Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
 
 
 
 
 
 

1711 rindas
51 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com).
  108. *
  109. */
  110. /* ====================================================================
  111. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  112. * ECC cipher suite support in OpenSSL originally developed by
  113. * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
  114. */
  115. /* ====================================================================
  116. * Copyright 2005 Nokia. All rights reserved.
  117. *
  118. * The portions of the attached software ("Contribution") is developed by
  119. * Nokia Corporation and is licensed pursuant to the OpenSSL open source
  120. * license.
  121. *
  122. * The Contribution, originally written by Mika Kousa and Pasi Eronen of
  123. * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
  124. * support (see RFC 4279) to OpenSSL.
  125. *
  126. * No patent licenses or other rights except those expressly stated in
  127. * the OpenSSL open source license shall be deemed granted or received
  128. * expressly, by implication, estoppel, or otherwise.
  129. *
  130. * No assurances are provided by Nokia that the Contribution does not
  131. * infringe the patent or other intellectual property rights of any third
  132. * party or that the license provides you with all the necessary rights
  133. * to make use of the Contribution.
  134. *
  135. * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
  136. * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
  137. * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
  138. * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
  139. * OTHERWISE. */
  140. #include <assert.h>
  141. #include <stdio.h>
  142. #include <string.h>
  143. #include <openssl/buf.h>
  144. #include <openssl/err.h>
  145. #include <openssl/md5.h>
  146. #include <openssl/mem.h>
  147. #include <openssl/sha.h>
  148. #include <openssl/stack.h>
  149. #include "internal.h"
  150. /* kCiphers is an array of all supported ciphers, sorted by id. */
  151. const SSL_CIPHER kCiphers[] = {
  152. /* The RSA ciphers */
  153. /* Cipher 04 */
  154. {
  155. SSL3_TXT_RSA_RC4_128_MD5, SSL3_CK_RSA_RC4_128_MD5, SSL_kRSA, SSL_aRSA,
  156. SSL_RC4, SSL_MD5, SSL_SSLV3, SSL_MEDIUM,
  157. SSL_HANDSHAKE_MAC_DEFAULT, 128, 128,
  158. },
  159. /* Cipher 05 */
  160. {
  161. SSL3_TXT_RSA_RC4_128_SHA, SSL3_CK_RSA_RC4_128_SHA, SSL_kRSA, SSL_aRSA,
  162. SSL_RC4, SSL_SHA1, SSL_SSLV3, SSL_MEDIUM,
  163. SSL_HANDSHAKE_MAC_DEFAULT, 128, 128,
  164. },
  165. /* Cipher 0A */
  166. {
  167. SSL3_TXT_RSA_DES_192_CBC3_SHA, SSL3_CK_RSA_DES_192_CBC3_SHA, SSL_kRSA,
  168. SSL_aRSA, SSL_3DES, SSL_SHA1, SSL_SSLV3, SSL_HIGH | SSL_FIPS,
  169. SSL_HANDSHAKE_MAC_DEFAULT, 112, 168,
  170. },
  171. /* New AES ciphersuites */
  172. /* Cipher 2F */
  173. {
  174. TLS1_TXT_RSA_WITH_AES_128_SHA, TLS1_CK_RSA_WITH_AES_128_SHA, SSL_kRSA,
  175. SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  176. SSL_HANDSHAKE_MAC_DEFAULT, 128, 128,
  177. },
  178. /* Cipher 33 */
  179. {
  180. TLS1_TXT_DHE_RSA_WITH_AES_128_SHA, TLS1_CK_DHE_RSA_WITH_AES_128_SHA,
  181. SSL_kDHE, SSL_aRSA, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  182. SSL_HANDSHAKE_MAC_DEFAULT, 128, 128,
  183. },
  184. /* Cipher 35 */
  185. {
  186. TLS1_TXT_RSA_WITH_AES_256_SHA, TLS1_CK_RSA_WITH_AES_256_SHA, SSL_kRSA,
  187. SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  188. SSL_HANDSHAKE_MAC_DEFAULT, 256, 256,
  189. },
  190. /* Cipher 39 */
  191. {
  192. TLS1_TXT_DHE_RSA_WITH_AES_256_SHA, TLS1_CK_DHE_RSA_WITH_AES_256_SHA,
  193. SSL_kDHE, SSL_aRSA, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  194. SSL_HANDSHAKE_MAC_DEFAULT, 256, 256,
  195. },
  196. /* TLS v1.2 ciphersuites */
  197. /* Cipher 3C */
  198. {
  199. TLS1_TXT_RSA_WITH_AES_128_SHA256, TLS1_CK_RSA_WITH_AES_128_SHA256,
  200. SSL_kRSA, SSL_aRSA, SSL_AES128, SSL_SHA256, SSL_TLSV1_2,
  201. SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256, 128, 128,
  202. },
  203. /* Cipher 3D */
  204. {
  205. TLS1_TXT_RSA_WITH_AES_256_SHA256, TLS1_CK_RSA_WITH_AES_256_SHA256,
  206. SSL_kRSA, SSL_aRSA, SSL_AES256, SSL_SHA256, SSL_TLSV1_2,
  207. SSL_HIGH | SSL_FIPS, SSL_HANDSHAKE_MAC_SHA256, 256, 256,
  208. },
  209. /* Cipher 67 */
  210. {
  211. TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256,
  212. TLS1_CK_DHE_RSA_WITH_AES_128_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES128,
  213. SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  214. SSL_HANDSHAKE_MAC_SHA256, 128, 128,
  215. },
  216. /* Cipher 6B */
  217. {
  218. TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256,
  219. TLS1_CK_DHE_RSA_WITH_AES_256_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES256,
  220. SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  221. SSL_HANDSHAKE_MAC_SHA256, 256, 256,
  222. },
  223. /* PSK cipher suites. */
  224. /* Cipher 8A */
  225. {
  226. TLS1_TXT_PSK_WITH_RC4_128_SHA, TLS1_CK_PSK_WITH_RC4_128_SHA, SSL_kPSK,
  227. SSL_aPSK, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM,
  228. SSL_HANDSHAKE_MAC_DEFAULT, 128, 128,
  229. },
  230. /* Cipher 8C */
  231. {
  232. TLS1_TXT_PSK_WITH_AES_128_CBC_SHA, TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
  233. SSL_kPSK, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  234. SSL_HANDSHAKE_MAC_DEFAULT, 128, 128,
  235. },
  236. /* Cipher 8D */
  237. {
  238. TLS1_TXT_PSK_WITH_AES_256_CBC_SHA, TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
  239. SSL_kPSK, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  240. SSL_HANDSHAKE_MAC_DEFAULT, 256, 256,
  241. },
  242. /* GCM ciphersuites from RFC5288 */
  243. /* Cipher 9C */
  244. {
  245. TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
  246. TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, SSL_kRSA, SSL_aRSA, SSL_AES128GCM,
  247. SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  248. SSL_HANDSHAKE_MAC_SHA256,
  249. 128, 128,
  250. },
  251. /* Cipher 9D */
  252. {
  253. TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
  254. TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, SSL_kRSA, SSL_aRSA, SSL_AES256GCM,
  255. SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  256. SSL_HANDSHAKE_MAC_SHA384,
  257. 256, 256,
  258. },
  259. /* Cipher 9E */
  260. {
  261. TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256,
  262. TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kDHE, SSL_aRSA, SSL_AES128GCM,
  263. SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  264. SSL_HANDSHAKE_MAC_SHA256,
  265. 128, 128,
  266. },
  267. /* Cipher 9F */
  268. {
  269. TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384,
  270. TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kDHE, SSL_aRSA, SSL_AES256GCM,
  271. SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  272. SSL_HANDSHAKE_MAC_SHA384,
  273. 256, 256,
  274. },
  275. /* Cipher C007 */
  276. {
  277. TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA,
  278. TLS1_CK_ECDHE_ECDSA_WITH_RC4_128_SHA, SSL_kECDHE, SSL_aECDSA, SSL_RC4,
  279. SSL_SHA1, SSL_TLSV1, SSL_MEDIUM, SSL_HANDSHAKE_MAC_DEFAULT, 128,
  280. 128,
  281. },
  282. /* Cipher C009 */
  283. {
  284. TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
  285. TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aECDSA,
  286. SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  287. SSL_HANDSHAKE_MAC_DEFAULT, 128, 128,
  288. },
  289. /* Cipher C00A */
  290. {
  291. TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
  292. TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aECDSA,
  293. SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  294. SSL_HANDSHAKE_MAC_DEFAULT, 256, 256,
  295. },
  296. /* Cipher C011 */
  297. {
  298. TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA, TLS1_CK_ECDHE_RSA_WITH_RC4_128_SHA,
  299. SSL_kECDHE, SSL_aRSA, SSL_RC4, SSL_SHA1, SSL_TLSV1, SSL_MEDIUM,
  300. SSL_HANDSHAKE_MAC_DEFAULT, 128, 128,
  301. },
  302. /* Cipher C013 */
  303. {
  304. TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
  305. TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES128,
  306. SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  307. SSL_HANDSHAKE_MAC_DEFAULT, 128, 128,
  308. },
  309. /* Cipher C014 */
  310. {
  311. TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
  312. TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, SSL_kECDHE, SSL_aRSA, SSL_AES256,
  313. SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  314. SSL_HANDSHAKE_MAC_DEFAULT, 256, 256,
  315. },
  316. /* HMAC based TLS v1.2 ciphersuites from RFC5289 */
  317. /* Cipher C023 */
  318. {
  319. TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256,
  320. TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256, SSL_kECDHE, SSL_aECDSA,
  321. SSL_AES128, SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  322. SSL_HANDSHAKE_MAC_SHA256, 128, 128,
  323. },
  324. /* Cipher C024 */
  325. {
  326. TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384,
  327. TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384, SSL_kECDHE, SSL_aECDSA,
  328. SSL_AES256, SSL_SHA384, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  329. SSL_HANDSHAKE_MAC_SHA384, 256, 256,
  330. },
  331. /* Cipher C027 */
  332. {
  333. TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256,
  334. TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256, SSL_kECDHE, SSL_aRSA, SSL_AES128,
  335. SSL_SHA256, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  336. SSL_HANDSHAKE_MAC_SHA256, 128, 128,
  337. },
  338. /* Cipher C028 */
  339. {
  340. TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384,
  341. TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384, SSL_kECDHE, SSL_aRSA, SSL_AES256,
  342. SSL_SHA384, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  343. SSL_HANDSHAKE_MAC_SHA384, 256, 256,
  344. },
  345. /* GCM based TLS v1.2 ciphersuites from RFC5289 */
  346. /* Cipher C02B */
  347. {
  348. TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  349. TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aECDSA,
  350. SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  351. SSL_HANDSHAKE_MAC_SHA256,
  352. 128, 128,
  353. },
  354. /* Cipher C02C */
  355. {
  356. TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  357. TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aECDSA,
  358. SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  359. SSL_HANDSHAKE_MAC_SHA384,
  360. 256, 256,
  361. },
  362. /* Cipher C02F */
  363. {
  364. TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  365. TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, SSL_kECDHE, SSL_aRSA,
  366. SSL_AES128GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  367. SSL_HANDSHAKE_MAC_SHA256,
  368. 128, 128,
  369. },
  370. /* Cipher C030 */
  371. {
  372. TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
  373. TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, SSL_kECDHE, SSL_aRSA,
  374. SSL_AES256GCM, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH | SSL_FIPS,
  375. SSL_HANDSHAKE_MAC_SHA384,
  376. 256, 256,
  377. },
  378. /* ECDHE-PSK cipher suites. */
  379. /* Cipher C035 */
  380. {
  381. TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA,
  382. TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
  383. SSL_kECDHE, SSL_aPSK, SSL_AES128, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  384. SSL_HANDSHAKE_MAC_DEFAULT, 128, 128,
  385. },
  386. /* Cipher C036 */
  387. {
  388. TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA,
  389. TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA,
  390. SSL_kECDHE, SSL_aPSK, SSL_AES256, SSL_SHA1, SSL_TLSV1, SSL_HIGH | SSL_FIPS,
  391. SSL_HANDSHAKE_MAC_DEFAULT, 256, 256,
  392. },
  393. /* ChaCha20-Poly1305 cipher suites. */
  394. {
  395. TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305,
  396. TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305, SSL_kECDHE, SSL_aRSA,
  397. SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
  398. SSL_HANDSHAKE_MAC_SHA256,
  399. 256, 256,
  400. },
  401. {
  402. TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,
  403. TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305, SSL_kECDHE, SSL_aECDSA,
  404. SSL_CHACHA20POLY1305, SSL_AEAD, SSL_TLSV1_2, SSL_HIGH,
  405. SSL_HANDSHAKE_MAC_SHA256,
  406. 256, 256,
  407. },
  408. };
  409. static const size_t kCiphersLen = sizeof(kCiphers) / sizeof(kCiphers[0]);
  410. #define CIPHER_ADD 1
  411. #define CIPHER_KILL 2
  412. #define CIPHER_DEL 3
  413. #define CIPHER_ORD 4
  414. #define CIPHER_SPECIAL 5
  415. typedef struct cipher_order_st {
  416. const SSL_CIPHER *cipher;
  417. int active;
  418. int in_group;
  419. struct cipher_order_st *next, *prev;
  420. } CIPHER_ORDER;
  421. typedef struct cipher_alias_st {
  422. /* name is the name of the cipher alias. */
  423. const char *name;
  424. /* The following fields are bitmasks for the corresponding fields on
  425. * |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the
  426. * bit corresponding to the cipher's value is set to 1. If any bitmask is
  427. * all zeroes, the alias matches nothing. Use |~0u| for the default value. */
  428. uint32_t algorithm_mkey;
  429. uint32_t algorithm_auth;
  430. uint32_t algorithm_enc;
  431. uint32_t algorithm_mac;
  432. uint32_t algorithm_ssl;
  433. uint32_t algo_strength;
  434. } CIPHER_ALIAS;
  435. static const CIPHER_ALIAS kCipherAliases[] = {
  436. {SSL_TXT_ALL, ~0u, ~0u, ~0u, ~0u, ~0u, ~0u},
  437. /* The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing. */
  438. /* key exchange aliases
  439. * (some of those using only a single bit here combine
  440. * multiple key exchange algs according to the RFCs,
  441. * e.g. kEDH combines DHE_DSS and DHE_RSA) */
  442. {SSL_TXT_kRSA, SSL_kRSA, ~0u, ~0u, ~0u, ~0u, ~0u},
  443. {SSL_TXT_kDHE, SSL_kDHE, ~0u, ~0u, ~0u, ~0u, ~0u},
  444. {SSL_TXT_kEDH, SSL_kDHE, ~0u, ~0u, ~0u, ~0u, ~0u},
  445. {SSL_TXT_DH, SSL_kDHE, ~0u, ~0u, ~0u, ~0u, ~0u},
  446. {SSL_TXT_kECDHE, SSL_kECDHE, ~0u, ~0u, ~0u, ~0u, ~0u},
  447. {SSL_TXT_kEECDH, SSL_kECDHE, ~0u, ~0u, ~0u, ~0u, ~0u},
  448. {SSL_TXT_ECDH, SSL_kECDHE, ~0u, ~0u, ~0u, ~0u, ~0u},
  449. {SSL_TXT_kPSK, SSL_kPSK, ~0u, ~0u, ~0u, ~0u, ~0u},
  450. /* server authentication aliases */
  451. {SSL_TXT_aRSA, ~0u, SSL_aRSA, ~0u, ~0u, ~0u, ~0u},
  452. {SSL_TXT_aECDSA, ~0u, SSL_aECDSA, ~0u, ~0u, ~0u, ~0u},
  453. {SSL_TXT_ECDSA, ~0u, SSL_aECDSA, ~0u, ~0u, ~0u, ~0u},
  454. {SSL_TXT_aPSK, ~0u, SSL_aPSK, ~0u, ~0u, ~0u, ~0u},
  455. /* aliases combining key exchange and server authentication */
  456. {SSL_TXT_DHE, SSL_kDHE, ~0u, ~0u, ~0u, ~0u, ~0u},
  457. {SSL_TXT_EDH, SSL_kDHE, ~0u, ~0u, ~0u, ~0u, ~0u},
  458. {SSL_TXT_ECDHE, SSL_kECDHE, ~0u, ~0u, ~0u, ~0u, ~0u},
  459. {SSL_TXT_EECDH, SSL_kECDHE, ~0u, ~0u, ~0u, ~0u, ~0u},
  460. {SSL_TXT_RSA, SSL_kRSA, SSL_aRSA, ~0u, ~0u, ~0u, ~0u},
  461. {SSL_TXT_PSK, SSL_kPSK, SSL_aPSK, ~0u, ~0u, ~0u, ~0u},
  462. /* symmetric encryption aliases */
  463. {SSL_TXT_3DES, ~0u, ~0u, SSL_3DES, ~0u, ~0u, ~0u},
  464. {SSL_TXT_RC4, ~0u, ~0u, SSL_RC4, ~0u, ~0u, ~0u},
  465. {SSL_TXT_AES128, ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, ~0u, ~0u},
  466. {SSL_TXT_AES256, ~0u, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, ~0u, ~0u},
  467. {SSL_TXT_AES, ~0u, ~0u, SSL_AES, ~0u, ~0u, ~0u},
  468. {SSL_TXT_AES_GCM, ~0u, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, ~0u, ~0u},
  469. {SSL_TXT_CHACHA20, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, ~0u, ~0u},
  470. /* MAC aliases */
  471. {SSL_TXT_MD5, ~0u, ~0u, ~0u, SSL_MD5, ~0u, ~0u},
  472. {SSL_TXT_SHA1, ~0u, ~0u, ~0u, SSL_SHA1, ~0u, ~0u},
  473. {SSL_TXT_SHA, ~0u, ~0u, ~0u, SSL_SHA1, ~0u, ~0u},
  474. {SSL_TXT_SHA256, ~0u, ~0u, ~0u, SSL_SHA256, ~0u, ~0u},
  475. {SSL_TXT_SHA384, ~0u, ~0u, ~0u, SSL_SHA384, ~0u, ~0u},
  476. /* protocol version aliases */
  477. {SSL_TXT_SSLV3, ~0u, ~0u, ~0u, ~0u, SSL_SSLV3, ~0u},
  478. {SSL_TXT_TLSV1, ~0u, ~0u, ~0u, ~0u, SSL_TLSV1, ~0u},
  479. {SSL_TXT_TLSV1_2, ~0u, ~0u, ~0u, ~0u, SSL_TLSV1_2, ~0u},
  480. /* strength classes */
  481. {SSL_TXT_MEDIUM, ~0u, ~0u, ~0u, ~0u, ~0u, SSL_MEDIUM},
  482. {SSL_TXT_HIGH, ~0u, ~0u, ~0u, ~0u, ~0u, SSL_HIGH},
  483. /* FIPS 140-2 approved ciphersuite */
  484. {SSL_TXT_FIPS, ~0u, ~0u, ~0u, ~0u, ~0u, SSL_FIPS},
  485. };
  486. static const size_t kCipherAliasesLen =
  487. sizeof(kCipherAliases) / sizeof(kCipherAliases[0]);
  488. static int ssl_cipher_id_cmp(const void *in_a, const void *in_b) {
  489. const SSL_CIPHER *a = in_a;
  490. const SSL_CIPHER *b = in_b;
  491. if (a->id > b->id) {
  492. return 1;
  493. } else if (a->id < b->id) {
  494. return -1;
  495. } else {
  496. return 0;
  497. }
  498. }
  499. static int ssl_cipher_ptr_id_cmp(const SSL_CIPHER **a, const SSL_CIPHER **b) {
  500. return ssl_cipher_id_cmp(*a, *b);
  501. }
  502. const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) {
  503. SSL_CIPHER c;
  504. c.id = 0x03000000L | value;
  505. return bsearch(&c, kCiphers, kCiphersLen, sizeof(SSL_CIPHER),
  506. ssl_cipher_id_cmp);
  507. }
  508. int ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
  509. size_t *out_mac_secret_len,
  510. size_t *out_fixed_iv_len,
  511. const SSL_CIPHER *cipher, uint16_t version) {
  512. *out_aead = NULL;
  513. *out_mac_secret_len = 0;
  514. *out_fixed_iv_len = 0;
  515. switch (cipher->algorithm_enc) {
  516. case SSL_AES128GCM:
  517. *out_aead = EVP_aead_aes_128_gcm();
  518. *out_fixed_iv_len = 4;
  519. return 1;
  520. case SSL_AES256GCM:
  521. *out_aead = EVP_aead_aes_256_gcm();
  522. *out_fixed_iv_len = 4;
  523. return 1;
  524. case SSL_CHACHA20POLY1305:
  525. *out_aead = EVP_aead_chacha20_poly1305();
  526. *out_fixed_iv_len = 0;
  527. return 1;
  528. case SSL_RC4:
  529. switch (cipher->algorithm_mac) {
  530. case SSL_MD5:
  531. if (version == SSL3_VERSION) {
  532. *out_aead = EVP_aead_rc4_md5_ssl3();
  533. } else {
  534. *out_aead = EVP_aead_rc4_md5_tls();
  535. }
  536. *out_mac_secret_len = MD5_DIGEST_LENGTH;
  537. return 1;
  538. case SSL_SHA1:
  539. if (version == SSL3_VERSION) {
  540. *out_aead = EVP_aead_rc4_sha1_ssl3();
  541. } else {
  542. *out_aead = EVP_aead_rc4_sha1_tls();
  543. }
  544. *out_mac_secret_len = SHA_DIGEST_LENGTH;
  545. return 1;
  546. default:
  547. return 0;
  548. }
  549. case SSL_AES128:
  550. switch (cipher->algorithm_mac) {
  551. case SSL_SHA1:
  552. if (version == SSL3_VERSION) {
  553. *out_aead = EVP_aead_aes_128_cbc_sha1_ssl3();
  554. *out_fixed_iv_len = 16;
  555. } else if (version == TLS1_VERSION) {
  556. *out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv();
  557. *out_fixed_iv_len = 16;
  558. } else {
  559. *out_aead = EVP_aead_aes_128_cbc_sha1_tls();
  560. }
  561. *out_mac_secret_len = SHA_DIGEST_LENGTH;
  562. return 1;
  563. case SSL_SHA256:
  564. *out_aead = EVP_aead_aes_128_cbc_sha256_tls();
  565. *out_mac_secret_len = SHA256_DIGEST_LENGTH;
  566. return 1;
  567. default:
  568. return 0;
  569. }
  570. case SSL_AES256:
  571. switch (cipher->algorithm_mac) {
  572. case SSL_SHA1:
  573. if (version == SSL3_VERSION) {
  574. *out_aead = EVP_aead_aes_256_cbc_sha1_ssl3();
  575. *out_fixed_iv_len = 16;
  576. } else if (version == TLS1_VERSION) {
  577. *out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv();
  578. *out_fixed_iv_len = 16;
  579. } else {
  580. *out_aead = EVP_aead_aes_256_cbc_sha1_tls();
  581. }
  582. *out_mac_secret_len = SHA_DIGEST_LENGTH;
  583. return 1;
  584. case SSL_SHA256:
  585. *out_aead = EVP_aead_aes_256_cbc_sha256_tls();
  586. *out_mac_secret_len = SHA256_DIGEST_LENGTH;
  587. return 1;
  588. case SSL_SHA384:
  589. *out_aead = EVP_aead_aes_256_cbc_sha384_tls();
  590. *out_mac_secret_len = SHA384_DIGEST_LENGTH;
  591. return 1;
  592. default:
  593. return 0;
  594. }
  595. case SSL_3DES:
  596. switch (cipher->algorithm_mac) {
  597. case SSL_SHA1:
  598. if (version == SSL3_VERSION) {
  599. *out_aead = EVP_aead_des_ede3_cbc_sha1_ssl3();
  600. *out_fixed_iv_len = 8;
  601. } else if (version == TLS1_VERSION) {
  602. *out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv();
  603. *out_fixed_iv_len = 8;
  604. } else {
  605. *out_aead = EVP_aead_des_ede3_cbc_sha1_tls();
  606. }
  607. *out_mac_secret_len = SHA_DIGEST_LENGTH;
  608. return 1;
  609. default:
  610. return 0;
  611. }
  612. default:
  613. return 0;
  614. }
  615. }
  616. const EVP_MD *ssl_get_handshake_digest(uint32_t algorithm_prf) {
  617. switch (algorithm_prf) {
  618. case SSL_HANDSHAKE_MAC_DEFAULT:
  619. return EVP_sha1();
  620. case SSL_HANDSHAKE_MAC_SHA256:
  621. return EVP_sha256();
  622. case SSL_HANDSHAKE_MAC_SHA384:
  623. return EVP_sha384();
  624. default:
  625. return NULL;
  626. }
  627. }
  628. #define ITEM_SEP(a) \
  629. (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
  630. /* rule_equals returns one iff the NUL-terminated string |rule| is equal to the
  631. * |buf_len| bytes at |buf|. */
  632. static int rule_equals(const char *rule, const char *buf, size_t buf_len) {
  633. /* |strncmp| alone only checks that |buf| is a prefix of |rule|. */
  634. return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0';
  635. }
  636. static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
  637. CIPHER_ORDER **tail) {
  638. if (curr == *tail) {
  639. return;
  640. }
  641. if (curr == *head) {
  642. *head = curr->next;
  643. }
  644. if (curr->prev != NULL) {
  645. curr->prev->next = curr->next;
  646. }
  647. if (curr->next != NULL) {
  648. curr->next->prev = curr->prev;
  649. }
  650. (*tail)->next = curr;
  651. curr->prev = *tail;
  652. curr->next = NULL;
  653. *tail = curr;
  654. }
  655. static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
  656. CIPHER_ORDER **tail) {
  657. if (curr == *head) {
  658. return;
  659. }
  660. if (curr == *tail) {
  661. *tail = curr->prev;
  662. }
  663. if (curr->next != NULL) {
  664. curr->next->prev = curr->prev;
  665. }
  666. if (curr->prev != NULL) {
  667. curr->prev->next = curr->next;
  668. }
  669. (*head)->prev = curr;
  670. curr->next = *head;
  671. curr->prev = NULL;
  672. *head = curr;
  673. }
  674. static void ssl_cipher_collect_ciphers(const SSL_PROTOCOL_METHOD *ssl_method,
  675. CIPHER_ORDER *co_list,
  676. CIPHER_ORDER **head_p,
  677. CIPHER_ORDER **tail_p) {
  678. /* The set of ciphers is static, but some subset may be unsupported by
  679. * |ssl_method|, so the list may be smaller. */
  680. size_t co_list_num = 0;
  681. size_t i;
  682. for (i = 0; i < kCiphersLen; i++) {
  683. const SSL_CIPHER *cipher = &kCiphers[i];
  684. if (ssl_method->supports_cipher(cipher)) {
  685. co_list[co_list_num].cipher = cipher;
  686. co_list[co_list_num].next = NULL;
  687. co_list[co_list_num].prev = NULL;
  688. co_list[co_list_num].active = 0;
  689. co_list[co_list_num].in_group = 0;
  690. co_list_num++;
  691. }
  692. }
  693. /* Prepare linked list from list entries. */
  694. if (co_list_num > 0) {
  695. co_list[0].prev = NULL;
  696. if (co_list_num > 1) {
  697. co_list[0].next = &co_list[1];
  698. for (i = 1; i < co_list_num - 1; i++) {
  699. co_list[i].prev = &co_list[i - 1];
  700. co_list[i].next = &co_list[i + 1];
  701. }
  702. co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
  703. }
  704. co_list[co_list_num - 1].next = NULL;
  705. *head_p = &co_list[0];
  706. *tail_p = &co_list[co_list_num - 1];
  707. }
  708. }
  709. /* ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its
  710. * parameters in the linked list from |*head_p| to |*tail_p|. It writes the new
  711. * head and tail of the list to |*head_p| and |*tail_p|, respectively.
  712. *
  713. * - If |cipher_id| is non-zero, only that cipher is selected.
  714. * - Otherwise, if |strength_bits| is non-negative, it selects ciphers
  715. * of that strength.
  716. * - Otherwise, it selects ciphers that match each bitmasks in |alg_*| and
  717. * |algo_strength|. */
  718. static void ssl_cipher_apply_rule(
  719. uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth,
  720. uint32_t alg_enc, uint32_t alg_mac, uint32_t alg_ssl,
  721. uint32_t algo_strength, int rule, int strength_bits, int in_group,
  722. CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) {
  723. CIPHER_ORDER *head, *tail, *curr, *next, *last;
  724. const SSL_CIPHER *cp;
  725. int reverse = 0;
  726. if (cipher_id == 0 && strength_bits == -1 &&
  727. (alg_mkey == 0 || alg_auth == 0 || alg_enc == 0 || alg_mac == 0 ||
  728. alg_ssl == 0 || algo_strength == 0)) {
  729. /* The rule matches nothing, so bail early. */
  730. return;
  731. }
  732. if (rule == CIPHER_DEL) {
  733. /* needed to maintain sorting between currently deleted ciphers */
  734. reverse = 1;
  735. }
  736. head = *head_p;
  737. tail = *tail_p;
  738. if (reverse) {
  739. next = tail;
  740. last = head;
  741. } else {
  742. next = head;
  743. last = tail;
  744. }
  745. curr = NULL;
  746. for (;;) {
  747. if (curr == last) {
  748. break;
  749. }
  750. curr = next;
  751. if (curr == NULL) {
  752. break;
  753. }
  754. next = reverse ? curr->prev : curr->next;
  755. cp = curr->cipher;
  756. /* Selection criteria is either a specific cipher, the value of
  757. * |strength_bits|, or the algorithms used. */
  758. if (cipher_id != 0) {
  759. if (cipher_id != cp->id) {
  760. continue;
  761. }
  762. } else if (strength_bits >= 0) {
  763. if (strength_bits != cp->strength_bits) {
  764. continue;
  765. }
  766. } else if (!(alg_mkey & cp->algorithm_mkey) ||
  767. !(alg_auth & cp->algorithm_auth) ||
  768. !(alg_enc & cp->algorithm_enc) ||
  769. !(alg_mac & cp->algorithm_mac) ||
  770. !(alg_ssl & cp->algorithm_ssl) ||
  771. !(algo_strength & cp->algo_strength)) {
  772. continue;
  773. }
  774. /* add the cipher if it has not been added yet. */
  775. if (rule == CIPHER_ADD) {
  776. /* reverse == 0 */
  777. if (!curr->active) {
  778. ll_append_tail(&head, curr, &tail);
  779. curr->active = 1;
  780. curr->in_group = in_group;
  781. }
  782. }
  783. /* Move the added cipher to this location */
  784. else if (rule == CIPHER_ORD) {
  785. /* reverse == 0 */
  786. if (curr->active) {
  787. ll_append_tail(&head, curr, &tail);
  788. curr->in_group = 0;
  789. }
  790. } else if (rule == CIPHER_DEL) {
  791. /* reverse == 1 */
  792. if (curr->active) {
  793. /* most recently deleted ciphersuites get best positions
  794. * for any future CIPHER_ADD (note that the CIPHER_DEL loop
  795. * works in reverse to maintain the order) */
  796. ll_append_head(&head, curr, &tail);
  797. curr->active = 0;
  798. curr->in_group = 0;
  799. }
  800. } else if (rule == CIPHER_KILL) {
  801. /* reverse == 0 */
  802. if (head == curr) {
  803. head = curr->next;
  804. } else {
  805. curr->prev->next = curr->next;
  806. }
  807. if (tail == curr) {
  808. tail = curr->prev;
  809. }
  810. curr->active = 0;
  811. if (curr->next != NULL) {
  812. curr->next->prev = curr->prev;
  813. }
  814. if (curr->prev != NULL) {
  815. curr->prev->next = curr->next;
  816. }
  817. curr->next = NULL;
  818. curr->prev = NULL;
  819. }
  820. }
  821. *head_p = head;
  822. *tail_p = tail;
  823. }
  824. static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
  825. CIPHER_ORDER **tail_p) {
  826. int max_strength_bits, i, *number_uses;
  827. CIPHER_ORDER *curr;
  828. /* This routine sorts the ciphers with descending strength. The sorting must
  829. * keep the pre-sorted sequence, so we apply the normal sorting routine as
  830. * '+' movement to the end of the list. */
  831. max_strength_bits = 0;
  832. curr = *head_p;
  833. while (curr != NULL) {
  834. if (curr->active && curr->cipher->strength_bits > max_strength_bits) {
  835. max_strength_bits = curr->cipher->strength_bits;
  836. }
  837. curr = curr->next;
  838. }
  839. number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
  840. if (!number_uses) {
  841. OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
  842. return 0;
  843. }
  844. memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
  845. /* Now find the strength_bits values actually used. */
  846. curr = *head_p;
  847. while (curr != NULL) {
  848. if (curr->active) {
  849. number_uses[curr->cipher->strength_bits]++;
  850. }
  851. curr = curr->next;
  852. }
  853. /* Go through the list of used strength_bits values in descending order. */
  854. for (i = max_strength_bits; i >= 0; i--) {
  855. if (number_uses[i] > 0) {
  856. ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, 0, head_p,
  857. tail_p);
  858. }
  859. }
  860. OPENSSL_free(number_uses);
  861. return 1;
  862. }
  863. static int ssl_cipher_process_rulestr(const SSL_PROTOCOL_METHOD *ssl_method,
  864. const char *rule_str,
  865. CIPHER_ORDER **head_p,
  866. CIPHER_ORDER **tail_p) {
  867. uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength;
  868. const char *l, *buf;
  869. int multi, rule, retval, ok, in_group = 0, has_group = 0;
  870. size_t j, buf_len;
  871. uint32_t cipher_id;
  872. char ch;
  873. retval = 1;
  874. l = rule_str;
  875. for (;;) {
  876. ch = *l;
  877. if (ch == '\0') {
  878. break; /* done */
  879. }
  880. if (in_group) {
  881. if (ch == ']') {
  882. if (*tail_p) {
  883. (*tail_p)->in_group = 0;
  884. }
  885. in_group = 0;
  886. l++;
  887. continue;
  888. }
  889. if (ch == '|') {
  890. rule = CIPHER_ADD;
  891. l++;
  892. continue;
  893. } else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') &&
  894. !(ch >= '0' && ch <= '9')) {
  895. OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP);
  896. retval = in_group = 0;
  897. break;
  898. } else {
  899. rule = CIPHER_ADD;
  900. }
  901. } else if (ch == '-') {
  902. rule = CIPHER_DEL;
  903. l++;
  904. } else if (ch == '+') {
  905. rule = CIPHER_ORD;
  906. l++;
  907. } else if (ch == '!') {
  908. rule = CIPHER_KILL;
  909. l++;
  910. } else if (ch == '@') {
  911. rule = CIPHER_SPECIAL;
  912. l++;
  913. } else if (ch == '[') {
  914. if (in_group) {
  915. OPENSSL_PUT_ERROR(SSL, SSL_R_NESTED_GROUP);
  916. retval = in_group = 0;
  917. break;
  918. }
  919. in_group = 1;
  920. has_group = 1;
  921. l++;
  922. continue;
  923. } else {
  924. rule = CIPHER_ADD;
  925. }
  926. /* If preference groups are enabled, the only legal operator is +.
  927. * Otherwise the in_group bits will get mixed up. */
  928. if (has_group && rule != CIPHER_ADD) {
  929. OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS);
  930. retval = in_group = 0;
  931. break;
  932. }
  933. if (ITEM_SEP(ch)) {
  934. l++;
  935. continue;
  936. }
  937. multi = 0;
  938. cipher_id = 0;
  939. alg_mkey = ~0u;
  940. alg_auth = ~0u;
  941. alg_enc = ~0u;
  942. alg_mac = ~0u;
  943. alg_ssl = ~0u;
  944. algo_strength = ~0u;
  945. for (;;) {
  946. ch = *l;
  947. buf = l;
  948. buf_len = 0;
  949. while (((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) ||
  950. ((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.')) {
  951. ch = *(++l);
  952. buf_len++;
  953. }
  954. if (buf_len == 0) {
  955. /* We hit something we cannot deal with, it is no command or separator
  956. * nor alphanumeric, so we call this an error. */
  957. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
  958. retval = in_group = 0;
  959. l++;
  960. break;
  961. }
  962. if (rule == CIPHER_SPECIAL) {
  963. break;
  964. }
  965. /* Look for a matching exact cipher. These aren't allowed in multipart
  966. * rules. */
  967. if (!multi && ch != '+') {
  968. for (j = 0; j < kCiphersLen; j++) {
  969. const SSL_CIPHER *cipher = &kCiphers[j];
  970. if (rule_equals(cipher->name, buf, buf_len)) {
  971. cipher_id = cipher->id;
  972. break;
  973. }
  974. }
  975. }
  976. if (cipher_id == 0) {
  977. /* If not an exact cipher, look for a matching cipher alias. */
  978. for (j = 0; j < kCipherAliasesLen; j++) {
  979. if (rule_equals(kCipherAliases[j].name, buf, buf_len)) {
  980. alg_mkey &= kCipherAliases[j].algorithm_mkey;
  981. alg_auth &= kCipherAliases[j].algorithm_auth;
  982. alg_enc &= kCipherAliases[j].algorithm_enc;
  983. alg_mac &= kCipherAliases[j].algorithm_mac;
  984. alg_ssl &= kCipherAliases[j].algorithm_ssl;
  985. algo_strength &= kCipherAliases[j].algo_strength;
  986. break;
  987. }
  988. }
  989. if (j == kCipherAliasesLen) {
  990. alg_mkey = alg_auth = alg_enc = alg_mac = alg_ssl = algo_strength = 0;
  991. }
  992. }
  993. /* Check for a multipart rule. */
  994. if (ch != '+') {
  995. break;
  996. }
  997. l++;
  998. multi = 1;
  999. }
  1000. /* Ok, we have the rule, now apply it. */
  1001. if (rule == CIPHER_SPECIAL) {
  1002. /* special command */
  1003. ok = 0;
  1004. if (buf_len == 8 && !strncmp(buf, "STRENGTH", 8)) {
  1005. ok = ssl_cipher_strength_sort(head_p, tail_p);
  1006. } else {
  1007. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
  1008. }
  1009. if (ok == 0) {
  1010. retval = 0;
  1011. }
  1012. /* We do not support any "multi" options together with "@", so throw away
  1013. * the rest of the command, if any left, until end or ':' is found. */
  1014. while (*l != '\0' && !ITEM_SEP(*l)) {
  1015. l++;
  1016. }
  1017. } else {
  1018. ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac,
  1019. alg_ssl, algo_strength, rule, -1, in_group, head_p,
  1020. tail_p);
  1021. }
  1022. }
  1023. if (in_group) {
  1024. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
  1025. retval = 0;
  1026. }
  1027. return retval;
  1028. }
  1029. STACK_OF(SSL_CIPHER) *
  1030. ssl_create_cipher_list(const SSL_PROTOCOL_METHOD *ssl_method,
  1031. struct ssl_cipher_preference_list_st **out_cipher_list,
  1032. STACK_OF(SSL_CIPHER) **out_cipher_list_by_id,
  1033. const char *rule_str) {
  1034. int ok;
  1035. STACK_OF(SSL_CIPHER) *cipherstack = NULL, *tmp_cipher_list = NULL;
  1036. const char *rule_p;
  1037. CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
  1038. uint8_t *in_group_flags = NULL;
  1039. unsigned int num_in_group_flags = 0;
  1040. struct ssl_cipher_preference_list_st *pref_list = NULL;
  1041. /* Return with error if nothing to do. */
  1042. if (rule_str == NULL || out_cipher_list == NULL) {
  1043. return NULL;
  1044. }
  1045. /* Now we have to collect the available ciphers from the compiled in ciphers.
  1046. * We cannot get more than the number compiled in, so it is used for
  1047. * allocation. */
  1048. co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * kCiphersLen);
  1049. if (co_list == NULL) {
  1050. OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
  1051. return NULL;
  1052. }
  1053. ssl_cipher_collect_ciphers(ssl_method, co_list, &head, &tail);
  1054. /* Now arrange all ciphers by preference:
  1055. * TODO(davidben): Compute this order once and copy it. */
  1056. /* Everything else being equal, prefer ECDHE_ECDSA then ECDHE_RSA over other
  1057. * key exchange mechanisms */
  1058. ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, ~0u, ~0u, ~0u, ~0u,
  1059. CIPHER_ADD, -1, 0, &head, &tail);
  1060. ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, ~0u, ~0u, CIPHER_ADD, -1,
  1061. 0, &head, &tail);
  1062. ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, ~0u, ~0u, CIPHER_DEL, -1,
  1063. 0, &head, &tail);
  1064. /* Order the bulk ciphers. First the preferred AEAD ciphers. We prefer
  1065. * CHACHA20 unless there is hardware support for fast and constant-time
  1066. * AES_GCM. */
  1067. if (EVP_has_aes_hardware()) {
  1068. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, ~0u, ~0u, CIPHER_ADD,
  1069. -1, 0, &head, &tail);
  1070. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, ~0u, ~0u, CIPHER_ADD,
  1071. -1, 0, &head, &tail);
  1072. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, ~0u, ~0u,
  1073. CIPHER_ADD, -1, 0, &head, &tail);
  1074. } else {
  1075. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, ~0u, ~0u,
  1076. CIPHER_ADD, -1, 0, &head, &tail);
  1077. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, ~0u, ~0u, CIPHER_ADD,
  1078. -1, 0, &head, &tail);
  1079. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, ~0u, ~0u, CIPHER_ADD,
  1080. -1, 0, &head, &tail);
  1081. }
  1082. /* Then the legacy non-AEAD ciphers: AES_256_CBC, AES-128_CBC, RC4_128_SHA,
  1083. * RC4_128_MD5, 3DES_EDE_CBC_SHA. */
  1084. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256, ~0u, ~0u, ~0u, CIPHER_ADD, -1,
  1085. 0, &head, &tail);
  1086. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128, ~0u, ~0u, ~0u, CIPHER_ADD, -1,
  1087. 0, &head, &tail);
  1088. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_RC4, ~SSL_MD5, ~0u, ~0u, CIPHER_ADD,
  1089. -1, 0, &head, &tail);
  1090. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_RC4, SSL_MD5, ~0u, ~0u, CIPHER_ADD, -1,
  1091. 0, &head, &tail);
  1092. ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_3DES, ~0u, ~0u, ~0u, CIPHER_ADD, -1, 0,
  1093. &head, &tail);
  1094. /* Temporarily enable everything else for sorting */
  1095. ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, ~0u, ~0u, CIPHER_ADD, -1, 0,
  1096. &head, &tail);
  1097. /* Move ciphers without forward secrecy to the end. */
  1098. ssl_cipher_apply_rule(0, ~(SSL_kDHE | SSL_kECDHE), ~0u, ~0u, ~0u, ~0u, ~0u,
  1099. CIPHER_ORD, -1, 0, &head, &tail);
  1100. /* Now disable everything (maintaining the ordering!) */
  1101. ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, ~0u, ~0u, CIPHER_DEL, -1, 0,
  1102. &head, &tail);
  1103. /* If the rule_string begins with DEFAULT, apply the default rule before
  1104. * using the (possibly available) additional rules. */
  1105. ok = 1;
  1106. rule_p = rule_str;
  1107. if (strncmp(rule_str, "DEFAULT", 7) == 0) {
  1108. ok = ssl_cipher_process_rulestr(ssl_method, SSL_DEFAULT_CIPHER_LIST, &head,
  1109. &tail);
  1110. rule_p += 7;
  1111. if (*rule_p == ':') {
  1112. rule_p++;
  1113. }
  1114. }
  1115. if (ok && strlen(rule_p) > 0) {
  1116. ok = ssl_cipher_process_rulestr(ssl_method, rule_p, &head, &tail);
  1117. }
  1118. if (!ok) {
  1119. goto err;
  1120. }
  1121. /* Allocate new "cipherstack" for the result, return with error
  1122. * if we cannot get one. */
  1123. cipherstack = sk_SSL_CIPHER_new_null();
  1124. if (cipherstack == NULL) {
  1125. goto err;
  1126. }
  1127. in_group_flags = OPENSSL_malloc(kCiphersLen);
  1128. if (!in_group_flags) {
  1129. goto err;
  1130. }
  1131. /* The cipher selection for the list is done. The ciphers are added
  1132. * to the resulting precedence to the STACK_OF(SSL_CIPHER). */
  1133. for (curr = head; curr != NULL; curr = curr->next) {
  1134. if (curr->active) {
  1135. if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
  1136. goto err;
  1137. }
  1138. in_group_flags[num_in_group_flags++] = curr->in_group;
  1139. }
  1140. }
  1141. OPENSSL_free(co_list); /* Not needed any longer */
  1142. co_list = NULL;
  1143. tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
  1144. if (tmp_cipher_list == NULL) {
  1145. goto err;
  1146. }
  1147. pref_list = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st));
  1148. if (!pref_list) {
  1149. goto err;
  1150. }
  1151. pref_list->ciphers = cipherstack;
  1152. pref_list->in_group_flags = OPENSSL_malloc(num_in_group_flags);
  1153. if (!pref_list->in_group_flags) {
  1154. goto err;
  1155. }
  1156. memcpy(pref_list->in_group_flags, in_group_flags, num_in_group_flags);
  1157. OPENSSL_free(in_group_flags);
  1158. in_group_flags = NULL;
  1159. if (*out_cipher_list != NULL) {
  1160. ssl_cipher_preference_list_free(*out_cipher_list);
  1161. }
  1162. *out_cipher_list = pref_list;
  1163. pref_list = NULL;
  1164. if (out_cipher_list_by_id != NULL) {
  1165. sk_SSL_CIPHER_free(*out_cipher_list_by_id);
  1166. *out_cipher_list_by_id = tmp_cipher_list;
  1167. tmp_cipher_list = NULL;
  1168. (void) sk_SSL_CIPHER_set_cmp_func(*out_cipher_list_by_id,
  1169. ssl_cipher_ptr_id_cmp);
  1170. sk_SSL_CIPHER_sort(*out_cipher_list_by_id);
  1171. } else {
  1172. sk_SSL_CIPHER_free(tmp_cipher_list);
  1173. tmp_cipher_list = NULL;
  1174. }
  1175. return cipherstack;
  1176. err:
  1177. OPENSSL_free(co_list);
  1178. OPENSSL_free(in_group_flags);
  1179. sk_SSL_CIPHER_free(cipherstack);
  1180. sk_SSL_CIPHER_free(tmp_cipher_list);
  1181. if (pref_list) {
  1182. OPENSSL_free(pref_list->in_group_flags);
  1183. }
  1184. OPENSSL_free(pref_list);
  1185. return NULL;
  1186. }
  1187. uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; }
  1188. uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher) {
  1189. uint32_t id = cipher->id;
  1190. /* All ciphers are SSLv3. */
  1191. assert((id & 0xff000000) == 0x03000000);
  1192. return id & 0xffff;
  1193. }
  1194. int SSL_CIPHER_is_AES(const SSL_CIPHER *cipher) {
  1195. return (cipher->algorithm_enc & SSL_AES) != 0;
  1196. }
  1197. int SSL_CIPHER_has_MD5_HMAC(const SSL_CIPHER *cipher) {
  1198. return (cipher->algorithm_mac & SSL_MD5) != 0;
  1199. }
  1200. int SSL_CIPHER_is_AESGCM(const SSL_CIPHER *cipher) {
  1201. return (cipher->algorithm_mac & (SSL_AES128GCM | SSL_AES256GCM)) != 0;
  1202. }
  1203. int SSL_CIPHER_is_CHACHA20POLY1305(const SSL_CIPHER *cipher) {
  1204. return (cipher->algorithm_enc & SSL_CHACHA20POLY1305) != 0;
  1205. }
  1206. /* return the actual cipher being used */
  1207. const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) {
  1208. if (cipher != NULL) {
  1209. return cipher->name;
  1210. }
  1211. return "(NONE)";
  1212. }
  1213. const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) {
  1214. if (cipher == NULL) {
  1215. return "";
  1216. }
  1217. switch (cipher->algorithm_mkey) {
  1218. case SSL_kRSA:
  1219. return "RSA";
  1220. case SSL_kDHE:
  1221. switch (cipher->algorithm_auth) {
  1222. case SSL_aRSA:
  1223. return "DHE_RSA";
  1224. default:
  1225. assert(0);
  1226. return "UNKNOWN";
  1227. }
  1228. case SSL_kECDHE:
  1229. switch (cipher->algorithm_auth) {
  1230. case SSL_aECDSA:
  1231. return "ECDHE_ECDSA";
  1232. case SSL_aRSA:
  1233. return "ECDHE_RSA";
  1234. case SSL_aPSK:
  1235. return "ECDHE_PSK";
  1236. default:
  1237. assert(0);
  1238. return "UNKNOWN";
  1239. }
  1240. case SSL_kPSK:
  1241. assert(cipher->algorithm_auth == SSL_aPSK);
  1242. return "PSK";
  1243. default:
  1244. assert(0);
  1245. return "UNKNOWN";
  1246. }
  1247. }
  1248. static const char *ssl_cipher_get_enc_name(const SSL_CIPHER *cipher) {
  1249. switch (cipher->algorithm_enc) {
  1250. case SSL_3DES:
  1251. return "3DES_EDE_CBC";
  1252. case SSL_RC4:
  1253. return "RC4";
  1254. case SSL_AES128:
  1255. return "AES_128_CBC";
  1256. case SSL_AES256:
  1257. return "AES_256_CBC";
  1258. case SSL_AES128GCM:
  1259. return "AES_128_GCM";
  1260. case SSL_AES256GCM:
  1261. return "AES_256_GCM";
  1262. case SSL_CHACHA20POLY1305:
  1263. return "CHACHA20_POLY1305";
  1264. break;
  1265. default:
  1266. assert(0);
  1267. return "UNKNOWN";
  1268. }
  1269. }
  1270. static const char *ssl_cipher_get_prf_name(const SSL_CIPHER *cipher) {
  1271. switch (cipher->algorithm_prf) {
  1272. case SSL_HANDSHAKE_MAC_DEFAULT:
  1273. /* Before TLS 1.2, the PRF component is the hash used in the HMAC, which is
  1274. * only ever MD5 or SHA-1. */
  1275. switch (cipher->algorithm_mac) {
  1276. case SSL_MD5:
  1277. return "MD5";
  1278. case SSL_SHA1:
  1279. return "SHA";
  1280. }
  1281. break;
  1282. case SSL_HANDSHAKE_MAC_SHA256:
  1283. return "SHA256";
  1284. case SSL_HANDSHAKE_MAC_SHA384:
  1285. return "SHA384";
  1286. }
  1287. assert(0);
  1288. return "UNKNOWN";
  1289. }
  1290. char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher) {
  1291. if (cipher == NULL) {
  1292. return NULL;
  1293. }
  1294. const char *kx_name = SSL_CIPHER_get_kx_name(cipher);
  1295. const char *enc_name = ssl_cipher_get_enc_name(cipher);
  1296. const char *prf_name = ssl_cipher_get_prf_name(cipher);
  1297. /* The final name is TLS_{kx_name}_WITH_{enc_name}_{prf_name}. */
  1298. size_t len = 4 + strlen(kx_name) + 6 + strlen(enc_name) + 1 +
  1299. strlen(prf_name) + 1;
  1300. char *ret = OPENSSL_malloc(len);
  1301. if (ret == NULL) {
  1302. return NULL;
  1303. }
  1304. if (BUF_strlcpy(ret, "TLS_", len) >= len ||
  1305. BUF_strlcat(ret, kx_name, len) >= len ||
  1306. BUF_strlcat(ret, "_WITH_", len) >= len ||
  1307. BUF_strlcat(ret, enc_name, len) >= len ||
  1308. BUF_strlcat(ret, "_", len) >= len ||
  1309. BUF_strlcat(ret, prf_name, len) >= len) {
  1310. assert(0);
  1311. OPENSSL_free(ret);
  1312. return NULL;
  1313. }
  1314. assert(strlen(ret) + 1 == len);
  1315. return ret;
  1316. }
  1317. int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) {
  1318. if (cipher == NULL) {
  1319. return 0;
  1320. }
  1321. if (out_alg_bits != NULL) {
  1322. *out_alg_bits = cipher->alg_bits;
  1323. }
  1324. return cipher->strength_bits;
  1325. }
  1326. const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf,
  1327. int len) {
  1328. const char *ver;
  1329. const char *kx, *au, *enc, *mac;
  1330. uint32_t alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl;
  1331. static const char *format = "%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n";
  1332. alg_mkey = cipher->algorithm_mkey;
  1333. alg_auth = cipher->algorithm_auth;
  1334. alg_enc = cipher->algorithm_enc;
  1335. alg_mac = cipher->algorithm_mac;
  1336. alg_ssl = cipher->algorithm_ssl;
  1337. if (alg_ssl & SSL_SSLV3) {
  1338. ver = "SSLv3";
  1339. } else if (alg_ssl & SSL_TLSV1_2) {
  1340. ver = "TLSv1.2";
  1341. } else {
  1342. ver = "unknown";
  1343. }
  1344. switch (alg_mkey) {
  1345. case SSL_kRSA:
  1346. kx = "RSA";
  1347. break;
  1348. case SSL_kDHE:
  1349. kx = "DH";
  1350. break;
  1351. case SSL_kECDHE:
  1352. kx = "ECDH";
  1353. break;
  1354. case SSL_kPSK:
  1355. kx = "PSK";
  1356. break;
  1357. default:
  1358. kx = "unknown";
  1359. }
  1360. switch (alg_auth) {
  1361. case SSL_aRSA:
  1362. au = "RSA";
  1363. break;
  1364. case SSL_aECDSA:
  1365. au = "ECDSA";
  1366. break;
  1367. case SSL_aPSK:
  1368. au = "PSK";
  1369. break;
  1370. default:
  1371. au = "unknown";
  1372. break;
  1373. }
  1374. switch (alg_enc) {
  1375. case SSL_3DES:
  1376. enc = "3DES(168)";
  1377. break;
  1378. case SSL_RC4:
  1379. enc = "RC4(128)";
  1380. break;
  1381. case SSL_AES128:
  1382. enc = "AES(128)";
  1383. break;
  1384. case SSL_AES256:
  1385. enc = "AES(256)";
  1386. break;
  1387. case SSL_AES128GCM:
  1388. enc = "AESGCM(128)";
  1389. break;
  1390. case SSL_AES256GCM:
  1391. enc = "AESGCM(256)";
  1392. break;
  1393. case SSL_CHACHA20POLY1305:
  1394. enc = "ChaCha20-Poly1305";
  1395. break;
  1396. default:
  1397. enc = "unknown";
  1398. break;
  1399. }
  1400. switch (alg_mac) {
  1401. case SSL_MD5:
  1402. mac = "MD5";
  1403. break;
  1404. case SSL_SHA1:
  1405. mac = "SHA1";
  1406. break;
  1407. case SSL_SHA256:
  1408. mac = "SHA256";
  1409. break;
  1410. case SSL_SHA384:
  1411. mac = "SHA384";
  1412. break;
  1413. case SSL_AEAD:
  1414. mac = "AEAD";
  1415. break;
  1416. default:
  1417. mac = "unknown";
  1418. break;
  1419. }
  1420. if (buf == NULL) {
  1421. len = 128;
  1422. buf = OPENSSL_malloc(len);
  1423. if (buf == NULL) {
  1424. return NULL;
  1425. }
  1426. } else if (len < 128) {
  1427. return "Buffer too small";
  1428. }
  1429. BIO_snprintf(buf, len, format, cipher->name, ver, kx, au, enc, mac);
  1430. return buf;
  1431. }
  1432. const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) {
  1433. return "TLSv1/SSLv3";
  1434. }
  1435. COMP_METHOD *SSL_COMP_get_compression_methods(void) { return NULL; }
  1436. int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; }
  1437. const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; }
  1438. int ssl_cipher_get_key_type(const SSL_CIPHER *cipher) {
  1439. uint32_t alg_a = cipher->algorithm_auth;
  1440. if (alg_a & SSL_aECDSA) {
  1441. return EVP_PKEY_EC;
  1442. } else if (alg_a & SSL_aRSA) {
  1443. return EVP_PKEY_RSA;
  1444. }
  1445. return EVP_PKEY_NONE;
  1446. }
  1447. int ssl_cipher_has_server_public_key(const SSL_CIPHER *cipher) {
  1448. /* PSK-authenticated ciphers do not use a public key, except for
  1449. * RSA_PSK. */
  1450. if ((cipher->algorithm_auth & SSL_aPSK) &&
  1451. !(cipher->algorithm_mkey & SSL_kRSA)) {
  1452. return 0;
  1453. }
  1454. /* All other ciphers include it. */
  1455. return 1;
  1456. }
  1457. int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) {
  1458. /* Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. */
  1459. if (cipher->algorithm_mkey & SSL_kDHE || cipher->algorithm_mkey & SSL_kECDHE) {
  1460. return 1;
  1461. }
  1462. /* It is optional in all others. */
  1463. return 0;
  1464. }
  1465. size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) {
  1466. size_t block_size;
  1467. switch (cipher->algorithm_enc) {
  1468. case SSL_3DES:
  1469. block_size = 8;
  1470. break;
  1471. case SSL_AES128:
  1472. case SSL_AES256:
  1473. block_size = 16;
  1474. break;
  1475. default:
  1476. return 0;
  1477. }
  1478. size_t mac_len;
  1479. switch (cipher->algorithm_mac) {
  1480. case SSL_MD5:
  1481. mac_len = MD5_DIGEST_LENGTH;
  1482. break;
  1483. case SSL_SHA1:
  1484. mac_len = SHA_DIGEST_LENGTH;
  1485. break;
  1486. default:
  1487. return 0;
  1488. }
  1489. size_t ret = 1 + mac_len;
  1490. ret += block_size - (ret % block_size);
  1491. return ret;
  1492. }