8d79ed6740
MSVC doesn't define __cplusplus as 201103 to indicate C++11 support, so just assume that the compiler supports C++11 if _MSC_VER is defined. Change-Id: I27f6eeefe6e8dc522470f36fab76ab36d85eebac Reviewed-on: https://boringssl-review.googlesource.com/8734 Reviewed-by: David Benjamin <davidben@google.com>
585 lines
24 KiB
C++
585 lines
24 KiB
C++
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#ifndef OPENSSL_HEADER_CIPHER_H
|
|
#define OPENSSL_HEADER_CIPHER_H
|
|
|
|
#include <openssl/base.h>
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
|
|
/* Ciphers. */
|
|
|
|
|
|
/* Cipher primitives.
|
|
*
|
|
* The following functions return |EVP_CIPHER| objects that implement the named
|
|
* cipher algorithm. */
|
|
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_rc4(void);
|
|
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_cbc(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ecb(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede_cbc(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_des_ede3_cbc(void);
|
|
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ecb(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_cbc(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ctr(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_ofb(void);
|
|
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ecb(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_cbc(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ctr(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ofb(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_xts(void);
|
|
|
|
/* EVP_enc_null returns a 'cipher' that passes plaintext through as
|
|
* ciphertext. */
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_enc_null(void);
|
|
|
|
/* EVP_rc2_cbc returns a cipher that implements 128-bit RC2 in CBC mode. */
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_rc2_cbc(void);
|
|
|
|
/* EVP_rc2_40_cbc returns a cipher that implements 40-bit RC2 in CBC mode. This
|
|
* is obviously very, very weak and is included only in order to read PKCS#12
|
|
* files, which often encrypt the certificate chain using this cipher. It is
|
|
* deliberately not exported. */
|
|
const EVP_CIPHER *EVP_rc2_40_cbc(void);
|
|
|
|
/* EVP_get_cipherbynid returns the cipher corresponding to the given NID, or
|
|
* NULL if no such cipher is known. */
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_get_cipherbynid(int nid);
|
|
|
|
|
|
/* Cipher context allocation.
|
|
*
|
|
* An |EVP_CIPHER_CTX| represents the state of an encryption or decryption in
|
|
* progress. */
|
|
|
|
/* EVP_CIPHER_CTX_init initialises an, already allocated, |EVP_CIPHER_CTX|. */
|
|
OPENSSL_EXPORT void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_new allocates a fresh |EVP_CIPHER_CTX|, calls
|
|
* |EVP_CIPHER_CTX_init| and returns it, or NULL on allocation failure. */
|
|
OPENSSL_EXPORT EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);
|
|
|
|
/* EVP_CIPHER_CTX_cleanup frees any memory referenced by |ctx|. It returns
|
|
* one. */
|
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_free calls |EVP_CIPHER_CTX_cleanup| on |ctx| and then frees
|
|
* |ctx| itself. */
|
|
OPENSSL_EXPORT void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_copy sets |out| to be a duplicate of the current state of
|
|
* |in|. The |out| argument must have been previously initialised. */
|
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out,
|
|
const EVP_CIPHER_CTX *in);
|
|
|
|
|
|
/* Cipher context configuration. */
|
|
|
|
/* EVP_CipherInit_ex configures |ctx| for a fresh encryption (or decryption, if
|
|
* |enc| is zero) operation using |cipher|. If |ctx| has been previously
|
|
* configured with a cipher then |cipher|, |key| and |iv| may be |NULL| and
|
|
* |enc| may be -1 to reuse the previous values. The operation will use |key|
|
|
* as the key and |iv| as the IV (if any). These should have the correct
|
|
* lengths given by |EVP_CIPHER_key_length| and |EVP_CIPHER_iv_length|. It
|
|
* returns one on success and zero on error. */
|
|
OPENSSL_EXPORT int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx,
|
|
const EVP_CIPHER *cipher, ENGINE *engine,
|
|
const uint8_t *key, const uint8_t *iv,
|
|
int enc);
|
|
|
|
/* EVP_EncryptInit_ex calls |EVP_CipherInit_ex| with |enc| equal to one. */
|
|
OPENSSL_EXPORT int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx,
|
|
const EVP_CIPHER *cipher, ENGINE *impl,
|
|
const uint8_t *key, const uint8_t *iv);
|
|
|
|
/* EVP_DecryptInit_ex calls |EVP_CipherInit_ex| with |enc| equal to zero. */
|
|
OPENSSL_EXPORT int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx,
|
|
const EVP_CIPHER *cipher, ENGINE *impl,
|
|
const uint8_t *key, const uint8_t *iv);
|
|
|
|
|
|
/* Cipher operations. */
|
|
|
|
/* EVP_EncryptUpdate encrypts |in_len| bytes from |in| to |out|. The number
|
|
* of output bytes may be up to |in_len| plus the block length minus one and
|
|
* |out| must have sufficient space. The number of bytes actually output is
|
|
* written to |*out_len|. It returns one on success and zero otherwise. */
|
|
OPENSSL_EXPORT int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
|
int *out_len, const uint8_t *in,
|
|
int in_len);
|
|
|
|
/* EVP_EncryptFinal_ex writes at most a block of ciphertext to |out| and sets
|
|
* |*out_len| to the number of bytes written. If padding is enabled (the
|
|
* default) then standard padding is applied to create the final block. If
|
|
* padding is disabled (with |EVP_CIPHER_CTX_set_padding|) then any partial
|
|
* block remaining will cause an error. The function returns one on success and
|
|
* zero otherwise. */
|
|
OPENSSL_EXPORT int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
|
int *out_len);
|
|
|
|
/* EVP_DecryptUpdate decrypts |in_len| bytes from |in| to |out|. The number of
|
|
* output bytes may be up to |in_len| plus the block length minus one and |out|
|
|
* must have sufficient space. The number of bytes actually output is written
|
|
* to |*out_len|. It returns one on success and zero otherwise. */
|
|
OPENSSL_EXPORT int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
|
int *out_len, const uint8_t *in,
|
|
int in_len);
|
|
|
|
/* EVP_DecryptFinal_ex writes at most a block of ciphertext to |out| and sets
|
|
* |*out_len| to the number of bytes written. If padding is enabled (the
|
|
* default) then padding is removed from the final block.
|
|
*
|
|
* WARNING: it is unsafe to call this function with unauthenticted
|
|
* ciphertext if padding is enabled. */
|
|
OPENSSL_EXPORT int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
|
int *out_len);
|
|
|
|
/* EVP_Cipher performs a one-shot encryption/decryption operation. No partial
|
|
* blocks are maintained between calls. However, any internal cipher state is
|
|
* still updated. For CBC-mode ciphers, the IV is updated to the final
|
|
* ciphertext block. For stream ciphers, the stream is advanced past the bytes
|
|
* used. It returns one on success and zero otherwise, unless |EVP_CIPHER_flags|
|
|
* has |EVP_CIPH_FLAG_CUSTOM_CIPHER| set. Then it returns the number of bytes
|
|
* written or -1 on error.
|
|
*
|
|
* WARNING: this differs from the usual return value convention when using
|
|
* |EVP_CIPH_FLAG_CUSTOM_CIPHER|.
|
|
*
|
|
* TODO(davidben): The normal ciphers currently never fail, even if, e.g.,
|
|
* |in_len| is not a multiple of the block size for CBC-mode decryption. The
|
|
* input just gets rounded up while the output gets truncated. This should
|
|
* either be officially documented or fail. */
|
|
OPENSSL_EXPORT int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
|
const uint8_t *in, size_t in_len);
|
|
|
|
/* EVP_CipherUpdate calls either |EVP_EncryptUpdate| or |EVP_DecryptUpdate|
|
|
* depending on how |ctx| has been setup. */
|
|
OPENSSL_EXPORT int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
|
int *out_len, const uint8_t *in,
|
|
int in_len);
|
|
|
|
/* EVP_CipherFinal_ex calls either |EVP_EncryptFinal_ex| or
|
|
* |EVP_DecryptFinal_ex| depending on how |ctx| has been setup. */
|
|
OPENSSL_EXPORT int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out,
|
|
int *out_len);
|
|
|
|
|
|
/* Cipher context accessors. */
|
|
|
|
/* EVP_CIPHER_CTX_cipher returns the |EVP_CIPHER| underlying |ctx|, or NULL if
|
|
* none has been set. */
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_CIPHER_CTX_cipher(
|
|
const EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_nid returns a NID identifying the |EVP_CIPHER| underlying
|
|
* |ctx| (e.g. |NID_aes_128_gcm|). It will crash if no cipher has been
|
|
* configured. */
|
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_block_size returns the block size, in bytes, of the cipher
|
|
* underlying |ctx|, or one if the cipher is a stream cipher. It will crash if
|
|
* no cipher has been configured. */
|
|
OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_key_length returns the key size, in bytes, of the cipher
|
|
* underlying |ctx| or zero if no cipher has been configured. */
|
|
OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_iv_length returns the IV size, in bytes, of the cipher
|
|
* underlying |ctx|. It will crash if no cipher has been configured. */
|
|
OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_get_app_data returns the opaque, application data pointer for
|
|
* |ctx|, or NULL if none has been set. */
|
|
OPENSSL_EXPORT void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_set_app_data sets the opaque, application data pointer for
|
|
* |ctx| to |data|. */
|
|
OPENSSL_EXPORT void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx,
|
|
void *data);
|
|
|
|
/* EVP_CIPHER_CTX_flags returns a value which is the OR of zero or more
|
|
* |EVP_CIPH_*| flags. It will crash if no cipher has been configured. */
|
|
OPENSSL_EXPORT uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_mode returns one of the |EVP_CIPH_*| cipher mode values
|
|
* enumerated below. It will crash if no cipher has been configured. */
|
|
OPENSSL_EXPORT uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx);
|
|
|
|
/* EVP_CIPHER_CTX_ctrl is an |ioctl| like function. The |command| argument
|
|
* should be one of the |EVP_CTRL_*| values. The |arg| and |ptr| arguments are
|
|
* specific to the command in question. */
|
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command,
|
|
int arg, void *ptr);
|
|
|
|
/* EVP_CIPHER_CTX_set_padding sets whether padding is enabled for |ctx| and
|
|
* returns one. Pass a non-zero |pad| to enable padding (the default) or zero
|
|
* to disable. */
|
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad);
|
|
|
|
/* EVP_CIPHER_CTX_set_key_length sets the key length for |ctx|. This is only
|
|
* valid for ciphers that can take a variable length key. It returns one on
|
|
* success and zero on error. */
|
|
OPENSSL_EXPORT int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *ctx, unsigned key_len);
|
|
|
|
|
|
/* Cipher accessors. */
|
|
|
|
/* EVP_CIPHER_nid returns a NID identifing |cipher|. (For example,
|
|
* |NID_aes_128_gcm|.) */
|
|
OPENSSL_EXPORT int EVP_CIPHER_nid(const EVP_CIPHER *cipher);
|
|
|
|
/* EVP_CIPHER_block_size returns the block size, in bytes, for |cipher|, or one
|
|
* if |cipher| is a stream cipher. */
|
|
OPENSSL_EXPORT unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher);
|
|
|
|
/* EVP_CIPHER_key_length returns the key size, in bytes, for |cipher|. If
|
|
* |cipher| can take a variable key length then this function returns the
|
|
* default key length and |EVP_CIPHER_flags| will return a value with
|
|
* |EVP_CIPH_VARIABLE_LENGTH| set. */
|
|
OPENSSL_EXPORT unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher);
|
|
|
|
/* EVP_CIPHER_iv_length returns the IV size, in bytes, of |cipher|, or zero if
|
|
* |cipher| doesn't take an IV. */
|
|
OPENSSL_EXPORT unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher);
|
|
|
|
/* EVP_CIPHER_flags returns a value which is the OR of zero or more
|
|
* |EVP_CIPH_*| flags. */
|
|
OPENSSL_EXPORT uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher);
|
|
|
|
/* EVP_CIPHER_mode returns one of the cipher mode values enumerated below. */
|
|
OPENSSL_EXPORT uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher);
|
|
|
|
|
|
/* Key derivation. */
|
|
|
|
/* EVP_BytesToKey generates a key and IV for the cipher |type| by iterating
|
|
* |md| |count| times using |data| and |salt|. On entry, the |key| and |iv|
|
|
* buffers must have enough space to hold a key and IV for |type|. It returns
|
|
* the length of the key on success or zero on error. */
|
|
OPENSSL_EXPORT int EVP_BytesToKey(const EVP_CIPHER *type, const EVP_MD *md,
|
|
const uint8_t *salt, const uint8_t *data,
|
|
size_t data_len, unsigned count, uint8_t *key,
|
|
uint8_t *iv);
|
|
|
|
|
|
/* Cipher modes (for |EVP_CIPHER_mode|). */
|
|
|
|
#define EVP_CIPH_STREAM_CIPHER 0x0
|
|
#define EVP_CIPH_ECB_MODE 0x1
|
|
#define EVP_CIPH_CBC_MODE 0x2
|
|
#define EVP_CIPH_CFB_MODE 0x3
|
|
#define EVP_CIPH_OFB_MODE 0x4
|
|
#define EVP_CIPH_CTR_MODE 0x5
|
|
#define EVP_CIPH_GCM_MODE 0x6
|
|
#define EVP_CIPH_XTS_MODE 0x7
|
|
|
|
|
|
/* Cipher flags (for |EVP_CIPHER_flags|). */
|
|
|
|
/* EVP_CIPH_VARIABLE_LENGTH indicates that the cipher takes a variable length
|
|
* key. */
|
|
#define EVP_CIPH_VARIABLE_LENGTH 0x40
|
|
|
|
/* EVP_CIPH_ALWAYS_CALL_INIT indicates that the |init| function for the cipher
|
|
* should always be called when initialising a new operation, even if the key
|
|
* is NULL to indicate that the same key is being used. */
|
|
#define EVP_CIPH_ALWAYS_CALL_INIT 0x80
|
|
|
|
/* EVP_CIPH_CUSTOM_IV indicates that the cipher manages the IV itself rather
|
|
* than keeping it in the |iv| member of |EVP_CIPHER_CTX|. */
|
|
#define EVP_CIPH_CUSTOM_IV 0x100
|
|
|
|
/* EVP_CIPH_CTRL_INIT indicates that EVP_CTRL_INIT should be used when
|
|
* initialising an |EVP_CIPHER_CTX|. */
|
|
#define EVP_CIPH_CTRL_INIT 0x200
|
|
|
|
/* EVP_CIPH_FLAG_CUSTOM_CIPHER indicates that the cipher manages blocking
|
|
* itself. This causes EVP_(En|De)crypt_ex to be simple wrapper functions. */
|
|
#define EVP_CIPH_FLAG_CUSTOM_CIPHER 0x400
|
|
|
|
/* EVP_CIPH_FLAG_AEAD_CIPHER specifies that the cipher is an AEAD. This is an
|
|
* older version of the proper AEAD interface. See aead.h for the current
|
|
* one. */
|
|
#define EVP_CIPH_FLAG_AEAD_CIPHER 0x800
|
|
|
|
/* EVP_CIPH_CUSTOM_COPY indicates that the |ctrl| callback should be called
|
|
* with |EVP_CTRL_COPY| at the end of normal |EVP_CIPHER_CTX_copy|
|
|
* processing. */
|
|
#define EVP_CIPH_CUSTOM_COPY 0x1000
|
|
|
|
|
|
/* Deprecated functions */
|
|
|
|
/* EVP_CipherInit acts like EVP_CipherInit_ex except that |EVP_CIPHER_CTX_init|
|
|
* is called on |cipher| first, if |cipher| is not NULL. */
|
|
OPENSSL_EXPORT int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
|
|
const uint8_t *key, const uint8_t *iv,
|
|
int enc);
|
|
|
|
/* EVP_EncryptInit calls |EVP_CipherInit| with |enc| equal to one. */
|
|
OPENSSL_EXPORT int EVP_EncryptInit(EVP_CIPHER_CTX *ctx,
|
|
const EVP_CIPHER *cipher, const uint8_t *key,
|
|
const uint8_t *iv);
|
|
|
|
/* EVP_DecryptInit calls |EVP_CipherInit| with |enc| equal to zero. */
|
|
OPENSSL_EXPORT int EVP_DecryptInit(EVP_CIPHER_CTX *ctx,
|
|
const EVP_CIPHER *cipher, const uint8_t *key,
|
|
const uint8_t *iv);
|
|
|
|
/* EVP_add_cipher_alias does nothing and returns one. */
|
|
OPENSSL_EXPORT int EVP_add_cipher_alias(const char *a, const char *b);
|
|
|
|
/* EVP_get_cipherbyname returns an |EVP_CIPHER| given a human readable name in
|
|
* |name|, or NULL if the name is unknown. */
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
|
|
|
|
/* These AEADs are deprecated AES-GCM implementations that set
|
|
* |EVP_CIPH_FLAG_CUSTOM_CIPHER|. Use |EVP_aead_aes_128_gcm| and
|
|
* |EVP_aead_aes_256_gcm| instead. */
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_gcm(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_gcm(void);
|
|
|
|
/* These are deprecated, 192-bit version of AES. */
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_ecb(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_cbc(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_ctr(void);
|
|
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_gcm(void);
|
|
|
|
|
|
/* Private functions. */
|
|
|
|
/* EVP_CIPH_NO_PADDING disables padding in block ciphers. */
|
|
#define EVP_CIPH_NO_PADDING 0x800
|
|
|
|
/* EVP_CIPHER_CTX_ctrl commands. */
|
|
#define EVP_CTRL_INIT 0x0
|
|
#define EVP_CTRL_SET_KEY_LENGTH 0x1
|
|
#define EVP_CTRL_GET_RC2_KEY_BITS 0x2
|
|
#define EVP_CTRL_SET_RC2_KEY_BITS 0x3
|
|
#define EVP_CTRL_GET_RC5_ROUNDS 0x4
|
|
#define EVP_CTRL_SET_RC5_ROUNDS 0x5
|
|
#define EVP_CTRL_RAND_KEY 0x6
|
|
#define EVP_CTRL_PBE_PRF_NID 0x7
|
|
#define EVP_CTRL_COPY 0x8
|
|
#define EVP_CTRL_GCM_SET_IVLEN 0x9
|
|
#define EVP_CTRL_GCM_GET_TAG 0x10
|
|
#define EVP_CTRL_GCM_SET_TAG 0x11
|
|
#define EVP_CTRL_GCM_SET_IV_FIXED 0x12
|
|
#define EVP_CTRL_GCM_IV_GEN 0x13
|
|
#define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
|
|
/* Set the GCM invocation field, decrypt only */
|
|
#define EVP_CTRL_GCM_SET_IV_INV 0x18
|
|
|
|
/* GCM TLS constants */
|
|
/* Length of fixed part of IV derived from PRF */
|
|
#define EVP_GCM_TLS_FIXED_IV_LEN 4
|
|
/* Length of explicit part of IV part of TLS records */
|
|
#define EVP_GCM_TLS_EXPLICIT_IV_LEN 8
|
|
/* Length of tag for TLS */
|
|
#define EVP_GCM_TLS_TAG_LEN 16
|
|
|
|
#define EVP_MAX_KEY_LENGTH 64
|
|
#define EVP_MAX_IV_LENGTH 16
|
|
#define EVP_MAX_BLOCK_LENGTH 32
|
|
|
|
struct evp_cipher_ctx_st {
|
|
/* cipher contains the underlying cipher for this context. */
|
|
const EVP_CIPHER *cipher;
|
|
|
|
/* app_data is a pointer to opaque, user data. */
|
|
void *app_data; /* application stuff */
|
|
|
|
/* cipher_data points to the |cipher| specific state. */
|
|
void *cipher_data;
|
|
|
|
/* key_len contains the length of the key, which may differ from
|
|
* |cipher->key_len| if the cipher can take a variable key length. */
|
|
unsigned key_len;
|
|
|
|
/* encrypt is one if encrypting and zero if decrypting. */
|
|
int encrypt;
|
|
|
|
/* flags contains the OR of zero or more |EVP_CIPH_*| flags, above. */
|
|
uint32_t flags;
|
|
|
|
/* oiv contains the original IV value. */
|
|
uint8_t oiv[EVP_MAX_IV_LENGTH];
|
|
|
|
/* iv contains the current IV value, which may have been updated. */
|
|
uint8_t iv[EVP_MAX_IV_LENGTH];
|
|
|
|
/* buf contains a partial block which is used by, for example, CTR mode to
|
|
* store unused keystream bytes. */
|
|
uint8_t buf[EVP_MAX_BLOCK_LENGTH];
|
|
|
|
/* buf_len contains the number of bytes of a partial block contained in
|
|
* |buf|. */
|
|
int buf_len;
|
|
|
|
/* num contains the number of bytes of |iv| which are valid for modes that
|
|
* manage partial blocks themselves. */
|
|
unsigned num;
|
|
|
|
/* final_used is non-zero if the |final| buffer contains plaintext. */
|
|
int final_used;
|
|
|
|
/* block_mask contains |cipher->block_size| minus one. (The block size
|
|
* assumed to be a power of two.) */
|
|
int block_mask;
|
|
|
|
uint8_t final[EVP_MAX_BLOCK_LENGTH]; /* possible final block */
|
|
} /* EVP_CIPHER_CTX */;
|
|
|
|
typedef struct evp_cipher_info_st {
|
|
const EVP_CIPHER *cipher;
|
|
unsigned char iv[EVP_MAX_IV_LENGTH];
|
|
} EVP_CIPHER_INFO;
|
|
|
|
struct evp_cipher_st {
|
|
/* type contains a NID identifing the cipher. (e.g. NID_aes_128_gcm.) */
|
|
int nid;
|
|
|
|
/* block_size contains the block size, in bytes, of the cipher, or 1 for a
|
|
* stream cipher. */
|
|
unsigned block_size;
|
|
|
|
/* key_len contains the key size, in bytes, for the cipher. If the cipher
|
|
* takes a variable key size then this contains the default size. */
|
|
unsigned key_len;
|
|
|
|
/* iv_len contains the IV size, in bytes, or zero if inapplicable. */
|
|
unsigned iv_len;
|
|
|
|
/* ctx_size contains the size, in bytes, of the per-key context for this
|
|
* cipher. */
|
|
unsigned ctx_size;
|
|
|
|
/* flags contains the OR of a number of flags. See |EVP_CIPH_*|. */
|
|
uint32_t flags;
|
|
|
|
/* app_data is a pointer to opaque, user data. */
|
|
void *app_data;
|
|
|
|
int (*init)(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv,
|
|
int enc);
|
|
|
|
int (*cipher)(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
|
size_t inl);
|
|
|
|
/* cleanup, if non-NULL, releases memory associated with the context. It is
|
|
* called if |EVP_CTRL_INIT| succeeds. Note that |init| may not have been
|
|
* called at this point. */
|
|
void (*cleanup)(EVP_CIPHER_CTX *);
|
|
|
|
int (*ctrl)(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
|
|
};
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
} /* extern C */
|
|
|
|
#if defined(BORINGSSL_HAVE_CXX11)
|
|
|
|
namespace bssl {
|
|
|
|
using ScopedEVP_CIPHER_CTX =
|
|
ScopedContext<EVP_CIPHER_CTX, int, EVP_CIPHER_CTX_init,
|
|
EVP_CIPHER_CTX_cleanup>;
|
|
|
|
} // namespace bssl
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#define CIPHER_R_AES_KEY_SETUP_FAILED 100
|
|
#define CIPHER_R_BAD_DECRYPT 101
|
|
#define CIPHER_R_BAD_KEY_LENGTH 102
|
|
#define CIPHER_R_BUFFER_TOO_SMALL 103
|
|
#define CIPHER_R_CTRL_NOT_IMPLEMENTED 104
|
|
#define CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED 105
|
|
#define CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH 106
|
|
#define CIPHER_R_INITIALIZATION_ERROR 107
|
|
#define CIPHER_R_INPUT_NOT_INITIALIZED 108
|
|
#define CIPHER_R_INVALID_AD_SIZE 109
|
|
#define CIPHER_R_INVALID_KEY_LENGTH 110
|
|
#define CIPHER_R_INVALID_NONCE_SIZE 111
|
|
#define CIPHER_R_INVALID_OPERATION 112
|
|
#define CIPHER_R_IV_TOO_LARGE 113
|
|
#define CIPHER_R_NO_CIPHER_SET 114
|
|
#define CIPHER_R_OUTPUT_ALIASES_INPUT 115
|
|
#define CIPHER_R_TAG_TOO_LARGE 116
|
|
#define CIPHER_R_TOO_LARGE 117
|
|
#define CIPHER_R_UNSUPPORTED_AD_SIZE 118
|
|
#define CIPHER_R_UNSUPPORTED_INPUT_SIZE 119
|
|
#define CIPHER_R_UNSUPPORTED_KEY_SIZE 120
|
|
#define CIPHER_R_UNSUPPORTED_NONCE_SIZE 121
|
|
#define CIPHER_R_UNSUPPORTED_TAG_SIZE 122
|
|
#define CIPHER_R_WRONG_FINAL_BLOCK_LENGTH 123
|
|
#define CIPHER_R_NO_DIRECTION_SET 124
|
|
|
|
#endif /* OPENSSL_HEADER_CIPHER_H */
|