.h>
#include <openssl/mem.h>
void CBB_zero(CBB *cbb) {
memset(cbb, 0, sizeof(CBB));
}
static int cbb_init(CBB *cbb, uint8_t *buf, size_t cap) {
/* This assumes that |cbb| has already been zeroed. */
struct cbb_buffer_st *base;
base = OPENSSL_malloc(sizeof(struct cbb_buffer_st));
if (base == NULL) {
return 0;
}
base->buf = buf;
base->len = 0;
base->cap = cap;
base->can_resize = 1;
base->error = 0;
cbb->base = base;
cbb->is_top_level = 1;
return 1;
}
int CBB_init(CBB *cbb, size_t initial_capacity) {
CBB_zero(cbb);
uint8_t *buf = OPENSSL_malloc(initial_capacity);
if (initial_capacity > 0 && buf == NULL) {
return 0;
}
if (!cbb_init(cbb, buf, initial_capacity)) {
OPENSSL_free(buf);
return 0;
}
return 1;
}
int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) {
CBB_zero(cbb);
if (!cbb_init(cbb, buf, len)) {
return 0;
}
cbb->base->can_resize = 0;
return 1;
}
void CBB_cleanup(CBB *cbb) {
if (cbb->base) {
/* Only top-level |CBB|s are cleaned up. Child |CBB|s are non-owning. They
* are implicitly discarded when the parent is flushed or cleaned up. */
assert(cbb->is_top_level);
if (cbb->base->can_resize) {
OPENSSL_free(cbb->base->buf);
}
OPENSSL_free(cbb->base);
}
cbb->base = NULL;
}
static int cbb_buffer_reserve(struct cbb_buffer_st *base, uint8_t **out,
size_t len) {
size_t newlen;
if (base == NULL) {
return 0;
}
newlen = base->len + len;
if (newlen < base->len) {
/* Overflow */
goto err;
}
if (newlen > base->cap) {
size_t newcap = base->cap * 2;
uint8_t *newbuf;
if (!base->can_resize) {
goto err;
}
if (newcap < base->cap || newcap < newlen) {
newcap = newlen;
}
newbuf = OPENSSL_realloc(base->buf, newcap);
if (newbuf == NULL) {
goto err;
}
base->buf = newbuf;
base->cap = newcap;
}
if (out) {
*out = base->buf + base->len;
}
return 1;
err:
base->error = 1;
return 0;
}
static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out,
size_t len) {
if (!cbb_buffer_reserve(base, out, len)) {
return 0;
}
/* This will not overflow or |cbb_buffer_reserve| would have failed. */
base->len += len;
return 1;
}
static int cbb_buffer_add_u(struct cbb_buffer_st *base, uint32_t v,
size_t len_len) {
uint8_t *buf;
size_t i;
if (len_len == 0) {
return 1;
}
if (!cbb_buffer_add(base, &buf, len_len)) {
return 0;
}
for (i = len_len - 1; i < len_len; i--) {
buf[i] = v;
v >>= 8;
}
if (v != 0) {
base->error = 1;
return 0;
}
return 1;
}
int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) {
if (!cbb->is_top_level) {
return 0;
}
if (!CBB_flush(cbb)) {
return 0;
}
if (cbb->base->can_resize && (out_data == NULL || out_len == NULL)) {
/* |out_data| and |out_len| can only be NULL if the CBB is fixed. */
return 0;
}
if (out_data != NULL) {
*out_data = cbb->base->buf;
}
if (out_len != NULL) {
*out_len = cbb->base->len;
}
cbb->base->buf = NULL;
CBB_cleanup(cbb);
return 1;
}
/* CBB_flush recurses and then writes out any pending length prefix. The
* current length of the underlying base is taken to be the length of the
* length-prefixed data. */
int CBB_flush(CBB *cbb) {
size_t child_start, i, len;
/* If |cbb->base| has hit an error, the buffer is in an undefined state, so
* fail all following calls. In particular, |cbb->child| may point to invalid
* memory. */
if (cbb->base == NULL || cbb->base->error) {
return 0;
}
if (cbb->child == NULL || cbb->child->pending_len_len == 0) {
return 1;
}
child_start = cbb->child->offset + cbb->child->pending_len_len;
if (!CBB_flush(cbb->child) ||
child_start < cbb->child->offset ||
cbb->base->len < child_start) {
goto err;
}
len = cbb->base->len - child_start;
if (cbb->child->pending_is_asn1) {
/* For ASN.1 we assume that we'll only need a single byte for the length.
* If that turned out to be incorrect, we have to move the contents along
* in order to make space. */
uint8_t len_len;
uint8_t initial_length_byte;
assert (cbb->child->pending_len_len == 1);
if (len > 0xfffffffe) {
/* Too large. */
goto err;
} else if (len > 0xffffff) {
len_len = 5;
initial_length_byte = 0x80 | 4;
} else if (len > 0xffff) {
len_len = 4;
initial_length_byte = 0x80 | 3;
} else if (len > 0xff) {
len_len = 3;
initial_length_byte = 0x80 | 2;
} else if (len > 0x7f) {
len_len = 2;
initial_length_byte = 0x80 | 1;
} else {
len_len = 1;
initial_length_byte = (uint8_t)len;
len = 0;
}
if (len_len != 1) {
/* We need to move the contents along in order to make space. */
size_t extra_bytes = len_len - 1;
if (!cbb_buffer_add(cbb->base, NULL, extra_bytes)) {
goto err;
}
memmove(cbb->base->buf + child_start + extra_bytes,
cbb->base->buf + child_start, len);
}
cbb->base->buf[cbb->child->offset++] = initial_length_byte;
cbb->child->pending_len_len = len_len - 1;
}
for (i = cbb->child->pending_len_len - 1; i < cbb->child->pending_len_len;
i--) {
cbb->base->buf[cbb->child->offset + i] = (uint8_t)len;
len >>= 8;
}
if (len != 0) {
goto err;
}
cbb->child->base = NULL;
cbb->child = NULL;
return 1;
err:
cbb->base->error = 1;
return 0;
}
const uint8_t *CBB_data(const CBB *cbb) {
assert(cbb->child == NULL);
return cbb->base->buf + cbb->offset + cbb->pending_len_len;
}
size_t CBB_len(const CBB *cbb) {
assert(cbb->child == NULL);
assert(cbb->offset + cbb->pending_len_len <= cbb->base->len);
return cbb->base->len - cbb->offset - cbb->pending_len_len;
}
static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents,
uint8_t len_len) {
uint8_t *prefix_bytes;
if (!CBB_flush(cbb)) {
return 0;
}
size_t offset = cbb->base->len;
if (!cbb_buffer_add(cbb->base, &prefix_bytes, len_len)) {
return 0;
}
memset(prefix_bytes, 0, len_len);
memset(out_contents, 0, sizeof(CBB));
out_contents->base = cbb->base;
cbb->child = out_contents;
cbb->child->offset = offset;
cbb->child->pending_len_len = len_len;
cbb->child->pending_is_asn1 = 0;
return 1;
}
int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) {
return cbb_add_length_prefixed(cbb, out_contents, 1);
}
int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) {
return cbb_add_length_prefixed(cbb, out_contents, 2);
}
int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) {
return cbb_add_length_prefixed(cbb, out_contents, 3);
}
int CBB_add_asn1(CBB *cbb, CBB *out_contents, unsigned tag) {
if (tag > 0xff ||
(tag & 0x1f) == 0x1f) {
/* Long form identifier octets are not supported. Further, all current valid
* tag serializations are 8 bits. */
cbb->base->error = 1;
return 0;
}
if (!CBB_flush(cbb) ||
/* |tag|'s representation matches the DER encoding. */
!CBB_add_u8(cbb, (uint8_t)tag)) {
return 0;
}
size_t offset = cbb->base->len;
if (!CBB_add_u8(cbb, 0)) {
return 0;
}
memset(out_contents, 0, sizeof(CBB));
out_contents->base = cbb->base;
cbb->child = out_contents;
cbb->child->offset = offset;
cbb->child->pending_len_len = 1;
cbb->child->pending_is_asn1 = 1;
return 1;
}
int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) {
uint8_t *dest;
if (!CBB_flush(cbb) ||
!cbb_buffer_add(cbb->base, &dest, len)) {
return 0;
}
memcpy(dest, data, len);
return 1;
}
int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) {
if (!CBB_flush(cbb) ||
!cbb_buffer_add(cbb->base, out_data, len)) {
return 0;
}
return 1;
}
int CBB_reserve(CBB *cbb, uint8_t **out_data, size_t len) {
if (!CBB_flush(cbb) ||
!cbb_buffer_reserve(cbb->base, out_data, len)) {
return 0;
}
return 1;
}
int CBB_did_write(CBB *cbb, size_t len) {
size_t newlen = cbb->base->len + len;
if (cbb->child != NULL ||
newlen < cbb->base->len ||
newlen > cbb->base->cap) {
return 0;
}
cbb->base->len = newlen;
return 1;
}
int CBB_add_u8(CBB *cbb, uint8_t value) {
if (!CBB_flush(cbb)) {
return 0;
}
return cbb_buffer_add_u(cbb->base, value, 1);
}
int CBB_add_u16(CBB *cbb, uint16_t value) {
if (!CBB_flush(cbb)) {
return 0;
}
return cbb_buffer_add_u(cbb->base, value, 2);
}
int CBB_add_u24(CBB *cbb, uint32_t value) {
if (!CBB_flush(cbb)) {
return 0;
}
return cbb_buffer_add_u(cbb->base, value, 3);
}
int CBB_add_u32(CBB *cbb, uint32_t value) {
if (!CBB_flush(cbb)) {
return 0;
}
return cbb_buffer_add_u(cbb->base, value, 4);
}
void CBB_discard_child(CBB *cbb) {
if (cbb->child == NULL) {
return;
}
cbb->base->len = cbb->child->offset;
cbb->child->base = NULL;
cbb->child = NULL;
}
int CBB_add_asn1_uint64(CBB *cbb, uint64_t value) {
CBB child;
size_t i;
int started = 0;
if (!CBB_add_asn1(cbb, &child, CBS_ASN1_INTEGER)) {
return 0;
}
for (i = 0; i < 8; i++) {
uint8_t byte = (value >> 8*(7-i)) & 0xff;
if (!started) {
if (byte == 0) {
/* Don't encode leading zeros. */
continue;
}
/* If the high bit is set, add a padding byte to make it
* unsigned. */
if ((byte & 0x80) && !CBB_add_u8(&child, 0)) {
return 0;
}
started = 1;
}
if (!CBB_add_u8(&child, byte)) {
return 0;
}
}
/* 0 is encoded as a single 0, not the empty string. */
if (!started && !CBB_add_u8(&child, 0)) {
return 0;
}
return CBB_flush(cbb);
}