boringssl/crypto/rsa/rsa.c
Adam Langley 6bc658d2e3 Split off private_transform function in RSA.
This change extracts two, common parts of RSA_decrypt and RSA_sign into
a function called |private_transform|. It also allows this to be
overridden in a method, which is convenient for opaque keys that only
expose the raw RSA transform as it means that the padding code from
BoringSSL can be easily reimplemented.

One significant change here is that short RSA ciphertexts will no longer
be accepted. I think this is correct and OpenSSL has a comment about PGP
mistakenly stripping leading zeros. However, these is the possibility
that it could break something.

Change-Id: I258c5cbbf21314cc9b6e8d2a2b898fd9a440cd40
Reviewed-on: https://boringssl-review.googlesource.com/1554
Reviewed-by: Adam Langley <agl@google.com>
2014-08-19 18:37:28 +00:00

753 lines
21 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/rsa.h>
#include <openssl/bn.h>
#include <openssl/engine.h>
#include <openssl/err.h>
#include <openssl/ex_data.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include "internal.h"
extern const RSA_METHOD RSA_default_method;
RSA *RSA_new(void) { return RSA_new_method(NULL); }
RSA *RSA_new_method(const ENGINE *engine) {
RSA *rsa = (RSA *)OPENSSL_malloc(sizeof(RSA));
if (rsa == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_new_method, ERR_R_MALLOC_FAILURE);
return NULL;
}
memset(rsa, 0, sizeof(RSA));
if (engine) {
rsa->meth = ENGINE_get_RSA_method(engine);
}
if (rsa->meth == NULL) {
rsa->meth = (RSA_METHOD*) &RSA_default_method;
}
METHOD_ref(rsa->meth);
rsa->references = 1;
rsa->flags = rsa->meth->flags;
if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_RSA, rsa, &rsa->ex_data)) {
METHOD_unref(rsa->meth);
OPENSSL_free(rsa);
return NULL;
}
if (rsa->meth->init && !rsa->meth->init(rsa)) {
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_RSA, rsa, &rsa->ex_data);
METHOD_unref(rsa->meth);
OPENSSL_free(rsa);
return NULL;
}
return rsa;
}
void RSA_free(RSA *rsa) {
unsigned u;
if (rsa == NULL) {
return;
}
if (CRYPTO_add(&rsa->references, -1, CRYPTO_LOCK_RSA) > 0) {
return;
}
if (rsa->meth->finish) {
rsa->meth->finish(rsa);
}
METHOD_unref(rsa->meth);
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DSA, rsa, &rsa->ex_data);
if (rsa->n != NULL)
BN_clear_free(rsa->n);
if (rsa->e != NULL)
BN_clear_free(rsa->e);
if (rsa->d != NULL)
BN_clear_free(rsa->d);
if (rsa->p != NULL)
BN_clear_free(rsa->p);
if (rsa->q != NULL)
BN_clear_free(rsa->q);
if (rsa->dmp1 != NULL)
BN_clear_free(rsa->dmp1);
if (rsa->dmq1 != NULL)
BN_clear_free(rsa->dmq1);
if (rsa->iqmp != NULL)
BN_clear_free(rsa->iqmp);
for (u = 0; u < rsa->num_blindings; u++) {
BN_BLINDING_free(rsa->blindings[u]);
}
if (rsa->blindings != NULL)
OPENSSL_free(rsa->blindings);
if (rsa->blindings_inuse != NULL)
OPENSSL_free(rsa->blindings_inuse);
OPENSSL_free(rsa);
}
int RSA_up_ref(RSA *rsa) {
CRYPTO_add(&rsa->references, 1, CRYPTO_LOCK_RSA);
return 1;
}
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb) {
if (rsa->meth->keygen) {
return rsa->meth->keygen(rsa, bits, e_value, cb);
}
return RSA_default_method.keygen(rsa, bits, e_value, cb);
}
int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding) {
if (rsa->meth->encrypt) {
return rsa->meth->encrypt(rsa, out_len, out, max_out, in, in_len, padding);
}
return RSA_default_method.encrypt(rsa, out_len, out, max_out, in, in_len,
padding);
}
int RSA_public_encrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
int padding) {
size_t out_len;
if (!RSA_encrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
return -1;
}
return out_len;
}
int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding) {
if (rsa->meth->sign_raw) {
return rsa->meth->sign_raw(rsa, out_len, out, max_out, in, in_len, padding);
}
return RSA_default_method.sign_raw(rsa, out_len, out, max_out, in, in_len,
padding);
}
int RSA_private_encrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
int padding) {
size_t out_len;
if (!RSA_sign_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
return -1;
}
return out_len;
}
int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding) {
if (rsa->meth->decrypt) {
return rsa->meth->decrypt(rsa, out_len, out, max_out, in, in_len, padding);
}
return RSA_default_method.decrypt(rsa, out_len, out, max_out, in, in_len,
padding);
}
int RSA_private_decrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
int padding) {
size_t out_len;
if (!RSA_decrypt(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
return -1;
}
return out_len;
}
int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding) {
if (rsa->meth->verify_raw) {
return rsa->meth->verify_raw(rsa, out_len, out, max_out, in, in_len, padding);
}
return RSA_default_method.verify_raw(rsa, out_len, out, max_out, in, in_len,
padding);
}
int RSA_public_decrypt(int flen, const uint8_t *from, uint8_t *to, RSA *rsa,
int padding) {
size_t out_len;
if (!RSA_verify_raw(rsa, &out_len, to, RSA_size(rsa), from, flen, padding)) {
return -1;
}
return out_len;
}
unsigned RSA_size(const RSA *rsa) {
if (rsa->meth->size) {
return rsa->meth->size(rsa);
}
return RSA_default_method.size(rsa);
}
int RSA_is_opaque(const RSA *rsa) {
return rsa->meth && (rsa->meth->flags & RSA_FLAG_OPAQUE);
}
int RSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) {
return CRYPTO_get_ex_new_index(CRYPTO_EX_INDEX_RSA, argl, argp, new_func,
dup_func, free_func);
}
int RSA_set_ex_data(RSA *d, int idx, void *arg) {
return CRYPTO_set_ex_data(&d->ex_data, idx, arg);
}
void *RSA_get_ex_data(const RSA *d, int idx) {
return CRYPTO_get_ex_data(&d->ex_data, idx);
}
/* SSL_SIG_LENGTH is the size of an SSL/TLS (prior to TLS 1.2) signature: it's
* the length of an MD5 and SHA1 hash. */
static const unsigned SSL_SIG_LENGTH = 36;
/* pkcs1_sig_prefix contains the ASN.1, DER encoded prefix for a hash that is
* to be signed with PKCS#1. */
struct pkcs1_sig_prefix {
/* nid identifies the hash function. */
int nid;
/* len is the number of bytes of |bytes| which are valid. */
uint8_t len;
/* bytes contains the DER bytes. */
uint8_t bytes[19];
};
/* kPKCS1SigPrefixes contains the ASN.1 prefixes for PKCS#1 signatures with
* different hash functions. */
static const struct pkcs1_sig_prefix kPKCS1SigPrefixes[] = {
{
NID_md5,
18,
{0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
},
{
NID_sha1,
15,
{0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05,
0x00, 0x04, 0x14},
},
{
NID_sha224,
19,
{0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
},
{
NID_sha256,
19,
{0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
},
{
NID_sha384,
19,
{0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
},
{
NID_sha512,
19,
{0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03,
0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
},
{
NID_ripemd160,
14,
{0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31,
0x04, 0x14},
},
{
NID_undef, 0, {0},
},
};
/* TODO(fork): mostly new code, needs careful review. */
/* pkcs1_prefixed_msg builds a PKCS#1, prefixed version of |msg| for the given
* hash function and sets |out_msg| to point to it. On successful return,
* |*out_msg| may be allocated memory and, if so, |*is_alloced| will be 1. */
static int pkcs1_prefixed_msg(uint8_t **out_msg, size_t *out_msg_len,
int *is_alloced, int hash_nid, const uint8_t *msg,
size_t msg_len) {
unsigned i;
const uint8_t* prefix = NULL;
unsigned prefix_len;
uint8_t *signed_msg;
unsigned signed_msg_len;
if (hash_nid == NID_md5_sha1) {
/* Special case: SSL signature, just check the length. */
if (msg_len != SSL_SIG_LENGTH) {
OPENSSL_PUT_ERROR(RSA, RSA_sign, RSA_R_INVALID_MESSAGE_LENGTH);
return 0;
}
*out_msg = (uint8_t*) msg;
*out_msg_len = SSL_SIG_LENGTH;
*is_alloced = 0;
return 1;
}
for (i = 0; kPKCS1SigPrefixes[i].nid != NID_undef; i++) {
const struct pkcs1_sig_prefix *sig_prefix = &kPKCS1SigPrefixes[i];
if (sig_prefix->nid == hash_nid) {
prefix = sig_prefix->bytes;
prefix_len = sig_prefix->len;
break;
}
}
if (prefix == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_sign, RSA_R_UNKNOWN_ALGORITHM_TYPE);
return 0;
}
signed_msg_len = prefix_len + msg_len;
if (signed_msg_len < prefix_len) {
OPENSSL_PUT_ERROR(RSA, RSA_sign, RSA_R_TOO_LONG);
return 0;
}
signed_msg = OPENSSL_malloc(signed_msg_len);
if (!signed_msg) {
OPENSSL_PUT_ERROR(RSA, RSA_sign, ERR_R_MALLOC_FAILURE);
return 0;
}
memcpy(signed_msg, prefix, prefix_len);
memcpy(signed_msg + prefix_len, msg, msg_len);
*out_msg = signed_msg;
*out_msg_len = signed_msg_len;
*is_alloced = 1;
return 1;
}
int RSA_sign(int hash_nid, const uint8_t *in, unsigned in_len, uint8_t *out,
unsigned *out_len, RSA *rsa) {
const unsigned rsa_size = RSA_size(rsa);
int ret = 0;
uint8_t *signed_msg;
size_t signed_msg_len;
int signed_msg_is_alloced = 0;
size_t size_t_out_len;
if (rsa->meth->sign) {
return rsa->meth->sign(hash_nid, in, in_len, out, out_len, rsa);
}
if (!pkcs1_prefixed_msg(&signed_msg, &signed_msg_len, &signed_msg_is_alloced,
hash_nid, in, in_len)) {
return 0;
}
if (rsa_size < RSA_PKCS1_PADDING_SIZE ||
signed_msg_len > rsa_size - RSA_PKCS1_PADDING_SIZE) {
OPENSSL_PUT_ERROR(RSA, RSA_sign, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY);
goto finish;
}
if (RSA_sign_raw(rsa, &size_t_out_len, out, rsa_size, signed_msg,
signed_msg_len, RSA_PKCS1_PADDING)) {
*out_len = size_t_out_len;
ret = 1;
}
finish:
if (signed_msg_is_alloced) {
OPENSSL_free(signed_msg);
}
return ret;
}
int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len,
const uint8_t *sig, size_t sig_len, RSA *rsa) {
const size_t rsa_size = RSA_size(rsa);
uint8_t *buf = NULL;
int ret = 0;
uint8_t *signed_msg = NULL;
size_t signed_msg_len, len;
int signed_msg_is_alloced = 0;
if (rsa->meth->verify) {
return rsa->meth->verify(hash_nid, msg, msg_len, sig, sig_len, rsa);
}
if (sig_len != rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_verify, RSA_R_WRONG_SIGNATURE_LENGTH);
return 0;
}
if (hash_nid == NID_md5_sha1 && msg_len != SSL_SIG_LENGTH) {
OPENSSL_PUT_ERROR(RSA, RSA_verify, RSA_R_INVALID_MESSAGE_LENGTH);
return 0;
}
buf = OPENSSL_malloc(rsa_size);
if (!buf) {
OPENSSL_PUT_ERROR(RSA, RSA_verify, ERR_R_MALLOC_FAILURE);
return 0;
}
if (!RSA_verify_raw(rsa, &len, buf, rsa_size, sig, sig_len,
RSA_PKCS1_PADDING)) {
goto out;
}
if (!pkcs1_prefixed_msg(&signed_msg, &signed_msg_len, &signed_msg_is_alloced,
hash_nid, msg, msg_len)) {
goto out;
}
if (len != signed_msg_len || CRYPTO_memcmp(buf, signed_msg, len) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_verify, RSA_R_BAD_SIGNATURE);
goto out;
}
ret = 1;
out:
if (buf != NULL) {
OPENSSL_free(buf);
}
if (signed_msg_is_alloced) {
OPENSSL_free(signed_msg);
}
return ret;
}
static void bn_free_and_null(BIGNUM **bn) {
if (*bn == NULL) {
return;
}
BN_free(*bn);
*bn = NULL;
}
int RSA_check_key(const RSA *key) {
BIGNUM n, pm1, qm1, lcm, gcd, de, dmp1, dmq1, iqmp;
BN_CTX *ctx;
int ok = 0, has_crt_values;
if (RSA_is_opaque(key)) {
/* Opaque keys can't be checked. */
return 1;
}
if ((key->p != NULL) != (key->q != NULL)) {
OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_ONLY_ONE_OF_P_Q_GIVEN);
return 0;
}
if (!key->n || !key->e) {
OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_VALUE_MISSING);
return 0;
}
if (!key->d || !key->p) {
/* For a public key, or without p and q, there's nothing that can be
* checked. */
return 1;
}
ctx = BN_CTX_new();
if (ctx == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_check_key, ERR_R_MALLOC_FAILURE);
return 0;
}
BN_init(&n);
BN_init(&pm1);
BN_init(&qm1);
BN_init(&lcm);
BN_init(&gcd);
BN_init(&de);
BN_init(&dmp1);
BN_init(&dmq1);
BN_init(&iqmp);
if (/* n = pq */
!BN_mul(&n, key->p, key->q, ctx) ||
/* lcm = lcm(p-1, q-1) */
!BN_sub(&pm1, key->p, BN_value_one()) ||
!BN_sub(&qm1, key->q, BN_value_one()) ||
!BN_mul(&lcm, &pm1, &qm1, ctx) ||
!BN_gcd(&gcd, &pm1, &qm1, ctx) ||
!BN_div(&lcm, NULL, &lcm, &gcd, ctx) ||
/* de = d*e mod lcm(p-1, q-1) */
!BN_mod_mul(&de, key->d, key->e, &lcm, ctx)) {
OPENSSL_PUT_ERROR(RSA, RSA_check_key, ERR_LIB_BN);
goto out;
}
if (BN_cmp(&n, key->n) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_N_NOT_EQUAL_P_Q);
goto out;
}
if (!BN_is_one(&de)) {
OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_D_E_NOT_CONGRUENT_TO_1);
goto out;
}
has_crt_values = key->dmp1 != NULL;
if (has_crt_values != (key->dmq1 != NULL) ||
has_crt_values != (key->iqmp != NULL)) {
OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_INCONSISTENT_SET_OF_CRT_VALUES);
goto out;
}
if (has_crt_values) {
if (/* dmp1 = d mod (p-1) */
!BN_mod(&dmp1, key->d, &pm1, ctx) ||
/* dmq1 = d mod (q-1) */
!BN_mod(&dmq1, key->d, &qm1, ctx) ||
/* iqmp = q^-1 mod p */
!BN_mod_inverse(&iqmp, key->q, key->p, ctx)) {
OPENSSL_PUT_ERROR(RSA, RSA_check_key, ERR_LIB_BN);
goto out;
}
if (BN_cmp(&dmp1, key->dmp1) != 0 ||
BN_cmp(&dmq1, key->dmq1) != 0 ||
BN_cmp(&iqmp, key->iqmp) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_check_key, RSA_R_CRT_VALUES_INCORRECT);
goto out;
}
}
ok = 1;
out:
BN_free(&n);
BN_free(&pm1);
BN_free(&qm1);
BN_free(&lcm);
BN_free(&gcd);
BN_free(&de);
BN_free(&dmp1);
BN_free(&dmq1);
BN_free(&iqmp);
BN_CTX_free(ctx);
return ok;
}
int RSA_recover_crt_params(RSA *rsa) {
BN_CTX *ctx;
BIGNUM *totient, *rem, *multiple, *p_plus_q, *p_minus_q;
int ok = 0;
if (rsa->n == NULL || rsa->e == NULL || rsa->d == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, RSA_R_EMPTY_PUBLIC_KEY);
return 0;
}
if (rsa->p || rsa->q || rsa->dmp1 || rsa->dmq1 || rsa->iqmp) {
OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params,
RSA_R_CRT_PARAMS_ALREADY_GIVEN);
return 0;
}
/* This uses the algorithm from section 9B of the RSA paper:
* http://people.csail.mit.edu/rivest/Rsapaper.pdf */
ctx = BN_CTX_new();
if (ctx == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_MALLOC_FAILURE);
return 0;
}
BN_CTX_start(ctx);
totient = BN_CTX_get(ctx);
rem = BN_CTX_get(ctx);
multiple = BN_CTX_get(ctx);
p_plus_q = BN_CTX_get(ctx);
p_minus_q = BN_CTX_get(ctx);
if (totient == NULL || rem == NULL || multiple == NULL || p_plus_q == NULL ||
p_minus_q == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_MALLOC_FAILURE);
goto err;
}
/* ed-1 is a small multiple of φ(n). */
if (!BN_mul(totient, rsa->e, rsa->d, ctx) ||
!BN_sub_word(totient, 1) ||
/* φ(n) =
* pq - p - q + 1 =
* n - (p + q) + 1
*
* Thus n is a reasonable estimate for φ(n). So, (ed-1)/n will be very
* close. But, when we calculate the quotient, we'll be truncating it
* because we discard the remainder. Thus (ed-1)/multiple will be >= n,
* which the totient cannot be. So we add one to the estimate.
*
* Consider ed-1 as:
*
* multiple * (n - (p+q) + 1) =
* multiple*n - multiple*(p+q) + multiple
*
* When we divide by n, the first term becomes multiple and, since
* multiple and p+q is tiny compared to n, the second and third terms can
* be ignored. Thus I claim that subtracting one from the estimate is
* sufficient. */
!BN_div(multiple, NULL, totient, rsa->n, ctx) ||
!BN_add_word(multiple, 1) ||
!BN_div(totient, rem, totient, multiple, ctx)) {
OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_BN_LIB);
goto err;
}
if (!BN_is_zero(rem)) {
OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, RSA_R_BAD_RSA_PARAMETERS);
goto err;
}
rsa->p = BN_new();
rsa->q = BN_new();
rsa->dmp1 = BN_new();
rsa->dmq1 = BN_new();
rsa->iqmp = BN_new();
if (rsa->p == NULL || rsa->q == NULL || rsa->dmp1 == NULL || rsa->dmq1 ==
NULL || rsa->iqmp == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_MALLOC_FAILURE);
goto err;
}
/* φ(n) = n - (p + q) + 1 =>
* n - totient + 1 = p + q */
if (!BN_sub(p_plus_q, rsa->n, totient) ||
!BN_add_word(p_plus_q, 1) ||
/* p - q = sqrt((p+q)^2 - 4n) */
!BN_sqr(rem, p_plus_q, ctx) ||
!BN_lshift(multiple, rsa->n, 2) ||
!BN_sub(rem, rem, multiple) ||
!BN_sqrt(p_minus_q, rem, ctx) ||
/* q is 1/2 (p+q)-(p-q) */
!BN_sub(rsa->q, p_plus_q, p_minus_q) ||
!BN_rshift1(rsa->q, rsa->q) ||
!BN_div(rsa->p, NULL, rsa->n, rsa->q, ctx) ||
!BN_mul(multiple, rsa->p, rsa->q, ctx)) {
OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_BN_LIB);
goto err;
}
if (BN_cmp(multiple, rsa->n) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, RSA_R_INTERNAL_ERROR);
goto err;
}
if (!BN_sub(rem, rsa->p, BN_value_one()) ||
!BN_mod(rsa->dmp1, rsa->d, rem, ctx) ||
!BN_sub(rem, rsa->q, BN_value_one()) ||
!BN_mod(rsa->dmq1, rsa->d, rem, ctx) ||
!BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx)) {
OPENSSL_PUT_ERROR(RSA, RSA_recover_crt_params, ERR_R_BN_LIB);
goto err;
}
ok = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
if (!ok) {
bn_free_and_null(&rsa->p);
bn_free_and_null(&rsa->q);
bn_free_and_null(&rsa->dmp1);
bn_free_and_null(&rsa->dmq1);
bn_free_and_null(&rsa->iqmp);
}
return ok;
}
int RSA_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
size_t len) {
if (rsa->meth->private_transform) {
return rsa->meth->private_transform(rsa, out, in, len);
}
return RSA_default_method.private_transform(rsa, out, in, len);
}