boringssl/crypto/fipsmodule/rsa/rsa_impl.c
Adam Langley a6a049a6fb Add start of infrastructure for checking constant-time properties.
Valgrind's checking of uninitialised memory behaves very much like a
check for constant-time code: branches and memory indexes based on
uninitialised memory trigger warnings. Therefore, if we can tell
Valgrind that some secret is “uninitialised”, it'll give us a warning if
we do something non-constant-time with it.

This was the idea behind https://github.com/agl/ctgrind. But tricks like
that are no longer needed because Valgrind now comes with support for
marking regions of memory as defined or not. Therefore we can use that
API to check constant-time code.

This CL defines |CONSTTIME_SECRET| and |CONSTTIME_DECLASSIFY|, which are
no-ops unless the code is built with
|BORINGSSL_CONSTANT_TIME_VALIDATION| defined, which it isn't by default.
So this CL is a no-op itself so far. But it does show that a couple of
bits of constant-time time are, in fact, constant-time—seemingly even
when compiled with optimisations, which is nice.

The annotations in the RSA code are a) probably not marking all the
secrets as secret, and b) triggers warnings that are a little
interesting:

The anti-glitch check calls |BN_mod_exp_mont| which checks that the
input is less than the modulus. Of course, it is because the input is
the RSA plaintext that we just decrypted, but the plaintext is supposed
to be secret and so branching based on its contents isn't allows by
Valgrind. The answer isn't totally clear, but I've run out of time on
this for now.

Change-Id: I1608ed0b22d201e97595fafe46127159e02d5b1b
Reviewed-on: https://boringssl-review.googlesource.com/c/33504
Reviewed-by: Adam Langley <agl@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: Adam Langley <agl@google.com>
2018-12-18 22:43:02 +00:00

1336 lines
42 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/rsa.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/thread.h>
#include <openssl/type_check.h>
#include "internal.h"
#include "../bn/internal.h"
#include "../../internal.h"
#include "../delocate.h"
static int check_modulus_and_exponent_sizes(const RSA *rsa) {
unsigned rsa_bits = BN_num_bits(rsa->n);
if (rsa_bits > 16 * 1024) {
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
return 0;
}
// Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen as
// the limit based on the recommendations in [1] and [2]. Windows CryptoAPI
// doesn't support values larger than 32 bits [3], so it is unlikely that
// exponents larger than 32 bits are being used for anything Windows commonly
// does.
//
// [1] https://www.imperialviolet.org/2012/03/16/rsae.html
// [2] https://www.imperialviolet.org/2012/03/17/rsados.html
// [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
static const unsigned kMaxExponentBits = 33;
if (BN_num_bits(rsa->e) > kMaxExponentBits) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
// Verify |n > e|. Comparing |rsa_bits| to |kMaxExponentBits| is a small
// shortcut to comparing |n| and |e| directly. In reality, |kMaxExponentBits|
// is much smaller than the minimum RSA key size that any application should
// accept.
if (rsa_bits <= kMaxExponentBits) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
assert(BN_ucmp(rsa->n, rsa->e) > 0);
return 1;
}
static int ensure_fixed_copy(BIGNUM **out, const BIGNUM *in, int width) {
if (*out != NULL) {
return 1;
}
BIGNUM *copy = BN_dup(in);
if (copy == NULL ||
!bn_resize_words(copy, width)) {
BN_free(copy);
return 0;
}
*out = copy;
CONSTTIME_SECRET(copy->d, sizeof(BN_ULONG) * width);
return 1;
}
// freeze_private_key finishes initializing |rsa|'s private key components.
// After this function has returned, |rsa| may not be changed. This is needed
// because |RSA| is a public struct and, additionally, OpenSSL 1.1.0 opaquified
// it wrong (see https://github.com/openssl/openssl/issues/5158).
static int freeze_private_key(RSA *rsa, BN_CTX *ctx) {
CRYPTO_MUTEX_lock_read(&rsa->lock);
int frozen = rsa->private_key_frozen;
CRYPTO_MUTEX_unlock_read(&rsa->lock);
if (frozen) {
return 1;
}
int ret = 0;
CRYPTO_MUTEX_lock_write(&rsa->lock);
if (rsa->private_key_frozen) {
ret = 1;
goto err;
}
// Pre-compute various intermediate values, as well as copies of private
// exponents with correct widths. Note that other threads may concurrently
// read from |rsa->n|, |rsa->e|, etc., so any fixes must be in separate
// copies. We use |mont_n->N|, |mont_p->N|, and |mont_q->N| as copies of |n|,
// |p|, and |q| with the correct minimal widths.
if (rsa->mont_n == NULL) {
rsa->mont_n = BN_MONT_CTX_new_for_modulus(rsa->n, ctx);
if (rsa->mont_n == NULL) {
goto err;
}
}
const BIGNUM *n_fixed = &rsa->mont_n->N;
// The only public upper-bound of |rsa->d| is the bit length of |rsa->n|. The
// ASN.1 serialization of RSA private keys unfortunately leaks the byte length
// of |rsa->d|, but normalize it so we only leak it once, rather than per
// operation.
if (rsa->d != NULL &&
!ensure_fixed_copy(&rsa->d_fixed, rsa->d, n_fixed->width)) {
goto err;
}
if (rsa->p != NULL && rsa->q != NULL) {
// TODO: p and q are also CONSTTIME_SECRET but not yet marked as such
// because the Montgomery code does things like test whether or not values
// are zero. So the secret marking probably needs to happen inside that
// code.
if (rsa->mont_p == NULL) {
rsa->mont_p = BN_MONT_CTX_new_consttime(rsa->p, ctx);
if (rsa->mont_p == NULL) {
goto err;
}
}
const BIGNUM *p_fixed = &rsa->mont_p->N;
if (rsa->mont_q == NULL) {
rsa->mont_q = BN_MONT_CTX_new_consttime(rsa->q, ctx);
if (rsa->mont_q == NULL) {
goto err;
}
}
const BIGNUM *q_fixed = &rsa->mont_q->N;
if (rsa->dmp1 != NULL && rsa->dmq1 != NULL) {
// Key generation relies on this function to compute |iqmp|.
if (rsa->iqmp == NULL) {
BIGNUM *iqmp = BN_new();
if (iqmp == NULL ||
!bn_mod_inverse_secret_prime(iqmp, rsa->q, rsa->p, ctx,
rsa->mont_p)) {
BN_free(iqmp);
goto err;
}
rsa->iqmp = iqmp;
}
// CRT components are only publicly bounded by their corresponding
// moduli's bit lengths. |rsa->iqmp| is unused outside of this one-time
// setup, so we do not compute a fixed-width version of it.
if (!ensure_fixed_copy(&rsa->dmp1_fixed, rsa->dmp1, p_fixed->width) ||
!ensure_fixed_copy(&rsa->dmq1_fixed, rsa->dmq1, q_fixed->width)) {
goto err;
}
// Compute |inv_small_mod_large_mont|. Note that it is always modulo the
// larger prime, independent of what is stored in |rsa->iqmp|.
if (rsa->inv_small_mod_large_mont == NULL) {
BIGNUM *inv_small_mod_large_mont = BN_new();
int ok;
if (BN_cmp(rsa->p, rsa->q) < 0) {
ok = inv_small_mod_large_mont != NULL &&
bn_mod_inverse_secret_prime(inv_small_mod_large_mont, rsa->p,
rsa->q, ctx, rsa->mont_q) &&
BN_to_montgomery(inv_small_mod_large_mont,
inv_small_mod_large_mont, rsa->mont_q, ctx);
} else {
ok = inv_small_mod_large_mont != NULL &&
BN_to_montgomery(inv_small_mod_large_mont, rsa->iqmp,
rsa->mont_p, ctx);
}
if (!ok) {
BN_free(inv_small_mod_large_mont);
goto err;
}
rsa->inv_small_mod_large_mont = inv_small_mod_large_mont;
CONSTTIME_SECRET(
rsa->inv_small_mod_large_mont->d,
sizeof(BN_ULONG) * rsa->inv_small_mod_large_mont->width);
}
}
}
rsa->private_key_frozen = 1;
ret = 1;
err:
CRYPTO_MUTEX_unlock_write(&rsa->lock);
return ret;
}
size_t rsa_default_size(const RSA *rsa) {
return BN_num_bytes(rsa->n);
}
int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding) {
if (rsa->n == NULL || rsa->e == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
const unsigned rsa_size = RSA_size(rsa);
BIGNUM *f, *result;
uint8_t *buf = NULL;
BN_CTX *ctx = NULL;
int i, ret = 0;
if (max_out < rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (!check_modulus_and_exponent_sizes(rsa)) {
return 0;
}
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
buf = OPENSSL_malloc(rsa_size);
if (!f || !result || !buf) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
switch (padding) {
case RSA_PKCS1_PADDING:
i = RSA_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len);
break;
case RSA_PKCS1_OAEP_PADDING:
// Use the default parameters: SHA-1 for both hashes and no label.
i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len,
NULL, 0, NULL, NULL);
break;
case RSA_NO_PADDING:
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
break;
default:
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
goto err;
}
if (i <= 0) {
goto err;
}
if (BN_bin2bn(buf, rsa_size, f) == NULL) {
goto err;
}
if (BN_ucmp(f, rsa->n) >= 0) {
// usually the padding functions would catch this
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
!BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
goto err;
}
// put in leading 0 bytes if the number is less than the length of the
// modulus
if (!BN_bn2bin_padded(out, rsa_size, result)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
*out_len = rsa_size;
ret = 1;
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
OPENSSL_free(buf);
return ret;
}
// MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per
// RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and
// destroyed as needed.
#define MAX_BLINDINGS_PER_RSA 1024
// rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by
// allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If
// none are free, the cache will be extended by a extra element and the new
// BN_BLINDING is returned.
//
// On success, the index of the assigned BN_BLINDING is written to
// |*index_used| and must be passed to |rsa_blinding_release| when finished.
static BN_BLINDING *rsa_blinding_get(RSA *rsa, unsigned *index_used,
BN_CTX *ctx) {
assert(ctx != NULL);
assert(rsa->mont_n != NULL);
BN_BLINDING *ret = NULL;
BN_BLINDING **new_blindings;
uint8_t *new_blindings_inuse;
char overflow = 0;
CRYPTO_MUTEX_lock_write(&rsa->lock);
unsigned i;
for (i = 0; i < rsa->num_blindings; i++) {
if (rsa->blindings_inuse[i] == 0) {
rsa->blindings_inuse[i] = 1;
ret = rsa->blindings[i];
*index_used = i;
break;
}
}
if (ret != NULL) {
CRYPTO_MUTEX_unlock_write(&rsa->lock);
return ret;
}
overflow = rsa->num_blindings >= MAX_BLINDINGS_PER_RSA;
// We didn't find a free BN_BLINDING to use so increase the length of
// the arrays by one and use the newly created element.
CRYPTO_MUTEX_unlock_write(&rsa->lock);
ret = BN_BLINDING_new();
if (ret == NULL) {
return NULL;
}
if (overflow) {
// We cannot add any more cached BN_BLINDINGs so we use |ret|
// and mark it for destruction in |rsa_blinding_release|.
*index_used = MAX_BLINDINGS_PER_RSA;
return ret;
}
CRYPTO_MUTEX_lock_write(&rsa->lock);
new_blindings =
OPENSSL_malloc(sizeof(BN_BLINDING *) * (rsa->num_blindings + 1));
if (new_blindings == NULL) {
goto err1;
}
OPENSSL_memcpy(new_blindings, rsa->blindings,
sizeof(BN_BLINDING *) * rsa->num_blindings);
new_blindings[rsa->num_blindings] = ret;
new_blindings_inuse = OPENSSL_malloc(rsa->num_blindings + 1);
if (new_blindings_inuse == NULL) {
goto err2;
}
OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings);
new_blindings_inuse[rsa->num_blindings] = 1;
*index_used = rsa->num_blindings;
OPENSSL_free(rsa->blindings);
rsa->blindings = new_blindings;
OPENSSL_free(rsa->blindings_inuse);
rsa->blindings_inuse = new_blindings_inuse;
rsa->num_blindings++;
CRYPTO_MUTEX_unlock_write(&rsa->lock);
return ret;
err2:
OPENSSL_free(new_blindings);
err1:
CRYPTO_MUTEX_unlock_write(&rsa->lock);
BN_BLINDING_free(ret);
return NULL;
}
// rsa_blinding_release marks the cached BN_BLINDING at the given index as free
// for other threads to use.
static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding,
unsigned blinding_index) {
if (blinding_index == MAX_BLINDINGS_PER_RSA) {
// This blinding wasn't cached.
BN_BLINDING_free(blinding);
return;
}
CRYPTO_MUTEX_lock_write(&rsa->lock);
rsa->blindings_inuse[blinding_index] = 0;
CRYPTO_MUTEX_unlock_write(&rsa->lock);
}
// signing
int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in, size_t in_len,
int padding) {
const unsigned rsa_size = RSA_size(rsa);
uint8_t *buf = NULL;
int i, ret = 0;
if (max_out < rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
buf = OPENSSL_malloc(rsa_size);
if (buf == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
switch (padding) {
case RSA_PKCS1_PADDING:
i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len);
break;
case RSA_NO_PADDING:
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
break;
default:
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
goto err;
}
if (i <= 0) {
goto err;
}
if (!RSA_private_transform(rsa, out, buf, rsa_size)) {
goto err;
}
CONSTTIME_DECLASSIFY(out, rsa_size);
*out_len = rsa_size;
ret = 1;
err:
OPENSSL_free(buf);
return ret;
}
int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding) {
const unsigned rsa_size = RSA_size(rsa);
uint8_t *buf = NULL;
int ret = 0;
if (max_out < rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (padding == RSA_NO_PADDING) {
buf = out;
} else {
// Allocate a temporary buffer to hold the padded plaintext.
buf = OPENSSL_malloc(rsa_size);
if (buf == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (in_len != rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
goto err;
}
if (!RSA_private_transform(rsa, buf, in, rsa_size)) {
goto err;
}
switch (padding) {
case RSA_PKCS1_PADDING:
ret =
RSA_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size);
break;
case RSA_PKCS1_OAEP_PADDING:
// Use the default parameters: SHA-1 for both hashes and no label.
ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf,
rsa_size, NULL, 0, NULL, NULL);
break;
case RSA_NO_PADDING:
*out_len = rsa_size;
ret = 1;
break;
default:
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
goto err;
}
CONSTTIME_DECLASSIFY(&ret, sizeof(ret));
if (!ret) {
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
} else {
CONSTTIME_DECLASSIFY(out, out_len);
}
err:
if (padding != RSA_NO_PADDING) {
OPENSSL_free(buf);
}
return ret;
}
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding) {
if (rsa->n == NULL || rsa->e == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
const unsigned rsa_size = RSA_size(rsa);
BIGNUM *f, *result;
if (max_out < rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (in_len != rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
return 0;
}
if (!check_modulus_and_exponent_sizes(rsa)) {
return 0;
}
BN_CTX *ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
int ret = 0;
uint8_t *buf = NULL;
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
if (f == NULL || result == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
if (padding == RSA_NO_PADDING) {
buf = out;
} else {
// Allocate a temporary buffer to hold the padded plaintext.
buf = OPENSSL_malloc(rsa_size);
if (buf == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
}
if (BN_bin2bn(in, in_len, f) == NULL) {
goto err;
}
if (BN_ucmp(f, rsa->n) >= 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
!BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
goto err;
}
if (!BN_bn2bin_padded(buf, rsa_size, result)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
switch (padding) {
case RSA_PKCS1_PADDING:
ret =
RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size);
break;
case RSA_NO_PADDING:
ret = 1;
*out_len = rsa_size;
break;
default:
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
goto err;
}
if (!ret) {
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
goto err;
}
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
if (buf != out) {
OPENSSL_free(buf);
}
return ret;
}
int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
size_t len) {
if (rsa->n == NULL || rsa->d == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
BIGNUM *f, *result;
BN_CTX *ctx = NULL;
unsigned blinding_index = 0;
BN_BLINDING *blinding = NULL;
int ret = 0;
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
if (f == NULL || result == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
goto err;
}
if (BN_bin2bn(in, len, f) == NULL) {
goto err;
}
if (BN_ucmp(f, rsa->n) >= 0) {
// Usually the padding functions would catch this.
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!freeze_private_key(rsa, ctx)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
const int do_blinding = (rsa->flags & RSA_FLAG_NO_BLINDING) == 0;
if (rsa->e == NULL && do_blinding) {
// We cannot do blinding or verification without |e|, and continuing without
// those countermeasures is dangerous. However, the Java/Android RSA API
// requires support for keys where only |d| and |n| (and not |e|) are known.
// The callers that require that bad behavior set |RSA_FLAG_NO_BLINDING|.
OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT);
goto err;
}
if (do_blinding) {
blinding = rsa_blinding_get(rsa, &blinding_index, ctx);
if (blinding == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) {
goto err;
}
}
if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL &&
rsa->dmq1 != NULL && rsa->iqmp != NULL &&
// Require that we can reduce |f| by |rsa->p| and |rsa->q| in constant
// time, which requires primes be the same size, rounded to the Montgomery
// coefficient. (See |mod_montgomery|.) This is not required by RFC 8017,
// but it is true for keys generated by us and all common implementations.
bn_less_than_montgomery_R(rsa->q, rsa->mont_p) &&
bn_less_than_montgomery_R(rsa->p, rsa->mont_q)) {
if (!mod_exp(result, f, rsa, ctx)) {
goto err;
}
} else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx,
rsa->mont_n)) {
goto err;
}
// Verify the result to protect against fault attacks as described in the
// 1997 paper "On the Importance of Checking Cryptographic Protocols for
// Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some
// implementations do this only when the CRT is used, but we do it in all
// cases. Section 6 of the aforementioned paper describes an attack that
// works when the CRT isn't used. That attack is much less likely to succeed
// than the CRT attack, but there have likely been improvements since 1997.
//
// This check is cheap assuming |e| is small; it almost always is.
if (rsa->e != NULL) {
BIGNUM *vrfy = BN_CTX_get(ctx);
if (vrfy == NULL ||
!BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) ||
!BN_equal_consttime(vrfy, f)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (do_blinding &&
!BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) {
goto err;
}
// The computation should have left |result| as a maximally-wide number, so
// that it and serializing does not leak information about the magnitude of
// the result.
//
// See Falko Strenzke, "Manger's Attack revisited", ICICS 2010.
assert(result->width == rsa->mont_n->N.width);
if (!BN_bn2bin_padded(out, len, result)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
if (blinding != NULL) {
rsa_blinding_release(rsa, blinding, blinding_index);
}
return ret;
}
// mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced
// modulo |p| times |q|. It returns one on success and zero on error.
static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p,
const BN_MONT_CTX *mont_p, const BIGNUM *q,
BN_CTX *ctx) {
// Reducing in constant-time with Montgomery reduction requires I <= p * R. We
// have I < p * q, so this follows if q < R. The caller should have checked
// this already.
if (!bn_less_than_montgomery_R(q, mont_p)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p.
!BN_from_montgomery(r, I, mont_p, ctx) ||
// Multiply by R^2 and do another Montgomery reduction to compute
// I * R^-1 * R^2 * R^-1 = I mod p.
!BN_to_montgomery(r, r, mont_p, ctx)) {
return 0;
}
// By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and
// adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute
// I * R mod p here and save a reduction per prime. But this would require
// changing the RSAZ code and may not be worth it. Note that the RSAZ code
// uses a different radix, so it uses R' = 2^1044. There we'd actually want
// R^2 * R', and would futher benefit from a precomputed R'^2. It currently
// converts |mont_p->RR| to R'^2.
return 1;
}
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
assert(ctx != NULL);
assert(rsa->n != NULL);
assert(rsa->e != NULL);
assert(rsa->d != NULL);
assert(rsa->p != NULL);
assert(rsa->q != NULL);
assert(rsa->dmp1 != NULL);
assert(rsa->dmq1 != NULL);
assert(rsa->iqmp != NULL);
BIGNUM *r1, *m1;
int ret = 0;
BN_CTX_start(ctx);
r1 = BN_CTX_get(ctx);
m1 = BN_CTX_get(ctx);
if (r1 == NULL ||
m1 == NULL) {
goto err;
}
if (!freeze_private_key(rsa, ctx)) {
goto err;
}
// Implementing RSA with CRT in constant-time is sensitive to which prime is
// larger. Canonicalize fields so that |p| is the larger prime.
const BIGNUM *dmp1 = rsa->dmp1_fixed, *dmq1 = rsa->dmq1_fixed;
const BN_MONT_CTX *mont_p = rsa->mont_p, *mont_q = rsa->mont_q;
if (BN_cmp(rsa->p, rsa->q) < 0) {
mont_p = rsa->mont_q;
mont_q = rsa->mont_p;
dmp1 = rsa->dmq1_fixed;
dmq1 = rsa->dmp1_fixed;
}
// Use the minimal-width versions of |n|, |p|, and |q|. Either works, but if
// someone gives us non-minimal values, these will be slightly more efficient
// on the non-Montgomery operations.
const BIGNUM *n = &rsa->mont_n->N;
const BIGNUM *p = &mont_p->N;
const BIGNUM *q = &mont_q->N;
// This is a pre-condition for |mod_montgomery|. It was already checked by the
// caller.
assert(BN_ucmp(I, n) < 0);
if (// |m1| is the result modulo |q|.
!mod_montgomery(r1, I, q, mont_q, p, ctx) ||
!BN_mod_exp_mont_consttime(m1, r1, dmq1, q, ctx, mont_q) ||
// |r0| is the result modulo |p|.
!mod_montgomery(r1, I, p, mont_p, q, ctx) ||
!BN_mod_exp_mont_consttime(r0, r1, dmp1, p, ctx, mont_p) ||
// Compute r0 = r0 - m1 mod p. |p| is the larger prime, so |m1| is already
// fully reduced mod |p|.
!bn_mod_sub_consttime(r0, r0, m1, p, ctx) ||
// r0 = r0 * iqmp mod p. We use Montgomery multiplication to compute this
// in constant time. |inv_small_mod_large_mont| is in Montgomery form and
// r0 is not, so the result is taken out of Montgomery form.
!BN_mod_mul_montgomery(r0, r0, rsa->inv_small_mod_large_mont, mont_p,
ctx) ||
// r0 = r0 * q + m1 gives the final result. Reducing modulo q gives m1, so
// it is correct mod p. Reducing modulo p gives (r0-m1)*iqmp*q + m1 = r0,
// so it is correct mod q. Finally, the result is bounded by [m1, n + m1),
// and the result is at least |m1|, so this must be the unique answer in
// [0, n).
!bn_mul_consttime(r0, r0, q, ctx) ||
!bn_uadd_consttime(r0, r0, m1) ||
// The result should be bounded by |n|, but fixed-width operations may
// bound the width slightly higher, so fix it.
!bn_resize_words(r0, n->width)) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
static int ensure_bignum(BIGNUM **out) {
if (*out == NULL) {
*out = BN_new();
}
return *out != NULL;
}
// kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2¹⁵³⁵×√2⌋. This is
// chosen to give enough precision for 3072-bit RSA, the largest key size FIPS
// specifies. Key sizes beyond this will round up.
//
// To verify this number, check that n² < 2³⁰⁷¹ < (n+1)², where n is value
// represented here. Note the components are listed in little-endian order. Here
// is some sample Python code to check:
//
// >>> TOBN = lambda a, b: a << 32 | b
// >>> l = [ <paste the contents of kSqrtTwo> ]
// >>> n = sum(a * 2**(64*i) for i, a in enumerate(l))
// >>> n**2 < 2**3071 < (n+1)**2
// True
const BN_ULONG kBoringSSLRSASqrtTwo[] = {
TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307),
TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f),
TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651),
TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd),
TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e),
TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc),
TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a),
TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e),
TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a),
TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3),
TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c),
TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484),
};
const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo);
// generate_prime sets |out| to a prime with length |bits| such that |out|-1 is
// relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to
// |p|. |sqrt2| must be ⌊2^(bits-1)×√2⌋ (or a slightly overestimate for large
// sizes), and |pow2_bits_100| must be 2^(bits-100).
//
// This function fails with probability around 2^-21.
static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e,
const BIGNUM *p, const BIGNUM *sqrt2,
const BIGNUM *pow2_bits_100, BN_CTX *ctx,
BN_GENCB *cb) {
if (bits < 128 || (bits % BN_BITS2) != 0) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
assert(BN_is_pow2(pow2_bits_100));
assert(BN_is_bit_set(pow2_bits_100, bits - 100));
// See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2.
// Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3,
// the 186-4 limit is too low, so we use a higher one. Note this case is not
// reachable from |RSA_generate_key_fips|.
//
// |limit| determines the failure probability. We must find a prime that is
// not 1 mod |e|. By the prime number theorem, we'll find one with probability
// p = (e-1)/e * 2/(ln(2)*bits). Note the second term is doubled because we
// discard even numbers.
//
// The failure probability is thus (1-p)^limit. To convert that to a power of
// two, we take logs. -log_2((1-p)^limit) = -limit * ln(1-p) / ln(2).
//
// >>> def f(bits, e, limit):
// ... p = (e-1.0)/e * 2.0/(math.log(2)*bits)
// ... return -limit * math.log(1 - p) / math.log(2)
// ...
// >>> f(1024, 65537, 5*1024)
// 20.842750558272634
// >>> f(1536, 65537, 5*1536)
// 20.83294549602474
// >>> f(2048, 65537, 5*2048)
// 20.828047576234948
// >>> f(1024, 3, 8*1024)
// 22.222147925962307
// >>> f(1536, 3, 8*1536)
// 22.21518251065506
// >>> f(2048, 3, 8*2048)
// 22.211701985875937
if (bits >= INT_MAX/32) {
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
return 0;
}
int limit = BN_is_word(e, 3) ? bits * 8 : bits * 5;
int ret = 0, tries = 0, rand_tries = 0;
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
if (tmp == NULL) {
goto err;
}
for (;;) {
// Generate a random number of length |bits| where the bottom bit is set
// (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the
// bound checked below in steps 4.4 and 5.5).
if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) ||
!BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) {
goto err;
}
if (p != NULL) {
// If |p| and |out| are too close, try again (step 5.4).
if (!bn_abs_sub_consttime(tmp, out, p, ctx)) {
goto err;
}
if (BN_cmp(tmp, pow2_bits_100) <= 0) {
continue;
}
}
// If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent
// to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes.
//
// For larger keys, the comparison is approximate, leaning towards
// retrying. That is, we reject a negligible fraction of primes that are
// within the FIPS bound, but we will never accept a prime outside the
// bound, ensuring the resulting RSA key is the right size.
if (BN_cmp(out, sqrt2) <= 0) {
continue;
}
// RSA key generation's bottleneck is discarding composites. If it fails
// trial division, do not bother computing a GCD or performing Rabin-Miller.
if (!bn_odd_number_is_obviously_composite(out)) {
// Check gcd(out-1, e) is one (steps 4.5 and 5.6).
int relatively_prime;
if (!BN_sub(tmp, out, BN_value_one()) ||
!bn_is_relatively_prime(&relatively_prime, tmp, e, ctx)) {
goto err;
}
if (relatively_prime) {
// Test |out| for primality (steps 4.5.1 and 5.6.1).
int is_probable_prime;
if (!BN_primality_test(&is_probable_prime, out, BN_prime_checks, ctx, 0,
cb)) {
goto err;
}
if (is_probable_prime) {
ret = 1;
goto err;
}
}
}
// If we've tried too many times to find a prime, abort (steps 4.7 and
// 5.8).
tries++;
if (tries >= limit) {
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
goto err;
}
if (!BN_GENCB_call(cb, 2, tries)) {
goto err;
}
}
err:
BN_CTX_end(ctx);
return ret;
}
// rsa_generate_key_impl generates an RSA key using a generalized version of
// FIPS 186-4 appendix B.3. |RSA_generate_key_fips| performs additional checks
// for FIPS-compliant key generation.
//
// This function returns one on success and zero on failure. It has a failure
// probability of about 2^-20.
static int rsa_generate_key_impl(RSA *rsa, int bits, const BIGNUM *e_value,
BN_GENCB *cb) {
// See FIPS 186-4 appendix B.3. This function implements a generalized version
// of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks
// for FIPS-compliant key generation.
// Always generate RSA keys which are a multiple of 128 bits. Round |bits|
// down as needed.
bits &= ~127;
// Reject excessively small keys.
if (bits < 256) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
// Reject excessively large public exponents. Windows CryptoAPI and Go don't
// support values larger than 32 bits, so match their limits for generating
// keys. (|check_modulus_and_exponent_sizes| uses a slightly more conservative
// value, but we don't need to support generating such keys.)
// https://github.com/golang/go/issues/3161
// https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
if (BN_num_bits(e_value) > 32) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
int ret = 0;
int prime_bits = bits / 2;
BN_CTX *ctx = BN_CTX_new();
if (ctx == NULL) {
goto bn_err;
}
BN_CTX_start(ctx);
BIGNUM *totient = BN_CTX_get(ctx);
BIGNUM *pm1 = BN_CTX_get(ctx);
BIGNUM *qm1 = BN_CTX_get(ctx);
BIGNUM *sqrt2 = BN_CTX_get(ctx);
BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx);
BIGNUM *pow2_prime_bits = BN_CTX_get(ctx);
if (totient == NULL || pm1 == NULL || qm1 == NULL || sqrt2 == NULL ||
pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL ||
!BN_set_bit(pow2_prime_bits_100, prime_bits - 100) ||
!BN_set_bit(pow2_prime_bits, prime_bits)) {
goto bn_err;
}
// We need the RSA components non-NULL.
if (!ensure_bignum(&rsa->n) ||
!ensure_bignum(&rsa->d) ||
!ensure_bignum(&rsa->e) ||
!ensure_bignum(&rsa->p) ||
!ensure_bignum(&rsa->q) ||
!ensure_bignum(&rsa->dmp1) ||
!ensure_bignum(&rsa->dmq1)) {
goto bn_err;
}
if (!BN_copy(rsa->e, e_value)) {
goto bn_err;
}
// Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋.
if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) {
goto bn_err;
}
int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2;
assert(sqrt2_bits == (int)BN_num_bits(sqrt2));
if (sqrt2_bits > prime_bits) {
// For key sizes up to 3072 (prime_bits = 1536), this is exactly
// ⌊2^(prime_bits-1)×√2⌋.
if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) {
goto bn_err;
}
} else if (prime_bits > sqrt2_bits) {
// For key sizes beyond 3072, this is approximate. We err towards retrying
// to ensure our key is the right size and round up.
if (!BN_add_word(sqrt2, 1) ||
!BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) {
goto bn_err;
}
}
assert(prime_bits == (int)BN_num_bits(sqrt2));
do {
// Generate p and q, each of size |prime_bits|, using the steps outlined in
// appendix FIPS 186-4 appendix B.3.3.
//
// Each call to |generate_prime| fails with probability p = 2^-21. The
// probability that either call fails is 1 - (1-p)^2, which is around 2^-20.
if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2,
pow2_prime_bits_100, ctx, cb) ||
!BN_GENCB_call(cb, 3, 0) ||
!generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2,
pow2_prime_bits_100, ctx, cb) ||
!BN_GENCB_call(cb, 3, 1)) {
goto bn_err;
}
if (BN_cmp(rsa->p, rsa->q) < 0) {
BIGNUM *tmp = rsa->p;
rsa->p = rsa->q;
rsa->q = tmp;
}
// Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs
// from typical RSA implementations which use (p-1)*(q-1).
//
// Note this means the size of d might reveal information about p-1 and
// q-1. However, we do operations with Chinese Remainder Theorem, so we only
// use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient
// does not affect those two values.
int no_inverse;
if (!bn_usub_consttime(pm1, rsa->p, BN_value_one()) ||
!bn_usub_consttime(qm1, rsa->q, BN_value_one()) ||
!bn_lcm_consttime(totient, pm1, qm1, ctx) ||
!bn_mod_inverse_consttime(rsa->d, &no_inverse, rsa->e, totient, ctx)) {
goto bn_err;
}
// Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on
// values for d.
} while (BN_cmp(rsa->d, pow2_prime_bits) <= 0);
if (// Calculate n.
!bn_mul_consttime(rsa->n, rsa->p, rsa->q, ctx) ||
// Calculate d mod (p-1).
!bn_div_consttime(NULL, rsa->dmp1, rsa->d, pm1, ctx) ||
// Calculate d mod (q-1)
!bn_div_consttime(NULL, rsa->dmq1, rsa->d, qm1, ctx)) {
goto bn_err;
}
bn_set_minimal_width(rsa->n);
// Sanity-check that |rsa->n| has the specified size. This is implied by
// |generate_prime|'s bounds.
if (BN_num_bits(rsa->n) != (unsigned)bits) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
// Call |freeze_private_key| to compute the inverse of q mod p, by way of
// |rsa->mont_p|.
if (!freeze_private_key(rsa, ctx)) {
goto bn_err;
}
// The key generation process is complex and thus error-prone. It could be
// disastrous to generate and then use a bad key so double-check that the key
// makes sense.
if (!RSA_check_key(rsa)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
bn_err:
if (!ret) {
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
}
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
return ret;
}
static void replace_bignum(BIGNUM **out, BIGNUM **in) {
BN_free(*out);
*out = *in;
*in = NULL;
}
static void replace_bn_mont_ctx(BN_MONT_CTX **out, BN_MONT_CTX **in) {
BN_MONT_CTX_free(*out);
*out = *in;
*in = NULL;
}
int RSA_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e_value,
BN_GENCB *cb) {
// |rsa_generate_key_impl|'s 2^-20 failure probability is too high at scale,
// so we run the FIPS algorithm four times, bringing it down to 2^-80. We
// should just adjust the retry limit, but FIPS 186-4 prescribes that value
// and thus results in unnecessary complexity.
for (int i = 0; i < 4; i++) {
ERR_clear_error();
// Generate into scratch space, to avoid leaving partial work on failure.
RSA *tmp = RSA_new();
if (tmp == NULL) {
return 0;
}
if (rsa_generate_key_impl(tmp, bits, e_value, cb)) {
replace_bignum(&rsa->n, &tmp->n);
replace_bignum(&rsa->e, &tmp->e);
replace_bignum(&rsa->d, &tmp->d);
replace_bignum(&rsa->p, &tmp->p);
replace_bignum(&rsa->q, &tmp->q);
replace_bignum(&rsa->dmp1, &tmp->dmp1);
replace_bignum(&rsa->dmq1, &tmp->dmq1);
replace_bignum(&rsa->iqmp, &tmp->iqmp);
replace_bn_mont_ctx(&rsa->mont_n, &tmp->mont_n);
replace_bn_mont_ctx(&rsa->mont_p, &tmp->mont_p);
replace_bn_mont_ctx(&rsa->mont_q, &tmp->mont_q);
replace_bignum(&rsa->d_fixed, &tmp->d_fixed);
replace_bignum(&rsa->dmp1_fixed, &tmp->dmp1_fixed);
replace_bignum(&rsa->dmq1_fixed, &tmp->dmq1_fixed);
replace_bignum(&rsa->inv_small_mod_large_mont,
&tmp->inv_small_mod_large_mont);
rsa->private_key_frozen = tmp->private_key_frozen;
RSA_free(tmp);
return 1;
}
uint32_t err = ERR_peek_error();
RSA_free(tmp);
tmp = NULL;
// Only retry on |RSA_R_TOO_MANY_ITERATIONS|. This is so a caller-induced
// failure in |BN_GENCB_call| is still fatal.
if (ERR_GET_LIB(err) != ERR_LIB_RSA ||
ERR_GET_REASON(err) != RSA_R_TOO_MANY_ITERATIONS) {
return 0;
}
}
return 0;
}
int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) {
// FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit
// primes, respectively) with the prime generation method we use.
if (bits != 2048 && bits != 3072) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
return 0;
}
BIGNUM *e = BN_new();
int ret = e != NULL &&
BN_set_word(e, RSA_F4) &&
RSA_generate_key_ex(rsa, bits, e, cb) &&
RSA_check_fips(rsa);
BN_free(e);
return ret;
}
DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) {
// All of the methods are NULL to make it easier for the compiler/linker to
// drop unused functions. The wrapper functions will select the appropriate
// |rsa_default_*| implementation.
OPENSSL_memset(out, 0, sizeof(RSA_METHOD));
out->common.is_static = 1;
}