8d9ee7d1fe
It costs us a malloc, but it's one less function to test and implement in constant time, now that BN_cmp and BIGNUM are okay. Median of 29 RSA keygens: 0m0.207s -> 0m0.210s (Accuracy beyond 0.1s is questionable.) Bug: 238 Change-Id: Ic56f92f0dcf04da1f542290a7e8cdab8036699ed Reviewed-on: https://boringssl-review.googlesource.com/26367 Reviewed-by: Adam Langley <alangley@gmail.com>
1209 lines
37 KiB
C
1209 lines
37 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
* All rights reserved.
|
||
*
|
||
* This package is an SSL implementation written
|
||
* by Eric Young (eay@cryptsoft.com).
|
||
* The implementation was written so as to conform with Netscapes SSL.
|
||
*
|
||
* This library is free for commercial and non-commercial use as long as
|
||
* the following conditions are aheared to. The following conditions
|
||
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
* included with this distribution is covered by the same copyright terms
|
||
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
*
|
||
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
* the code are not to be removed.
|
||
* If this package is used in a product, Eric Young should be given attribution
|
||
* as the author of the parts of the library used.
|
||
* This can be in the form of a textual message at program startup or
|
||
* in documentation (online or textual) provided with the package.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* 1. Redistributions of source code must retain the copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* 3. All advertising materials mentioning features or use of this software
|
||
* must display the following acknowledgement:
|
||
* "This product includes cryptographic software written by
|
||
* Eric Young (eay@cryptsoft.com)"
|
||
* The word 'cryptographic' can be left out if the rouines from the library
|
||
* being used are not cryptographic related :-).
|
||
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
* the apps directory (application code) you must include an acknowledgement:
|
||
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*
|
||
* The licence and distribution terms for any publically available version or
|
||
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
* copied and put under another distribution licence
|
||
* [including the GNU Public Licence.] */
|
||
|
||
#include <openssl/rsa.h>
|
||
|
||
#include <assert.h>
|
||
#include <limits.h>
|
||
#include <string.h>
|
||
|
||
#include <openssl/bn.h>
|
||
#include <openssl/err.h>
|
||
#include <openssl/mem.h>
|
||
#include <openssl/thread.h>
|
||
#include <openssl/type_check.h>
|
||
|
||
#include "internal.h"
|
||
#include "../bn/internal.h"
|
||
#include "../../internal.h"
|
||
#include "../delocate.h"
|
||
|
||
|
||
static int check_modulus_and_exponent_sizes(const RSA *rsa) {
|
||
unsigned rsa_bits = BN_num_bits(rsa->n);
|
||
|
||
if (rsa_bits > 16 * 1024) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
|
||
return 0;
|
||
}
|
||
|
||
// Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen as
|
||
// the limit based on the recommendations in [1] and [2]. Windows CryptoAPI
|
||
// doesn't support values larger than 32 bits [3], so it is unlikely that
|
||
// exponents larger than 32 bits are being used for anything Windows commonly
|
||
// does.
|
||
//
|
||
// [1] https://www.imperialviolet.org/2012/03/16/rsae.html
|
||
// [2] https://www.imperialviolet.org/2012/03/17/rsados.html
|
||
// [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
|
||
static const unsigned kMaxExponentBits = 33;
|
||
|
||
if (BN_num_bits(rsa->e) > kMaxExponentBits) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
|
||
return 0;
|
||
}
|
||
|
||
// Verify |n > e|. Comparing |rsa_bits| to |kMaxExponentBits| is a small
|
||
// shortcut to comparing |n| and |e| directly. In reality, |kMaxExponentBits|
|
||
// is much smaller than the minimum RSA key size that any application should
|
||
// accept.
|
||
if (rsa_bits <= kMaxExponentBits) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
||
return 0;
|
||
}
|
||
assert(BN_ucmp(rsa->n, rsa->e) > 0);
|
||
|
||
return 1;
|
||
}
|
||
|
||
static int ensure_fixed_copy(BIGNUM **out, const BIGNUM *in, int width) {
|
||
if (*out != NULL) {
|
||
return 1;
|
||
}
|
||
BIGNUM *copy = BN_dup(in);
|
||
if (copy == NULL ||
|
||
!bn_resize_words(copy, width)) {
|
||
BN_free(copy);
|
||
return 0;
|
||
}
|
||
*out = copy;
|
||
return 1;
|
||
}
|
||
|
||
// freeze_private_key finishes initializing |rsa|'s private key components.
|
||
// After this function has returned, |rsa| may not be changed. This is needed
|
||
// because |RSA| is a public struct and, additionally, OpenSSL 1.1.0 opaquified
|
||
// it wrong (see https://github.com/openssl/openssl/issues/5158).
|
||
static int freeze_private_key(RSA *rsa, BN_CTX *ctx) {
|
||
CRYPTO_MUTEX_lock_read(&rsa->lock);
|
||
int frozen = rsa->private_key_frozen;
|
||
CRYPTO_MUTEX_unlock_read(&rsa->lock);
|
||
if (frozen) {
|
||
return 1;
|
||
}
|
||
|
||
int ret = 0;
|
||
CRYPTO_MUTEX_lock_write(&rsa->lock);
|
||
if (rsa->private_key_frozen) {
|
||
ret = 1;
|
||
goto err;
|
||
}
|
||
|
||
// Pre-compute various intermediate values, as well as copies of private
|
||
// exponents with correct widths. Note that other threads may concurrently
|
||
// read from |rsa->n|, |rsa->e|, etc., so any fixes must be in separate
|
||
// copies. We use |mont_n->N|, |mont_p->N|, and |mont_q->N| as copies of |n|,
|
||
// |p|, and |q| with the correct minimal widths.
|
||
|
||
if (rsa->mont_n == NULL) {
|
||
rsa->mont_n = BN_MONT_CTX_new_for_modulus(rsa->n, ctx);
|
||
if (rsa->mont_n == NULL) {
|
||
goto err;
|
||
}
|
||
}
|
||
const BIGNUM *n_fixed = &rsa->mont_n->N;
|
||
|
||
// The only public upper-bound of |rsa->d| is the bit length of |rsa->n|. The
|
||
// ASN.1 serialization of RSA private keys unfortunately leaks the byte length
|
||
// of |rsa->d|, but normalize it so we only leak it once, rather than per
|
||
// operation.
|
||
if (rsa->d != NULL &&
|
||
!ensure_fixed_copy(&rsa->d_fixed, rsa->d, n_fixed->width)) {
|
||
goto err;
|
||
}
|
||
|
||
if (rsa->p != NULL && rsa->q != NULL) {
|
||
if (rsa->mont_p == NULL) {
|
||
rsa->mont_p = BN_MONT_CTX_new_for_modulus(rsa->p, ctx);
|
||
if (rsa->mont_p == NULL) {
|
||
goto err;
|
||
}
|
||
}
|
||
const BIGNUM *p_fixed = &rsa->mont_p->N;
|
||
|
||
if (rsa->mont_q == NULL) {
|
||
rsa->mont_q = BN_MONT_CTX_new_for_modulus(rsa->q, ctx);
|
||
if (rsa->mont_q == NULL) {
|
||
goto err;
|
||
}
|
||
}
|
||
const BIGNUM *q_fixed = &rsa->mont_q->N;
|
||
|
||
if (rsa->dmp1 != NULL && rsa->dmq1 != NULL) {
|
||
// Key generation relies on this function to compute |iqmp|.
|
||
if (rsa->iqmp == NULL) {
|
||
BIGNUM *iqmp = BN_new();
|
||
if (iqmp == NULL ||
|
||
!bn_mod_inverse_secret_prime(iqmp, rsa->q, rsa->p, ctx,
|
||
rsa->mont_p)) {
|
||
BN_free(iqmp);
|
||
goto err;
|
||
}
|
||
rsa->iqmp = iqmp;
|
||
}
|
||
|
||
// CRT components are only publicly bounded by their corresponding
|
||
// moduli's bit lengths. |rsa->iqmp| is unused outside of this one-time
|
||
// setup, so we do not compute a fixed-width version of it.
|
||
if (!ensure_fixed_copy(&rsa->dmp1_fixed, rsa->dmp1, p_fixed->width) ||
|
||
!ensure_fixed_copy(&rsa->dmq1_fixed, rsa->dmq1, q_fixed->width)) {
|
||
goto err;
|
||
}
|
||
|
||
// Compute |inv_small_mod_large_mont|. Note that it is always modulo the
|
||
// larger prime, independent of what is stored in |rsa->iqmp|.
|
||
if (rsa->inv_small_mod_large_mont == NULL) {
|
||
BIGNUM *inv_small_mod_large_mont = BN_new();
|
||
int ok;
|
||
if (BN_cmp(rsa->p, rsa->q) < 0) {
|
||
ok = inv_small_mod_large_mont != NULL &&
|
||
bn_mod_inverse_secret_prime(inv_small_mod_large_mont, rsa->p,
|
||
rsa->q, ctx, rsa->mont_q) &&
|
||
BN_to_montgomery(inv_small_mod_large_mont,
|
||
inv_small_mod_large_mont, rsa->mont_q, ctx);
|
||
} else {
|
||
ok = inv_small_mod_large_mont != NULL &&
|
||
BN_to_montgomery(inv_small_mod_large_mont, rsa->iqmp,
|
||
rsa->mont_p, ctx);
|
||
}
|
||
if (!ok) {
|
||
BN_free(inv_small_mod_large_mont);
|
||
goto err;
|
||
}
|
||
rsa->inv_small_mod_large_mont = inv_small_mod_large_mont;
|
||
}
|
||
}
|
||
}
|
||
|
||
rsa->private_key_frozen = 1;
|
||
ret = 1;
|
||
|
||
err:
|
||
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
||
return ret;
|
||
}
|
||
|
||
size_t rsa_default_size(const RSA *rsa) {
|
||
return BN_num_bytes(rsa->n);
|
||
}
|
||
|
||
int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
||
const uint8_t *in, size_t in_len, int padding) {
|
||
if (rsa->n == NULL || rsa->e == NULL) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
||
return 0;
|
||
}
|
||
|
||
const unsigned rsa_size = RSA_size(rsa);
|
||
BIGNUM *f, *result;
|
||
uint8_t *buf = NULL;
|
||
BN_CTX *ctx = NULL;
|
||
int i, ret = 0;
|
||
|
||
if (max_out < rsa_size) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
||
return 0;
|
||
}
|
||
|
||
if (!check_modulus_and_exponent_sizes(rsa)) {
|
||
return 0;
|
||
}
|
||
|
||
ctx = BN_CTX_new();
|
||
if (ctx == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
BN_CTX_start(ctx);
|
||
f = BN_CTX_get(ctx);
|
||
result = BN_CTX_get(ctx);
|
||
buf = OPENSSL_malloc(rsa_size);
|
||
if (!f || !result || !buf) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
||
goto err;
|
||
}
|
||
|
||
switch (padding) {
|
||
case RSA_PKCS1_PADDING:
|
||
i = RSA_padding_add_PKCS1_type_2(buf, rsa_size, in, in_len);
|
||
break;
|
||
case RSA_PKCS1_OAEP_PADDING:
|
||
// Use the default parameters: SHA-1 for both hashes and no label.
|
||
i = RSA_padding_add_PKCS1_OAEP_mgf1(buf, rsa_size, in, in_len,
|
||
NULL, 0, NULL, NULL);
|
||
break;
|
||
case RSA_NO_PADDING:
|
||
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
|
||
break;
|
||
default:
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
||
goto err;
|
||
}
|
||
|
||
if (i <= 0) {
|
||
goto err;
|
||
}
|
||
|
||
if (BN_bin2bn(buf, rsa_size, f) == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
// usually the padding functions would catch this
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
||
goto err;
|
||
}
|
||
|
||
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
|
||
!BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
|
||
goto err;
|
||
}
|
||
|
||
// put in leading 0 bytes if the number is less than the length of the
|
||
// modulus
|
||
if (!BN_bn2bin_padded(out, rsa_size, result)) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
|
||
*out_len = rsa_size;
|
||
ret = 1;
|
||
|
||
err:
|
||
if (ctx != NULL) {
|
||
BN_CTX_end(ctx);
|
||
BN_CTX_free(ctx);
|
||
}
|
||
OPENSSL_free(buf);
|
||
|
||
return ret;
|
||
}
|
||
|
||
// MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per
|
||
// RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and
|
||
// destroyed as needed.
|
||
#define MAX_BLINDINGS_PER_RSA 1024
|
||
|
||
// rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by
|
||
// allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If
|
||
// none are free, the cache will be extended by a extra element and the new
|
||
// BN_BLINDING is returned.
|
||
//
|
||
// On success, the index of the assigned BN_BLINDING is written to
|
||
// |*index_used| and must be passed to |rsa_blinding_release| when finished.
|
||
static BN_BLINDING *rsa_blinding_get(RSA *rsa, unsigned *index_used,
|
||
BN_CTX *ctx) {
|
||
assert(ctx != NULL);
|
||
assert(rsa->mont_n != NULL);
|
||
|
||
BN_BLINDING *ret = NULL;
|
||
BN_BLINDING **new_blindings;
|
||
uint8_t *new_blindings_inuse;
|
||
char overflow = 0;
|
||
|
||
CRYPTO_MUTEX_lock_write(&rsa->lock);
|
||
|
||
unsigned i;
|
||
for (i = 0; i < rsa->num_blindings; i++) {
|
||
if (rsa->blindings_inuse[i] == 0) {
|
||
rsa->blindings_inuse[i] = 1;
|
||
ret = rsa->blindings[i];
|
||
*index_used = i;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (ret != NULL) {
|
||
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
||
return ret;
|
||
}
|
||
|
||
overflow = rsa->num_blindings >= MAX_BLINDINGS_PER_RSA;
|
||
|
||
// We didn't find a free BN_BLINDING to use so increase the length of
|
||
// the arrays by one and use the newly created element.
|
||
|
||
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
||
ret = BN_BLINDING_new();
|
||
if (ret == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
if (overflow) {
|
||
// We cannot add any more cached BN_BLINDINGs so we use |ret|
|
||
// and mark it for destruction in |rsa_blinding_release|.
|
||
*index_used = MAX_BLINDINGS_PER_RSA;
|
||
return ret;
|
||
}
|
||
|
||
CRYPTO_MUTEX_lock_write(&rsa->lock);
|
||
|
||
new_blindings =
|
||
OPENSSL_malloc(sizeof(BN_BLINDING *) * (rsa->num_blindings + 1));
|
||
if (new_blindings == NULL) {
|
||
goto err1;
|
||
}
|
||
OPENSSL_memcpy(new_blindings, rsa->blindings,
|
||
sizeof(BN_BLINDING *) * rsa->num_blindings);
|
||
new_blindings[rsa->num_blindings] = ret;
|
||
|
||
new_blindings_inuse = OPENSSL_malloc(rsa->num_blindings + 1);
|
||
if (new_blindings_inuse == NULL) {
|
||
goto err2;
|
||
}
|
||
OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings);
|
||
new_blindings_inuse[rsa->num_blindings] = 1;
|
||
*index_used = rsa->num_blindings;
|
||
|
||
OPENSSL_free(rsa->blindings);
|
||
rsa->blindings = new_blindings;
|
||
OPENSSL_free(rsa->blindings_inuse);
|
||
rsa->blindings_inuse = new_blindings_inuse;
|
||
rsa->num_blindings++;
|
||
|
||
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
||
return ret;
|
||
|
||
err2:
|
||
OPENSSL_free(new_blindings);
|
||
|
||
err1:
|
||
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
||
BN_BLINDING_free(ret);
|
||
return NULL;
|
||
}
|
||
|
||
// rsa_blinding_release marks the cached BN_BLINDING at the given index as free
|
||
// for other threads to use.
|
||
static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding,
|
||
unsigned blinding_index) {
|
||
if (blinding_index == MAX_BLINDINGS_PER_RSA) {
|
||
// This blinding wasn't cached.
|
||
BN_BLINDING_free(blinding);
|
||
return;
|
||
}
|
||
|
||
CRYPTO_MUTEX_lock_write(&rsa->lock);
|
||
rsa->blindings_inuse[blinding_index] = 0;
|
||
CRYPTO_MUTEX_unlock_write(&rsa->lock);
|
||
}
|
||
|
||
// signing
|
||
int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out,
|
||
size_t max_out, const uint8_t *in, size_t in_len,
|
||
int padding) {
|
||
const unsigned rsa_size = RSA_size(rsa);
|
||
uint8_t *buf = NULL;
|
||
int i, ret = 0;
|
||
|
||
if (max_out < rsa_size) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
||
return 0;
|
||
}
|
||
|
||
buf = OPENSSL_malloc(rsa_size);
|
||
if (buf == NULL) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
||
goto err;
|
||
}
|
||
|
||
switch (padding) {
|
||
case RSA_PKCS1_PADDING:
|
||
i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len);
|
||
break;
|
||
case RSA_NO_PADDING:
|
||
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
|
||
break;
|
||
default:
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
||
goto err;
|
||
}
|
||
|
||
if (i <= 0) {
|
||
goto err;
|
||
}
|
||
|
||
if (!RSA_private_transform(rsa, out, buf, rsa_size)) {
|
||
goto err;
|
||
}
|
||
|
||
*out_len = rsa_size;
|
||
ret = 1;
|
||
|
||
err:
|
||
OPENSSL_free(buf);
|
||
|
||
return ret;
|
||
}
|
||
|
||
int rsa_default_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
||
const uint8_t *in, size_t in_len, int padding) {
|
||
const unsigned rsa_size = RSA_size(rsa);
|
||
uint8_t *buf = NULL;
|
||
int ret = 0;
|
||
|
||
if (max_out < rsa_size) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
||
return 0;
|
||
}
|
||
|
||
if (padding == RSA_NO_PADDING) {
|
||
buf = out;
|
||
} else {
|
||
// Allocate a temporary buffer to hold the padded plaintext.
|
||
buf = OPENSSL_malloc(rsa_size);
|
||
if (buf == NULL) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
if (in_len != rsa_size) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
|
||
goto err;
|
||
}
|
||
|
||
if (!RSA_private_transform(rsa, buf, in, rsa_size)) {
|
||
goto err;
|
||
}
|
||
|
||
switch (padding) {
|
||
case RSA_PKCS1_PADDING:
|
||
ret =
|
||
RSA_padding_check_PKCS1_type_2(out, out_len, rsa_size, buf, rsa_size);
|
||
break;
|
||
case RSA_PKCS1_OAEP_PADDING:
|
||
// Use the default parameters: SHA-1 for both hashes and no label.
|
||
ret = RSA_padding_check_PKCS1_OAEP_mgf1(out, out_len, rsa_size, buf,
|
||
rsa_size, NULL, 0, NULL, NULL);
|
||
break;
|
||
case RSA_NO_PADDING:
|
||
*out_len = rsa_size;
|
||
ret = 1;
|
||
break;
|
||
default:
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
||
goto err;
|
||
}
|
||
|
||
if (!ret) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
|
||
}
|
||
|
||
err:
|
||
if (padding != RSA_NO_PADDING) {
|
||
OPENSSL_free(buf);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
|
||
|
||
int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
|
||
const uint8_t *in, size_t in_len, int padding) {
|
||
if (rsa->n == NULL || rsa->e == NULL) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
||
return 0;
|
||
}
|
||
|
||
const unsigned rsa_size = RSA_size(rsa);
|
||
BIGNUM *f, *result;
|
||
|
||
if (max_out < rsa_size) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
|
||
return 0;
|
||
}
|
||
|
||
if (in_len != rsa_size) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
|
||
return 0;
|
||
}
|
||
|
||
if (!check_modulus_and_exponent_sizes(rsa)) {
|
||
return 0;
|
||
}
|
||
|
||
BN_CTX *ctx = BN_CTX_new();
|
||
if (ctx == NULL) {
|
||
return 0;
|
||
}
|
||
|
||
int ret = 0;
|
||
uint8_t *buf = NULL;
|
||
|
||
BN_CTX_start(ctx);
|
||
f = BN_CTX_get(ctx);
|
||
result = BN_CTX_get(ctx);
|
||
if (f == NULL || result == NULL) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
||
goto err;
|
||
}
|
||
|
||
if (padding == RSA_NO_PADDING) {
|
||
buf = out;
|
||
} else {
|
||
// Allocate a temporary buffer to hold the padded plaintext.
|
||
buf = OPENSSL_malloc(rsa_size);
|
||
if (buf == NULL) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
if (BN_bin2bn(in, in_len, f) == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
||
goto err;
|
||
}
|
||
|
||
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
|
||
!BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
|
||
goto err;
|
||
}
|
||
|
||
if (!BN_bn2bin_padded(buf, rsa_size, result)) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
|
||
switch (padding) {
|
||
case RSA_PKCS1_PADDING:
|
||
ret =
|
||
RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size);
|
||
break;
|
||
case RSA_NO_PADDING:
|
||
ret = 1;
|
||
*out_len = rsa_size;
|
||
break;
|
||
default:
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
|
||
goto err;
|
||
}
|
||
|
||
if (!ret) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
|
||
goto err;
|
||
}
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
BN_CTX_free(ctx);
|
||
if (buf != out) {
|
||
OPENSSL_free(buf);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
|
||
size_t len) {
|
||
if (rsa->n == NULL || rsa->d == NULL) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
|
||
return 0;
|
||
}
|
||
|
||
BIGNUM *f, *result;
|
||
BN_CTX *ctx = NULL;
|
||
unsigned blinding_index = 0;
|
||
BN_BLINDING *blinding = NULL;
|
||
int ret = 0;
|
||
|
||
ctx = BN_CTX_new();
|
||
if (ctx == NULL) {
|
||
goto err;
|
||
}
|
||
BN_CTX_start(ctx);
|
||
f = BN_CTX_get(ctx);
|
||
result = BN_CTX_get(ctx);
|
||
|
||
if (f == NULL || result == NULL) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
|
||
goto err;
|
||
}
|
||
|
||
if (BN_bin2bn(in, len, f) == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
if (BN_ucmp(f, rsa->n) >= 0) {
|
||
// Usually the padding functions would catch this.
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE);
|
||
goto err;
|
||
}
|
||
|
||
if (!freeze_private_key(rsa, ctx)) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
|
||
const int do_blinding = (rsa->flags & RSA_FLAG_NO_BLINDING) == 0;
|
||
|
||
if (rsa->e == NULL && do_blinding) {
|
||
// We cannot do blinding or verification without |e|, and continuing without
|
||
// those countermeasures is dangerous. However, the Java/Android RSA API
|
||
// requires support for keys where only |d| and |n| (and not |e|) are known.
|
||
// The callers that require that bad behavior set |RSA_FLAG_NO_BLINDING|.
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT);
|
||
goto err;
|
||
}
|
||
|
||
if (do_blinding) {
|
||
blinding = rsa_blinding_get(rsa, &blinding_index, ctx);
|
||
if (blinding == NULL) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL &&
|
||
rsa->dmq1 != NULL && rsa->iqmp != NULL) {
|
||
if (!mod_exp(result, f, rsa, ctx)) {
|
||
goto err;
|
||
}
|
||
} else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx,
|
||
rsa->mont_n)) {
|
||
goto err;
|
||
}
|
||
|
||
// Verify the result to protect against fault attacks as described in the
|
||
// 1997 paper "On the Importance of Checking Cryptographic Protocols for
|
||
// Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some
|
||
// implementations do this only when the CRT is used, but we do it in all
|
||
// cases. Section 6 of the aforementioned paper describes an attack that
|
||
// works when the CRT isn't used. That attack is much less likely to succeed
|
||
// than the CRT attack, but there have likely been improvements since 1997.
|
||
//
|
||
// This check is cheap assuming |e| is small; it almost always is.
|
||
if (rsa->e != NULL) {
|
||
BIGNUM *vrfy = BN_CTX_get(ctx);
|
||
if (vrfy == NULL ||
|
||
!BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) ||
|
||
!BN_equal_consttime(vrfy, f)) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
|
||
}
|
||
|
||
if (do_blinding &&
|
||
!BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) {
|
||
goto err;
|
||
}
|
||
|
||
// The computation should have left |result| as a maximally-wide number, so
|
||
// that it and serializing does not leak information about the magnitude of
|
||
// the result.
|
||
//
|
||
// See Falko Stenzke, "Manger's Attack revisited", ICICS 2010.
|
||
assert(result->width == rsa->mont_n->N.width);
|
||
if (!BN_bn2bin_padded(out, len, result)) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
|
||
ret = 1;
|
||
|
||
err:
|
||
if (ctx != NULL) {
|
||
BN_CTX_end(ctx);
|
||
BN_CTX_free(ctx);
|
||
}
|
||
if (blinding != NULL) {
|
||
rsa_blinding_release(rsa, blinding, blinding_index);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
// mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced
|
||
// modulo |p| times |q|. It returns one on success and zero on error.
|
||
static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p,
|
||
const BN_MONT_CTX *mont_p, const BIGNUM *q,
|
||
BN_CTX *ctx) {
|
||
// Reducing in constant-time with Montgomery reduction requires I <= p * R. We
|
||
// have I < p * q, so this follows if q < R. In particular, this always holds
|
||
// if p and q are the same size, which is true for any RSA keys we or anyone
|
||
// sane generates. For other keys, we fall back to |BN_mod|.
|
||
if (!bn_less_than_montgomery_R(q, mont_p)) {
|
||
return BN_mod(r, I, p, ctx);
|
||
}
|
||
|
||
if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p.
|
||
!BN_from_montgomery(r, I, mont_p, ctx) ||
|
||
// Multiply by R^2 and do another Montgomery reduction to compute
|
||
// I * R^-1 * R^2 * R^-1 = I mod p.
|
||
!BN_to_montgomery(r, r, mont_p, ctx)) {
|
||
return 0;
|
||
}
|
||
|
||
// By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and
|
||
// adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute
|
||
// I * R mod p here and save a reduction per prime. But this would require
|
||
// changing the RSAZ code and may not be worth it. Note that the RSAZ code
|
||
// uses a different radix, so it uses R' = 2^1044. There we'd actually want
|
||
// R^2 * R', and would futher benefit from a precomputed R'^2. It currently
|
||
// converts |mont_p->RR| to R'^2.
|
||
return 1;
|
||
}
|
||
|
||
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
|
||
assert(ctx != NULL);
|
||
|
||
assert(rsa->n != NULL);
|
||
assert(rsa->e != NULL);
|
||
assert(rsa->d != NULL);
|
||
assert(rsa->p != NULL);
|
||
assert(rsa->q != NULL);
|
||
assert(rsa->dmp1 != NULL);
|
||
assert(rsa->dmq1 != NULL);
|
||
assert(rsa->iqmp != NULL);
|
||
|
||
BIGNUM *r1, *m1;
|
||
int ret = 0;
|
||
|
||
BN_CTX_start(ctx);
|
||
r1 = BN_CTX_get(ctx);
|
||
m1 = BN_CTX_get(ctx);
|
||
if (r1 == NULL ||
|
||
m1 == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
if (!freeze_private_key(rsa, ctx)) {
|
||
goto err;
|
||
}
|
||
|
||
// Implementing RSA with CRT in constant-time is sensitive to which prime is
|
||
// larger. Canonicalize fields so that |p| is the larger prime.
|
||
const BIGNUM *dmp1 = rsa->dmp1_fixed, *dmq1 = rsa->dmq1_fixed;
|
||
const BN_MONT_CTX *mont_p = rsa->mont_p, *mont_q = rsa->mont_q;
|
||
if (BN_cmp(rsa->p, rsa->q) < 0) {
|
||
mont_p = rsa->mont_q;
|
||
mont_q = rsa->mont_p;
|
||
dmp1 = rsa->dmq1_fixed;
|
||
dmq1 = rsa->dmp1_fixed;
|
||
}
|
||
|
||
// Use the minimal-width versions of |n|, |p|, and |q|. Either works, but if
|
||
// someone gives us non-minimal values, these will be slightly more efficient
|
||
// on the non-Montgomery operations.
|
||
const BIGNUM *n = &rsa->mont_n->N;
|
||
const BIGNUM *p = &mont_p->N;
|
||
const BIGNUM *q = &mont_q->N;
|
||
|
||
// This is a pre-condition for |mod_montgomery|. It was already checked by the
|
||
// caller.
|
||
assert(BN_ucmp(I, n) < 0);
|
||
|
||
if (// |m1| is the result modulo |q|.
|
||
!mod_montgomery(r1, I, q, mont_q, p, ctx) ||
|
||
!BN_mod_exp_mont_consttime(m1, r1, dmq1, q, ctx, mont_q) ||
|
||
// |r0| is the result modulo |p|.
|
||
!mod_montgomery(r1, I, p, mont_p, q, ctx) ||
|
||
!BN_mod_exp_mont_consttime(r0, r1, dmp1, p, ctx, mont_p) ||
|
||
// Compute r0 = r0 - m1 mod p. |p| is the larger prime, so |m1| is already
|
||
// fully reduced mod |p|.
|
||
!bn_mod_sub_consttime(r0, r0, m1, p, ctx) ||
|
||
// r0 = r0 * iqmp mod p. We use Montgomery multiplication to compute this
|
||
// in constant time. |inv_small_mod_large_mont| is in Montgomery form and
|
||
// r0 is not, so the result is taken out of Montgomery form.
|
||
!BN_mod_mul_montgomery(r0, r0, rsa->inv_small_mod_large_mont, mont_p,
|
||
ctx) ||
|
||
// r0 = r0 * q + m1 gives the final result. Reducing modulo q gives m1, so
|
||
// it is correct mod p. Reducing modulo p gives (r0-m1)*iqmp*q + m1 = r0,
|
||
// so it is correct mod q. Finally, the result is bounded by [m1, n + m1),
|
||
// and the result is at least |m1|, so this must be the unique answer in
|
||
// [0, n).
|
||
!bn_mul_consttime(r0, r0, q, ctx) ||
|
||
!bn_uadd_consttime(r0, r0, m1) ||
|
||
// The result should be bounded by |n|, but fixed-width operations may
|
||
// bound the width slightly higher, so fix it.
|
||
!bn_resize_words(r0, n->width)) {
|
||
goto err;
|
||
}
|
||
|
||
ret = 1;
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
static int ensure_bignum(BIGNUM **out) {
|
||
if (*out == NULL) {
|
||
*out = BN_new();
|
||
}
|
||
return *out != NULL;
|
||
}
|
||
|
||
// kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2¹⁵³⁵×√2⌋. This is
|
||
// chosen to give enough precision for 3072-bit RSA, the largest key size FIPS
|
||
// specifies. Key sizes beyond this will round up.
|
||
//
|
||
// To verify this number, check that n² < 2³⁰⁷¹ < (n+1)², where n is value
|
||
// represented here. Note the components are listed in little-endian order. Here
|
||
// is some sample Python code to check:
|
||
//
|
||
// >>> TOBN = lambda a, b: a << 32 | b
|
||
// >>> l = [ <paste the contents of kSqrtTwo> ]
|
||
// >>> n = sum(a * 2**(64*i) for i, a in enumerate(l))
|
||
// >>> n**2 < 2**3071 < (n+1)**2
|
||
// True
|
||
const BN_ULONG kBoringSSLRSASqrtTwo[] = {
|
||
TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307),
|
||
TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f),
|
||
TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651),
|
||
TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd),
|
||
TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e),
|
||
TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc),
|
||
TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a),
|
||
TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e),
|
||
TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a),
|
||
TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3),
|
||
TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c),
|
||
TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484),
|
||
};
|
||
const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo);
|
||
|
||
// generate_prime sets |out| to a prime with length |bits| such that |out|-1 is
|
||
// relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to
|
||
// |p|. |sqrt2| must be ⌊2^(bits-1)×√2⌋ (or a slightly overestimate for large
|
||
// sizes), and |pow2_bits_100| must be 2^(bits-100).
|
||
static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e,
|
||
const BIGNUM *p, const BIGNUM *sqrt2,
|
||
const BIGNUM *pow2_bits_100, BN_CTX *ctx,
|
||
BN_GENCB *cb) {
|
||
if (bits < 128 || (bits % BN_BITS2) != 0) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
||
return 0;
|
||
}
|
||
assert(BN_is_pow2(pow2_bits_100));
|
||
assert(BN_is_bit_set(pow2_bits_100, bits - 100));
|
||
|
||
// See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2.
|
||
|
||
// Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3,
|
||
// the 186-4 limit is too low, so we use a higher one. Note this case is not
|
||
// reachable from |RSA_generate_key_fips|.
|
||
if (bits >= INT_MAX/32) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
|
||
return 0;
|
||
}
|
||
int limit = BN_is_word(e, 3) ? bits * 32 : bits * 5;
|
||
|
||
int ret = 0, tries = 0, rand_tries = 0;
|
||
BN_CTX_start(ctx);
|
||
BIGNUM *tmp = BN_CTX_get(ctx);
|
||
if (tmp == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
for (;;) {
|
||
// Generate a random number of length |bits| where the bottom bit is set
|
||
// (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the
|
||
// bound checked below in steps 4.4 and 5.5).
|
||
if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) ||
|
||
!BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) {
|
||
goto err;
|
||
}
|
||
|
||
if (p != NULL) {
|
||
// If |p| and |out| are too close, try again (step 5.4).
|
||
if (!BN_sub(tmp, out, p)) {
|
||
goto err;
|
||
}
|
||
BN_set_negative(tmp, 0);
|
||
if (BN_cmp(tmp, pow2_bits_100) <= 0) {
|
||
continue;
|
||
}
|
||
}
|
||
|
||
// If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent
|
||
// to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes.
|
||
//
|
||
// For larger keys, the comparison is approximate, leaning towards
|
||
// retrying. That is, we reject a negligible fraction of primes that are
|
||
// within the FIPS bound, but we will never accept a prime outside the
|
||
// bound, ensuring the resulting RSA key is the right size.
|
||
if (BN_cmp(out, sqrt2) <= 0) {
|
||
continue;
|
||
}
|
||
|
||
// RSA key generation's bottleneck is discarding composites. If it fails
|
||
// trial division, do not bother computing a GCD or performing Rabin-Miller.
|
||
if (!bn_odd_number_is_obviously_composite(out)) {
|
||
// Check gcd(out-1, e) is one (steps 4.5 and 5.6).
|
||
if (!BN_sub(tmp, out, BN_value_one()) ||
|
||
!BN_gcd(tmp, tmp, e, ctx)) {
|
||
goto err;
|
||
}
|
||
if (BN_is_one(tmp)) {
|
||
// Test |out| for primality (steps 4.5.1 and 5.6.1).
|
||
int is_probable_prime;
|
||
if (!BN_primality_test(&is_probable_prime, out, BN_prime_checks, ctx, 0,
|
||
cb)) {
|
||
goto err;
|
||
}
|
||
if (is_probable_prime) {
|
||
ret = 1;
|
||
goto err;
|
||
}
|
||
}
|
||
}
|
||
|
||
// If we've tried too many times to find a prime, abort (steps 4.7 and
|
||
// 5.8).
|
||
tries++;
|
||
if (tries >= limit) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
|
||
goto err;
|
||
}
|
||
if (!BN_GENCB_call(cb, 2, tries)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
err:
|
||
BN_CTX_end(ctx);
|
||
return ret;
|
||
}
|
||
|
||
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) {
|
||
// See FIPS 186-4 appendix B.3. This function implements a generalized version
|
||
// of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks
|
||
// for FIPS-compliant key generation.
|
||
|
||
// Always generate RSA keys which are a multiple of 128 bits. Round |bits|
|
||
// down as needed.
|
||
bits &= ~127;
|
||
|
||
// Reject excessively small keys.
|
||
if (bits < 256) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
||
return 0;
|
||
}
|
||
|
||
int ret = 0;
|
||
int prime_bits = bits / 2;
|
||
BN_CTX *ctx = BN_CTX_new();
|
||
if (ctx == NULL) {
|
||
goto bn_err;
|
||
}
|
||
BN_CTX_start(ctx);
|
||
BIGNUM *totient = BN_CTX_get(ctx);
|
||
BIGNUM *pm1 = BN_CTX_get(ctx);
|
||
BIGNUM *qm1 = BN_CTX_get(ctx);
|
||
BIGNUM *gcd = BN_CTX_get(ctx);
|
||
BIGNUM *sqrt2 = BN_CTX_get(ctx);
|
||
BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx);
|
||
BIGNUM *pow2_prime_bits = BN_CTX_get(ctx);
|
||
if (totient == NULL || pm1 == NULL || qm1 == NULL || gcd == NULL ||
|
||
sqrt2 == NULL || pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL ||
|
||
!BN_set_bit(pow2_prime_bits_100, prime_bits - 100) ||
|
||
!BN_set_bit(pow2_prime_bits, prime_bits)) {
|
||
goto bn_err;
|
||
}
|
||
|
||
// We need the RSA components non-NULL.
|
||
if (!ensure_bignum(&rsa->n) ||
|
||
!ensure_bignum(&rsa->d) ||
|
||
!ensure_bignum(&rsa->e) ||
|
||
!ensure_bignum(&rsa->p) ||
|
||
!ensure_bignum(&rsa->q) ||
|
||
!ensure_bignum(&rsa->dmp1) ||
|
||
!ensure_bignum(&rsa->dmq1)) {
|
||
goto bn_err;
|
||
}
|
||
|
||
if (!BN_copy(rsa->e, e_value)) {
|
||
goto bn_err;
|
||
}
|
||
|
||
// Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋.
|
||
if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) {
|
||
goto bn_err;
|
||
}
|
||
int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2;
|
||
assert(sqrt2_bits == (int)BN_num_bits(sqrt2));
|
||
if (sqrt2_bits > prime_bits) {
|
||
// For key sizes up to 3072 (prime_bits = 1536), this is exactly
|
||
// ⌊2^(prime_bits-1)×√2⌋.
|
||
if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) {
|
||
goto bn_err;
|
||
}
|
||
} else if (prime_bits > sqrt2_bits) {
|
||
// For key sizes beyond 3072, this is approximate. We err towards retrying
|
||
// to ensure our key is the right size and round up.
|
||
if (!BN_add_word(sqrt2, 1) ||
|
||
!BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) {
|
||
goto bn_err;
|
||
}
|
||
}
|
||
assert(prime_bits == (int)BN_num_bits(sqrt2));
|
||
|
||
do {
|
||
// Generate p and q, each of size |prime_bits|, using the steps outlined in
|
||
// appendix FIPS 186-4 appendix B.3.3.
|
||
if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2,
|
||
pow2_prime_bits_100, ctx, cb) ||
|
||
!BN_GENCB_call(cb, 3, 0) ||
|
||
!generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2,
|
||
pow2_prime_bits_100, ctx, cb) ||
|
||
!BN_GENCB_call(cb, 3, 1)) {
|
||
goto bn_err;
|
||
}
|
||
|
||
if (BN_cmp(rsa->p, rsa->q) < 0) {
|
||
BIGNUM *tmp = rsa->p;
|
||
rsa->p = rsa->q;
|
||
rsa->q = tmp;
|
||
}
|
||
|
||
// Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs
|
||
// from typical RSA implementations which use (p-1)*(q-1).
|
||
//
|
||
// Note this means the size of d might reveal information about p-1 and
|
||
// q-1. However, we do operations with Chinese Remainder Theorem, so we only
|
||
// use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient
|
||
// does not affect those two values.
|
||
if (!BN_sub(pm1, rsa->p, BN_value_one()) ||
|
||
!BN_sub(qm1, rsa->q, BN_value_one()) ||
|
||
!BN_mul(totient, pm1, qm1, ctx) ||
|
||
!BN_gcd(gcd, pm1, qm1, ctx) ||
|
||
!BN_div(totient, NULL, totient, gcd, ctx) ||
|
||
!BN_mod_inverse(rsa->d, rsa->e, totient, ctx)) {
|
||
goto bn_err;
|
||
}
|
||
|
||
// Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on
|
||
// values for d.
|
||
} while (BN_cmp(rsa->d, pow2_prime_bits) <= 0);
|
||
|
||
if (// Calculate n.
|
||
!BN_mul(rsa->n, rsa->p, rsa->q, ctx) ||
|
||
// Calculate d mod (p-1).
|
||
!BN_mod(rsa->dmp1, rsa->d, pm1, ctx) ||
|
||
// Calculate d mod (q-1)
|
||
!BN_mod(rsa->dmq1, rsa->d, qm1, ctx)) {
|
||
goto bn_err;
|
||
}
|
||
|
||
// Sanity-check that |rsa->n| has the specified size. This is implied by
|
||
// |generate_prime|'s bounds.
|
||
if (BN_num_bits(rsa->n) != (unsigned)bits) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
|
||
// Call |freeze_private_key| to compute the inverse of q mod p, by way of
|
||
// |rsa->mont_p|.
|
||
if (!freeze_private_key(rsa, ctx)) {
|
||
goto bn_err;
|
||
}
|
||
|
||
// The key generation process is complex and thus error-prone. It could be
|
||
// disastrous to generate and then use a bad key so double-check that the key
|
||
// makes sense.
|
||
if (!RSA_check_key(rsa)) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
|
||
goto err;
|
||
}
|
||
|
||
ret = 1;
|
||
|
||
bn_err:
|
||
if (!ret) {
|
||
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
|
||
}
|
||
err:
|
||
if (ctx != NULL) {
|
||
BN_CTX_end(ctx);
|
||
BN_CTX_free(ctx);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) {
|
||
// FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit
|
||
// primes, respectively) with the prime generation method we use.
|
||
if (bits != 2048 && bits != 3072) {
|
||
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
|
||
return 0;
|
||
}
|
||
|
||
BIGNUM *e = BN_new();
|
||
int ret = e != NULL &&
|
||
BN_set_word(e, RSA_F4) &&
|
||
RSA_generate_key_ex(rsa, bits, e, cb) &&
|
||
RSA_check_fips(rsa);
|
||
BN_free(e);
|
||
return ret;
|
||
}
|
||
|
||
DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) {
|
||
// All of the methods are NULL to make it easier for the compiler/linker to
|
||
// drop unused functions. The wrapper functions will select the appropriate
|
||
// |rsa_default_*| implementation.
|
||
OPENSSL_memset(out, 0, sizeof(RSA_METHOD));
|
||
out->common.is_static = 1;
|
||
}
|