boringssl/ssl/s3_clnt.c
David Benjamin 688d8dfe48 Remove psk_identity_hint from SSL_SESSION.
There's not much point in retaining the identity hint in the SSL_SESSION. This
avoids the complexity around setting psk_identity hint on either the SSL or the
SSL_SESSION. Introduce a peer_psk_identity_hint for the client to store the one
received from the server.

This changes the semantics of SSL_get_psk_identity_hint; it now only returns
the value configured for the server. The client learns the hint through the
callback. This is compatible with the one use of this API in conscrypt (it
pulls the hint back out to pass to a callback).

Change-Id: I6d9131636b47f13ac5800b4451436a057021054a
Reviewed-on: https://boringssl-review.googlesource.com/2213
Reviewed-by: Adam Langley <agl@google.com>
2014-11-10 23:59:47 +00:00

2673 lines
71 KiB
C

/* ssl/s3_clnt.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* ECC cipher suite support in OpenSSL originally written by
* Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories.
*
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#include <stdio.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/rand.h>
#include <openssl/obj.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/md5.h>
#include <openssl/dh.h>
#include <openssl/bn.h>
#include <openssl/engine.h>
#include <openssl/x509.h>
#include "ssl_locl.h"
#include "../crypto/dh/internal.h"
static const SSL_METHOD *ssl3_get_client_method(int ver)
{
switch (ver)
{
case TLS1_2_VERSION:
return TLSv1_2_client_method();
case TLS1_1_VERSION:
return TLSv1_1_client_method();
case TLS1_VERSION:
return TLSv1_client_method();
case SSL3_VERSION:
return SSLv3_client_method();
default:
return NULL;
}
}
IMPLEMENT_tls_meth_func(TLS1_2_VERSION, TLSv1_2_client_method,
ssl_undefined_function,
ssl3_connect,
ssl3_get_client_method,
TLSv1_2_enc_data)
IMPLEMENT_tls_meth_func(TLS1_1_VERSION, TLSv1_1_client_method,
ssl_undefined_function,
ssl3_connect,
ssl3_get_client_method,
TLSv1_1_enc_data)
IMPLEMENT_tls_meth_func(TLS1_VERSION, TLSv1_client_method,
ssl_undefined_function,
ssl3_connect,
ssl3_get_client_method,
TLSv1_enc_data)
IMPLEMENT_tls_meth_func(SSL3_VERSION, SSLv3_client_method,
ssl_undefined_function,
ssl3_connect,
ssl3_get_client_method,
SSLv3_enc_data)
int ssl3_connect(SSL *s)
{
BUF_MEM *buf=NULL;
void (*cb)(const SSL *ssl,int type,int val)=NULL;
int ret= -1;
int new_state,state,skip=0;
ERR_clear_error();
ERR_clear_system_error();
if (s->info_callback != NULL)
cb=s->info_callback;
else if (s->ctx->info_callback != NULL)
cb=s->ctx->info_callback;
s->in_handshake++;
if (!SSL_in_init(s) || SSL_in_before(s)) SSL_clear(s);
for (;;)
{
state=s->state;
switch(s->state)
{
case SSL_ST_RENEGOTIATE:
s->renegotiate=1;
s->state=SSL_ST_CONNECT;
s->ctx->stats.sess_connect_renegotiate++;
/* break */
case SSL_ST_BEFORE:
case SSL_ST_CONNECT:
case SSL_ST_BEFORE|SSL_ST_CONNECT:
case SSL_ST_OK|SSL_ST_CONNECT:
s->server=0;
if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1);
if ((s->version & 0xff00 ) != 0x0300)
{
OPENSSL_PUT_ERROR(SSL, ssl3_connect, ERR_R_INTERNAL_ERROR);
ret = -1;
goto end;
}
/* s->version=SSL3_VERSION; */
s->type=SSL_ST_CONNECT;
if (s->init_buf == NULL)
{
if ((buf=BUF_MEM_new()) == NULL)
{
ret= -1;
goto end;
}
if (!BUF_MEM_grow(buf,SSL3_RT_MAX_PLAIN_LENGTH))
{
ret= -1;
goto end;
}
s->init_buf=buf;
buf=NULL;
}
if (!ssl3_setup_buffers(s)) { ret= -1; goto end; }
/* setup buffing BIO */
if (!ssl_init_wbio_buffer(s,0)) { ret= -1; goto end; }
/* don't push the buffering BIO quite yet */
ssl3_init_finished_mac(s);
s->state=SSL3_ST_CW_CLNT_HELLO_A;
s->ctx->stats.sess_connect++;
s->init_num=0;
break;
case SSL3_ST_CW_CLNT_HELLO_A:
case SSL3_ST_CW_CLNT_HELLO_B:
s->shutdown=0;
ret=ssl3_send_client_hello(s);
if (ret <= 0) goto end;
s->state=SSL3_ST_CR_SRVR_HELLO_A;
s->init_num=0;
/* turn on buffering for the next lot of output */
if (s->bbio != s->wbio)
s->wbio=BIO_push(s->bbio,s->wbio);
break;
case SSL3_ST_CR_SRVR_HELLO_A:
case SSL3_ST_CR_SRVR_HELLO_B:
ret=ssl3_get_server_hello(s);
if (ret <= 0) goto end;
if (s->hit)
{
s->state=SSL3_ST_CR_CHANGE;
if (s->tlsext_ticket_expected)
{
/* receive renewed session ticket */
s->state=SSL3_ST_CR_SESSION_TICKET_A;
}
}
else
{
s->state=SSL3_ST_CR_CERT_A;
}
s->init_num=0;
break;
case SSL3_ST_CR_CERT_A:
case SSL3_ST_CR_CERT_B:
if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher))
{
ret=ssl3_get_server_certificate(s);
if (ret <= 0) goto end;
if (s->s3->tmp.certificate_status_expected)
s->state=SSL3_ST_CR_CERT_STATUS_A;
else
s->state=SSL3_ST_CR_KEY_EXCH_A;
}
else
{
skip = 1;
s->state=SSL3_ST_CR_KEY_EXCH_A;
}
s->init_num=0;
break;
case SSL3_ST_CR_KEY_EXCH_A:
case SSL3_ST_CR_KEY_EXCH_B:
ret=ssl3_get_server_key_exchange(s);
if (ret <= 0) goto end;
s->state=SSL3_ST_CR_CERT_REQ_A;
s->init_num=0;
/* at this point we check that we have the
* required stuff from the server */
if (!ssl3_check_cert_and_algorithm(s))
{
ret= -1;
goto end;
}
break;
case SSL3_ST_CR_CERT_REQ_A:
case SSL3_ST_CR_CERT_REQ_B:
ret=ssl3_get_certificate_request(s);
if (ret <= 0) goto end;
s->state=SSL3_ST_CR_SRVR_DONE_A;
s->init_num=0;
break;
case SSL3_ST_CR_SRVR_DONE_A:
case SSL3_ST_CR_SRVR_DONE_B:
ret=ssl3_get_server_done(s);
if (ret <= 0) goto end;
if (s->s3->tmp.cert_req)
s->state=SSL3_ST_CW_CERT_A;
else
s->state=SSL3_ST_CW_KEY_EXCH_A;
s->init_num=0;
break;
case SSL3_ST_CW_CERT_A:
case SSL3_ST_CW_CERT_B:
case SSL3_ST_CW_CERT_C:
case SSL3_ST_CW_CERT_D:
ret=ssl3_send_client_certificate(s);
if (ret <= 0) goto end;
s->state=SSL3_ST_CW_KEY_EXCH_A;
s->init_num=0;
break;
case SSL3_ST_CW_KEY_EXCH_A:
case SSL3_ST_CW_KEY_EXCH_B:
ret=ssl3_send_client_key_exchange(s);
if (ret <= 0) goto end;
/* For TLS, cert_req is set to 2, so a cert chain
* of nothing is sent, but no verify packet is sent */
if (s->s3->tmp.cert_req == 1)
{
s->state=SSL3_ST_CW_CERT_VRFY_A;
}
else
{
s->state=SSL3_ST_CW_CHANGE_A;
s->s3->change_cipher_spec=0;
}
s->init_num=0;
break;
case SSL3_ST_CW_CERT_VRFY_A:
case SSL3_ST_CW_CERT_VRFY_B:
ret=ssl3_send_cert_verify(s);
if (ret <= 0) goto end;
s->state=SSL3_ST_CW_CHANGE_A;
s->init_num=0;
s->s3->change_cipher_spec=0;
break;
case SSL3_ST_CW_CHANGE_A:
case SSL3_ST_CW_CHANGE_B:
ret=ssl3_send_change_cipher_spec(s,
SSL3_ST_CW_CHANGE_A,SSL3_ST_CW_CHANGE_B);
if (ret <= 0) goto end;
s->state=SSL3_ST_CW_FINISHED_A;
if (s->s3->tlsext_channel_id_valid)
s->state=SSL3_ST_CW_CHANNEL_ID_A;
if (s->s3->next_proto_neg_seen)
s->state=SSL3_ST_CW_NEXT_PROTO_A;
s->init_num=0;
s->session->cipher=s->s3->tmp.new_cipher;
if (!s->method->ssl3_enc->setup_key_block(s))
{
ret= -1;
goto end;
}
if (!s->method->ssl3_enc->change_cipher_state(s,
SSL3_CHANGE_CIPHER_CLIENT_WRITE))
{
ret= -1;
goto end;
}
break;
case SSL3_ST_CW_NEXT_PROTO_A:
case SSL3_ST_CW_NEXT_PROTO_B:
ret=ssl3_send_next_proto(s);
if (ret <= 0) goto end;
if (s->s3->tlsext_channel_id_valid)
s->state=SSL3_ST_CW_CHANNEL_ID_A;
else
s->state=SSL3_ST_CW_FINISHED_A;
break;
case SSL3_ST_CW_CHANNEL_ID_A:
case SSL3_ST_CW_CHANNEL_ID_B:
ret=ssl3_send_channel_id(s);
if (ret <= 0) goto end;
s->state=SSL3_ST_CW_FINISHED_A;
break;
case SSL3_ST_CW_FINISHED_A:
case SSL3_ST_CW_FINISHED_B:
ret=ssl3_send_finished(s,
SSL3_ST_CW_FINISHED_A,SSL3_ST_CW_FINISHED_B,
s->method->ssl3_enc->client_finished_label,
s->method->ssl3_enc->client_finished_label_len);
if (ret <= 0) goto end;
s->state=SSL3_ST_CW_FLUSH;
if (s->hit)
{
s->s3->tmp.next_state=SSL_ST_OK;
}
else
{
/* This is a non-resumption handshake. If it
* involves ChannelID, then record the
* handshake hashes at this point in the
* session so that any resumption of this
* session with ChannelID can sign those
* hashes. */
if (s->s3->tlsext_channel_id_new)
{
ret = tls1_record_handshake_hashes_for_channel_id(s);
if (ret <= 0)
goto end;
}
if ((SSL_get_mode(s) & SSL_MODE_HANDSHAKE_CUTTHROUGH)
&& ssl3_can_cutthrough(s)
&& s->s3->previous_server_finished_len == 0 /* no cutthrough on renegotiation (would complicate the state machine) */
)
{
s->s3->tmp.next_state=SSL3_ST_CUTTHROUGH_COMPLETE;
}
else
{
/* Allow NewSessionTicket if ticket expected */
if (s->tlsext_ticket_expected)
s->s3->tmp.next_state=SSL3_ST_CR_SESSION_TICKET_A;
else
s->s3->tmp.next_state=SSL3_ST_CR_CHANGE;
}
}
s->init_num=0;
break;
case SSL3_ST_CR_SESSION_TICKET_A:
case SSL3_ST_CR_SESSION_TICKET_B:
ret=ssl3_get_new_session_ticket(s);
if (ret <= 0) goto end;
s->state=SSL3_ST_CR_CHANGE;
s->init_num=0;
break;
case SSL3_ST_CR_CERT_STATUS_A:
case SSL3_ST_CR_CERT_STATUS_B:
ret=ssl3_get_cert_status(s);
if (ret <= 0) goto end;
s->state=SSL3_ST_CR_KEY_EXCH_A;
s->init_num=0;
break;
case SSL3_ST_CR_CHANGE:
/* At this point, the next message must be entirely
* behind a ChangeCipherSpec. */
if (!ssl3_expect_change_cipher_spec(s))
{
ret = -1;
goto end;
}
s->state = SSL3_ST_CR_FINISHED_A;
break;
case SSL3_ST_CR_FINISHED_A:
case SSL3_ST_CR_FINISHED_B:
ret=ssl3_get_finished(s,SSL3_ST_CR_FINISHED_A,
SSL3_ST_CR_FINISHED_B);
if (ret <= 0) goto end;
if (s->hit)
s->state=SSL3_ST_CW_CHANGE_A;
else
s->state=SSL_ST_OK;
s->init_num=0;
break;
case SSL3_ST_CW_FLUSH:
s->rwstate=SSL_WRITING;
if (BIO_flush(s->wbio) <= 0)
{
ret= -1;
goto end;
}
s->rwstate=SSL_NOTHING;
s->state=s->s3->tmp.next_state;
break;
case SSL3_ST_CUTTHROUGH_COMPLETE:
/* Allow NewSessionTicket if ticket expected */
if (s->tlsext_ticket_expected)
s->state=SSL3_ST_CR_SESSION_TICKET_A;
else
s->state=SSL3_ST_CR_CHANGE;
ssl_free_wbio_buffer(s);
ret = 1;
goto end;
/* break; */
case SSL_ST_OK:
/* clean a few things up */
ssl3_cleanup_key_block(s);
if (s->init_buf != NULL)
{
BUF_MEM_free(s->init_buf);
s->init_buf=NULL;
}
/* Remove write buffering now. */
ssl_free_wbio_buffer(s);
s->init_num=0;
s->renegotiate=0;
s->new_session=0;
ssl_update_cache(s,SSL_SESS_CACHE_CLIENT);
if (s->hit) s->ctx->stats.sess_hit++;
ret=1;
/* s->server=0; */
s->handshake_func=ssl3_connect;
s->ctx->stats.sess_connect_good++;
if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_DONE,1);
goto end;
/* break; */
default:
OPENSSL_PUT_ERROR(SSL, ssl3_connect, SSL_R_UNKNOWN_STATE);
ret= -1;
goto end;
/* break; */
}
/* did we do anything */
if (!s->s3->tmp.reuse_message && !skip)
{
if (s->debug)
{
if ((ret=BIO_flush(s->wbio)) <= 0)
goto end;
}
if ((cb != NULL) && (s->state != state))
{
new_state=s->state;
s->state=state;
cb(s,SSL_CB_CONNECT_LOOP,1);
s->state=new_state;
}
}
skip=0;
}
end:
s->in_handshake--;
if (buf != NULL)
BUF_MEM_free(buf);
if (cb != NULL)
cb(s,SSL_CB_CONNECT_EXIT,ret);
return(ret);
}
int ssl3_send_client_hello(SSL *s)
{
unsigned char *buf;
unsigned char *p,*d;
int i;
unsigned long l;
buf=(unsigned char *)s->init_buf->data;
if (s->state == SSL3_ST_CW_CLNT_HELLO_A)
{
SSL_SESSION *sess = s->session;
if (sess == NULL ||
sess->ssl_version != s->version ||
!sess->session_id_length ||
sess->not_resumable)
{
if (!ssl_get_new_session(s,0))
goto err;
}
if (s->method->version == DTLS_ANY_VERSION)
{
/* Determine which DTLS version to use */
int options = s->options;
/* If DTLS 1.2 disabled correct the version number */
if (options & SSL_OP_NO_DTLSv1_2)
{
/* Disabling all versions is silly: return an
* error.
*/
if (options & SSL_OP_NO_DTLSv1)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, SSL_R_WRONG_SSL_VERSION);
goto err;
}
/* Update method so we don't use any DTLS 1.2
* features.
*/
s->method = DTLSv1_client_method();
s->version = DTLS1_VERSION;
}
else
{
/* We only support one version: update method */
if (options & SSL_OP_NO_DTLSv1)
s->method = DTLSv1_2_client_method();
s->version = DTLS1_2_VERSION;
}
s->client_version = s->version;
}
/* else use the pre-loaded session */
p=s->s3->client_random;
/* If resending the ClientHello in DTLS after a
* HelloVerifyRequest, don't renegerate the client_random. The
* random must be reused. */
if (!SSL_IS_DTLS(s) || !s->d1->send_cookie)
{
ssl_fill_hello_random(s, 0, p,
sizeof(s->s3->client_random));
}
/* Do the message type and length last.
* Note: the final argument to ssl_add_clienthello_tlsext below
* depends on the size of this prefix. */
d=p= ssl_handshake_start(s);
/* version indicates the negotiated version: for example from
* an SSLv2/v3 compatible client hello). The client_version
* field is the maximum version we permit and it is also
* used in RSA encrypted premaster secrets. Some servers can
* choke if we initially report a higher version then
* renegotiate to a lower one in the premaster secret. This
* didn't happen with TLS 1.0 as most servers supported it
* but it can with TLS 1.1 or later if the server only supports
* 1.0.
*
* Possible scenario with previous logic:
* 1. Client hello indicates TLS 1.2
* 2. Server hello says TLS 1.0
* 3. RSA encrypted premaster secret uses 1.2.
* 4. Handhaked proceeds using TLS 1.0.
* 5. Server sends hello request to renegotiate.
* 6. Client hello indicates TLS v1.0 as we now
* know that is maximum server supports.
* 7. Server chokes on RSA encrypted premaster secret
* containing version 1.0.
*
* For interoperability it should be OK to always use the
* maximum version we support in client hello and then rely
* on the checking of version to ensure the servers isn't
* being inconsistent: for example initially negotiating with
* TLS 1.0 and renegotiating with TLS 1.2. We do this by using
* client_version in client hello and not resetting it to
* the negotiated version.
*/
#if 0
*(p++)=s->version>>8;
*(p++)=s->version&0xff;
s->client_version=s->version;
#else
*(p++)=s->client_version>>8;
*(p++)=s->client_version&0xff;
#endif
/* Random stuff */
memcpy(p,s->s3->client_random,SSL3_RANDOM_SIZE);
p+=SSL3_RANDOM_SIZE;
/* Session ID */
if (s->new_session)
i=0;
else
i=s->session->session_id_length;
*(p++)=i;
if (i != 0)
{
if (i > (int)sizeof(s->session->session_id))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, ERR_R_INTERNAL_ERROR);
goto err;
}
memcpy(p,s->session->session_id,i);
p+=i;
}
/* cookie stuff for DTLS */
if (SSL_IS_DTLS(s))
{
if ( s->d1->cookie_len > sizeof(s->d1->cookie))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, ERR_R_INTERNAL_ERROR);
goto err;
}
*(p++) = s->d1->cookie_len;
memcpy(p, s->d1->cookie, s->d1->cookie_len);
p += s->d1->cookie_len;
}
/* Ciphers supported */
i = ssl_cipher_list_to_bytes(s, SSL_get_ciphers(s), &p[2]);
if (i == 0)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, SSL_R_NO_CIPHERS_AVAILABLE);
goto err;
}
s2n(i,p);
p+=i;
/* COMPRESSION */
*(p++)=1;
*(p++)=0; /* Add the NULL method */
/* TLS extensions*/
if (ssl_prepare_clienthello_tlsext(s) <= 0)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, SSL_R_CLIENTHELLO_TLSEXT);
goto err;
}
if ((p = ssl_add_clienthello_tlsext(s, p, buf+SSL3_RT_MAX_PLAIN_LENGTH, p-buf)) == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_hello, ERR_R_INTERNAL_ERROR);
goto err;
}
l= p-d;
ssl_set_handshake_header(s, SSL3_MT_CLIENT_HELLO, l);
s->state=SSL3_ST_CW_CLNT_HELLO_B;
}
/* SSL3_ST_CW_CLNT_HELLO_B */
return ssl_do_write(s);
err:
return(-1);
}
int ssl3_get_server_hello(SSL *s)
{
STACK_OF(SSL_CIPHER) *sk;
const SSL_CIPHER *c;
CERT *ct = s->cert;
int al=SSL_AD_INTERNAL_ERROR,ok;
long n;
CBS server_hello, server_random, session_id;
uint16_t server_version, cipher_suite;
uint8_t compression_method;
unsigned long mask_ssl;
n=s->method->ssl_get_message(s,
SSL3_ST_CR_SRVR_HELLO_A,
SSL3_ST_CR_SRVR_HELLO_B,
SSL3_MT_SERVER_HELLO,
20000, /* ?? */
SSL_GET_MESSAGE_HASH_MESSAGE,
&ok);
if (!ok) return((int)n);
CBS_init(&server_hello, s->init_msg, n);
if (!CBS_get_u16(&server_hello, &server_version) ||
!CBS_get_bytes(&server_hello, &server_random, SSL3_RANDOM_SIZE) ||
!CBS_get_u8_length_prefixed(&server_hello, &session_id) ||
CBS_len(&session_id) > SSL3_SESSION_ID_SIZE ||
!CBS_get_u16(&server_hello, &cipher_suite) ||
!CBS_get_u8(&server_hello, &compression_method))
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_DECODE_ERROR);
goto f_err;
}
if (s->method->version == DTLS_ANY_VERSION)
{
/* Work out correct protocol version to use */
int options = s->options;
if (server_version == DTLS1_2_VERSION
&& !(options & SSL_OP_NO_DTLSv1_2))
s->method = DTLSv1_2_client_method();
else if (server_version == DTLS1_VERSION
&& !(options & SSL_OP_NO_DTLSv1))
s->method = DTLSv1_client_method();
else
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_WRONG_SSL_VERSION);
s->version = server_version;
al = SSL_AD_PROTOCOL_VERSION;
goto f_err;
}
s->version = s->client_version = s->method->version;
}
if (server_version != s->version)
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_WRONG_SSL_VERSION);
s->version = (s->version & 0xff00) | (server_version & 0xff);
al = SSL_AD_PROTOCOL_VERSION;
goto f_err;
}
/* Copy over the server random. */
memcpy(s->s3->server_random, CBS_data(&server_random), SSL3_RANDOM_SIZE);
s->hit = 0;
/* check if we want to resume the session based on external pre-shared secret */
if (s->version >= TLS1_VERSION && s->tls_session_secret_cb)
{
const SSL_CIPHER *pref_cipher=NULL;
s->session->master_key_length=sizeof(s->session->master_key);
if (s->tls_session_secret_cb(s, s->session->master_key,
&s->session->master_key_length,
NULL, &pref_cipher,
s->tls_session_secret_cb_arg))
{
s->session->cipher = pref_cipher ?
pref_cipher :
ssl3_get_cipher_by_value(cipher_suite);
s->hit = 1;
}
}
if (!s->hit && CBS_len(&session_id) != 0 &&
CBS_mem_equal(&session_id,
s->session->session_id, s->session->session_id_length))
{
if(s->sid_ctx_length != s->session->sid_ctx_length
|| memcmp(s->session->sid_ctx, s->sid_ctx, s->sid_ctx_length))
{
/* actually a client application bug */
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT);
goto f_err;
}
s->hit = 1;
}
/* a miss or crap from the other end */
if (!s->hit)
{
/* If we were trying for session-id reuse, make a new
* SSL_SESSION so we don't stuff up other people */
if (s->session->session_id_length > 0)
{
if (!ssl_get_new_session(s,0))
{
goto f_err;
}
}
/* Note: session_id could be empty. */
s->session->session_id_length = CBS_len(&session_id);
memcpy(s->session->session_id, CBS_data(&session_id), CBS_len(&session_id));
}
c = ssl3_get_cipher_by_value(cipher_suite);
if (c == NULL)
{
/* unknown cipher */
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_UNKNOWN_CIPHER_RETURNED);
goto f_err;
}
/* ct->mask_ssl was computed from client capabilities. Now
* that the final version is known, compute a new mask_ssl. */
if (!SSL_USE_TLS1_2_CIPHERS(s))
mask_ssl = SSL_TLSV1_2;
else
mask_ssl = 0;
/* If it is a disabled cipher we didn't send it in client hello,
* so return an error.
*/
if (c->algorithm_ssl & mask_ssl ||
c->algorithm_mkey & ct->mask_k ||
c->algorithm_auth & ct->mask_a)
{
al=SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_WRONG_CIPHER_RETURNED);
goto f_err;
}
sk=ssl_get_ciphers_by_id(s);
if (!sk_SSL_CIPHER_find(sk, NULL, c))
{
/* we did not say we would use this cipher */
al=SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_WRONG_CIPHER_RETURNED);
goto f_err;
}
/* Depending on the session caching (internal/external), the cipher
and/or cipher_id values may not be set. Make sure that
cipher_id is set and use it for comparison. */
if (s->session->cipher)
s->session->cipher_id = s->session->cipher->id;
if (s->hit && (s->session->cipher_id != c->id))
{
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_OLD_SESSION_CIPHER_NOT_RETURNED);
goto f_err;
}
s->s3->tmp.new_cipher=c;
/* Don't digest cached records if no sigalgs: we may need them for
* client authentication.
*/
if (!SSL_USE_SIGALGS(s) && !ssl3_digest_cached_records(s, free_handshake_buffer))
goto f_err;
/* Only the NULL compression algorithm is supported. */
if (compression_method != 0)
{
al = SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_UNSUPPORTED_COMPRESSION_ALGORITHM);
goto f_err;
}
/* TLS extensions */
if (!ssl_parse_serverhello_tlsext(s, &server_hello))
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_PARSE_TLSEXT);
goto err;
}
/* There should be nothing left over in the record. */
if (CBS_len(&server_hello) != 0)
{
/* wrong packet length */
al=SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_hello, SSL_R_BAD_PACKET_LENGTH);
goto f_err;
}
return(1);
f_err:
ssl3_send_alert(s,SSL3_AL_FATAL,al);
err:
return(-1);
}
int ssl3_get_server_certificate(SSL *s)
{
int al,i,ok,ret= -1;
unsigned long n;
X509 *x=NULL;
STACK_OF(X509) *sk=NULL;
SESS_CERT *sc;
EVP_PKEY *pkey=NULL;
CBS cbs, certificate_list;
const uint8_t* data;
n=s->method->ssl_get_message(s,
SSL3_ST_CR_CERT_A,
SSL3_ST_CR_CERT_B,
SSL3_MT_CERTIFICATE,
s->max_cert_list,
SSL_GET_MESSAGE_HASH_MESSAGE,
&ok);
if (!ok) return((int)n);
CBS_init(&cbs, s->init_msg, n);
if ((sk=sk_X509_new_null()) == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!CBS_get_u24_length_prefixed(&cbs, &certificate_list) ||
CBS_len(&cbs) != 0)
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
while (CBS_len(&certificate_list) > 0)
{
CBS certificate;
if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate))
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_CERT_LENGTH_MISMATCH);
goto f_err;
}
data = CBS_data(&certificate);
x = d2i_X509(NULL, &data, CBS_len(&certificate));
if (x == NULL)
{
al=SSL_AD_BAD_CERTIFICATE;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, ERR_R_ASN1_LIB);
goto f_err;
}
if (!CBS_skip(&certificate, data - CBS_data(&certificate)))
{
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, ERR_R_INTERNAL_ERROR);
goto f_err;
}
if (CBS_len(&certificate) != 0)
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_CERT_LENGTH_MISMATCH);
goto f_err;
}
if (!sk_X509_push(sk,x))
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, ERR_R_MALLOC_FAILURE);
goto err;
}
x=NULL;
}
i=ssl_verify_cert_chain(s,sk);
if ((s->verify_mode != SSL_VERIFY_NONE) && (i <= 0)
)
{
al=ssl_verify_alarm_type(s->verify_result);
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_CERTIFICATE_VERIFY_FAILED);
goto f_err;
}
ERR_clear_error(); /* but we keep s->verify_result */
sc=ssl_sess_cert_new();
if (sc == NULL) goto err;
if (s->session->sess_cert) ssl_sess_cert_free(s->session->sess_cert);
s->session->sess_cert=sc;
sc->cert_chain=sk;
/* Inconsistency alert: cert_chain does include the peer's
* certificate, which we don't include in s3_srvr.c */
x=sk_X509_value(sk,0);
sk=NULL;
/* VRS 19990621: possible memory leak; sk=null ==> !sk_pop_free() @end*/
pkey=X509_get_pubkey(x);
if ((pkey == NULL) || EVP_PKEY_missing_parameters(pkey))
{
x=NULL;
al=SSL3_AL_FATAL;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_UNABLE_TO_FIND_PUBLIC_KEY_PARAMETERS);
goto f_err;
}
i=ssl_cert_type(x,pkey);
if (i < 0)
{
x=NULL;
al=SSL3_AL_FATAL;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
goto f_err;
}
int exp_idx = ssl_cipher_get_cert_index(s->s3->tmp.new_cipher);
if (exp_idx >= 0 && i != exp_idx)
{
x=NULL;
al=SSL_AD_ILLEGAL_PARAMETER;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, SSL_R_WRONG_CERTIFICATE_TYPE);
goto f_err;
}
sc->peer_cert_type=i;
/* Why would the following ever happen?
* We just created sc a couple of lines ago. */
if (sc->peer_pkeys[i].x509 != NULL)
X509_free(sc->peer_pkeys[i].x509);
sc->peer_pkeys[i].x509 = X509_up_ref(x);
sc->peer_key = &(sc->peer_pkeys[i]);
if (s->session->peer != NULL)
X509_free(s->session->peer);
s->session->peer = X509_up_ref(x);
s->session->verify_result = s->verify_result;
x=NULL;
ret=1;
if (0)
{
f_err:
ssl3_send_alert(s,SSL3_AL_FATAL,al);
}
err:
EVP_PKEY_free(pkey);
X509_free(x);
sk_X509_pop_free(sk,X509_free);
return(ret);
}
int ssl3_get_server_key_exchange(SSL *s)
{
EVP_MD_CTX md_ctx;
int al,ok;
long n,alg_k,alg_a;
EVP_PKEY *pkey=NULL;
const EVP_MD *md = NULL;
RSA *rsa=NULL;
DH *dh=NULL;
EC_KEY *ecdh = NULL;
BN_CTX *bn_ctx = NULL;
EC_POINT *srvr_ecpoint = NULL;
CBS server_key_exchange, server_key_exchange_orig, parameter;
/* use same message size as in ssl3_get_certificate_request()
* as ServerKeyExchange message may be skipped */
n=s->method->ssl_get_message(s,
SSL3_ST_CR_KEY_EXCH_A,
SSL3_ST_CR_KEY_EXCH_B,
-1,
s->max_cert_list,
SSL_GET_MESSAGE_HASH_MESSAGE,
&ok);
if (!ok) return((int)n);
if (s->s3->tmp.message_type != SSL3_MT_SERVER_KEY_EXCHANGE)
{
if (ssl_cipher_requires_server_key_exchange(s->s3->tmp.new_cipher))
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_UNEXPECTED_MESSAGE);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
return -1;
}
/* In plain PSK ciphersuite, ServerKeyExchange can be
omitted if no identity hint is sent. Set
session->sess_cert anyway to avoid problems
later.*/
if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aPSK)
{
/* PSK ciphersuites that also send a
* Certificate would have already initialized
* |sess_cert|. */
if (s->session->sess_cert == NULL)
s->session->sess_cert = ssl_sess_cert_new();
/* TODO(davidben): This should be reset in one place
* with the rest of the handshake state. */
if (s->s3->tmp.peer_psk_identity_hint)
{
OPENSSL_free(s->s3->tmp.peer_psk_identity_hint);
s->s3->tmp.peer_psk_identity_hint = NULL;
}
}
s->s3->tmp.reuse_message=1;
return(1);
}
/* Retain a copy of the original CBS to compute the signature
* over. */
CBS_init(&server_key_exchange, s->init_msg, n);
server_key_exchange_orig = server_key_exchange;
if (s->session->sess_cert != NULL)
{
if (s->session->sess_cert->peer_dh_tmp)
{
DH_free(s->session->sess_cert->peer_dh_tmp);
s->session->sess_cert->peer_dh_tmp=NULL;
}
if (s->session->sess_cert->peer_ecdh_tmp)
{
EC_KEY_free(s->session->sess_cert->peer_ecdh_tmp);
s->session->sess_cert->peer_ecdh_tmp=NULL;
}
}
else
{
s->session->sess_cert=ssl_sess_cert_new();
}
alg_k=s->s3->tmp.new_cipher->algorithm_mkey;
alg_a=s->s3->tmp.new_cipher->algorithm_auth;
EVP_MD_CTX_init(&md_ctx);
if (alg_a & SSL_aPSK)
{
CBS psk_identity_hint;
/* Each of the PSK key exchanges begins with a
* psk_identity_hint. */
if (!CBS_get_u16_length_prefixed(&server_key_exchange, &psk_identity_hint))
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_DECODE_ERROR);
goto f_err;
}
/* Store PSK identity hint for later use, hint is used in
* ssl3_send_client_key_exchange. Assume that the maximum
* length of a PSK identity hint can be as long as the maximum
* length of a PSK identity. Also do not allow NULL
* characters; identities are saved as C strings.
*
* TODO(davidben): Should invalid hints be ignored? It's a hint
* rather than a specific identity. */
if (CBS_len(&psk_identity_hint) > PSK_MAX_IDENTITY_LEN ||
CBS_contains_zero_byte(&psk_identity_hint))
{
al = SSL_AD_HANDSHAKE_FAILURE;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_DATA_LENGTH_TOO_LONG);
goto f_err;
}
/* Save the identity hint as a C string. */
if (!CBS_strdup(&psk_identity_hint, &s->s3->tmp.peer_psk_identity_hint))
{
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_MALLOC_FAILURE);
goto f_err;
}
}
if (alg_k & SSL_kEDH)
{
CBS dh_p, dh_g, dh_Ys;
if (!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_p) ||
CBS_len(&dh_p) == 0 ||
!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_g) ||
CBS_len(&dh_g) == 0 ||
!CBS_get_u16_length_prefixed(&server_key_exchange, &dh_Ys) ||
CBS_len(&dh_Ys) == 0)
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_DECODE_ERROR);
goto f_err;
}
if ((dh=DH_new()) == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_DH_LIB);
goto err;
}
if (!(dh->p = BN_bin2bn(CBS_data(&dh_p), CBS_len(&dh_p), NULL)))
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_BN_LIB);
goto err;
}
if (!(dh->g=BN_bin2bn(CBS_data(&dh_g), CBS_len(&dh_g), NULL)))
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_BN_LIB);
goto err;
}
if (!(dh->pub_key = BN_bin2bn(CBS_data(&dh_Ys), CBS_len(&dh_Ys), NULL)))
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_BN_LIB);
goto err;
}
if (DH_size(dh) < 512/8)
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_BAD_DH_P_LENGTH);
goto err;
}
if (alg_a & SSL_aRSA)
pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[SSL_PKEY_RSA_ENC].x509);
/* else anonymous DH, so no certificate or pkey. */
s->session->sess_cert->peer_dh_tmp=dh;
dh=NULL;
}
else if (alg_k & SSL_kEECDH)
{
uint16_t curve_id;
int curve_nid = 0;
EC_GROUP *ngroup;
const EC_GROUP *group;
CBS point;
/* Extract elliptic curve parameters and the server's
* ephemeral ECDH public key. Check curve is one of
* our preferences, if not server has sent an invalid
* curve.
*/
if (!tls1_check_curve(s, &server_key_exchange, &curve_id))
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_WRONG_CURVE);
goto f_err;
}
if ((curve_nid = tls1_ec_curve_id2nid(curve_id)) == 0)
{
al=SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_UNABLE_TO_FIND_ECDH_PARAMETERS);
goto f_err;
}
if ((ecdh=EC_KEY_new()) == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_MALLOC_FAILURE);
goto err;
}
ngroup = EC_GROUP_new_by_curve_name(curve_nid);
if (ngroup == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_EC_LIB);
goto err;
}
if (EC_KEY_set_group(ecdh, ngroup) == 0)
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_EC_LIB);
goto err;
}
EC_GROUP_free(ngroup);
group = EC_KEY_get0_group(ecdh);
/* Next, get the encoded ECPoint */
if (!CBS_get_u8_length_prefixed(&server_key_exchange, &point))
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_DECODE_ERROR);
goto f_err;
}
if (((srvr_ecpoint = EC_POINT_new(group)) == NULL) ||
((bn_ctx = BN_CTX_new()) == NULL))
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EC_POINT_oct2point(group, srvr_ecpoint,
CBS_data(&point), CBS_len(&point), bn_ctx))
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_BAD_ECPOINT);
goto f_err;
}
/* The ECC/TLS specification does not mention
* the use of DSA to sign ECParameters in the server
* key exchange message. We do support RSA and ECDSA.
*/
if (0) ;
else if (alg_a & SSL_aRSA)
pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[SSL_PKEY_RSA_ENC].x509);
else if (alg_a & SSL_aECDSA)
pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[SSL_PKEY_ECC].x509);
/* else anonymous ECDH, so no certificate or pkey. */
EC_KEY_set_public_key(ecdh, srvr_ecpoint);
s->session->sess_cert->peer_ecdh_tmp=ecdh;
ecdh=NULL;
BN_CTX_free(bn_ctx);
bn_ctx = NULL;
EC_POINT_free(srvr_ecpoint);
srvr_ecpoint = NULL;
}
else if (!(alg_k & SSL_kPSK))
{
al=SSL_AD_UNEXPECTED_MESSAGE;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_UNEXPECTED_MESSAGE);
goto f_err;
}
/* At this point, |server_key_exchange| contains the
* signature, if any, while |server_key_exchange_orig|
* contains the entire message. From that, derive a CBS
* containing just the parameter. */
CBS_init(&parameter, CBS_data(&server_key_exchange_orig),
CBS_len(&server_key_exchange_orig) -
CBS_len(&server_key_exchange));
/* if it was signed, check the signature */
if (pkey != NULL)
{
CBS signature;
if (SSL_USE_SIGALGS(s))
{
if (!tls12_check_peer_sigalg(&md, &al, s, &server_key_exchange, pkey))
goto f_err;
}
else
md = EVP_sha1();
/* The last field in |server_key_exchange| is the
* signature. */
if (!CBS_get_u16_length_prefixed(&server_key_exchange, &signature) ||
CBS_len(&server_key_exchange) != 0)
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_DECODE_ERROR);
goto f_err;
}
if (pkey->type == EVP_PKEY_RSA && !SSL_USE_SIGALGS(s))
{
int num;
unsigned char *q, md_buf[EVP_MAX_MD_SIZE*2];
size_t md_len = 0;
q=md_buf;
for (num=2; num > 0; num--)
{
unsigned int digest_len;
EVP_DigestInit_ex(&md_ctx,
(num == 2) ? EVP_md5() : EVP_sha1(), NULL);
EVP_DigestUpdate(&md_ctx,&(s->s3->client_random[0]),SSL3_RANDOM_SIZE);
EVP_DigestUpdate(&md_ctx,&(s->s3->server_random[0]),SSL3_RANDOM_SIZE);
EVP_DigestUpdate(&md_ctx, CBS_data(&parameter), CBS_len(&parameter));
EVP_DigestFinal_ex(&md_ctx, q, &digest_len);
q += digest_len;
md_len += digest_len;
}
if (!RSA_verify(NID_md5_sha1, md_buf, md_len,
CBS_data(&signature), CBS_len(&signature),
pkey->pkey.rsa))
{
al = SSL_AD_DECRYPT_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_BAD_SIGNATURE);
goto f_err;
}
}
else
{
if (!EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) ||
!EVP_DigestVerifyUpdate(&md_ctx, s->s3->client_random, SSL3_RANDOM_SIZE) ||
!EVP_DigestVerifyUpdate(&md_ctx, s->s3->server_random, SSL3_RANDOM_SIZE) ||
!EVP_DigestVerifyUpdate(&md_ctx, CBS_data(&parameter), CBS_len(&parameter)) ||
!EVP_DigestVerifyFinal(&md_ctx, CBS_data(&signature), CBS_len(&signature)))
{
/* bad signature */
al=SSL_AD_DECRYPT_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_BAD_SIGNATURE);
goto f_err;
}
}
}
else
{
if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher))
{
/* Might be wrong key type, check it */
if (ssl3_check_cert_and_algorithm(s))
/* Otherwise this shouldn't happen */
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, ERR_R_INTERNAL_ERROR);
goto err;
}
/* still data left over */
if (CBS_len(&server_key_exchange) > 0)
{
al=SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_key_exchange, SSL_R_EXTRA_DATA_IN_MESSAGE);
goto f_err;
}
}
EVP_PKEY_free(pkey);
EVP_MD_CTX_cleanup(&md_ctx);
return(1);
f_err:
ssl3_send_alert(s,SSL3_AL_FATAL,al);
err:
EVP_PKEY_free(pkey);
if (rsa != NULL)
RSA_free(rsa);
if (dh != NULL)
DH_free(dh);
BN_CTX_free(bn_ctx);
EC_POINT_free(srvr_ecpoint);
if (ecdh != NULL)
EC_KEY_free(ecdh);
EVP_MD_CTX_cleanup(&md_ctx);
return(-1);
}
static int ca_dn_cmp(const X509_NAME **a, const X509_NAME **b)
{
return(X509_NAME_cmp(*a,*b));
}
int ssl3_get_certificate_request(SSL *s)
{
int ok,ret=0;
unsigned long n;
unsigned int i;
X509_NAME *xn=NULL;
STACK_OF(X509_NAME) *ca_sk=NULL;
CBS cbs;
CBS certificate_types;
CBS certificate_authorities;
const uint8_t *data;
n=s->method->ssl_get_message(s,
SSL3_ST_CR_CERT_REQ_A,
SSL3_ST_CR_CERT_REQ_B,
-1,
s->max_cert_list,
SSL_GET_MESSAGE_HASH_MESSAGE,
&ok);
if (!ok) return((int)n);
s->s3->tmp.cert_req=0;
if (s->s3->tmp.message_type == SSL3_MT_SERVER_DONE)
{
s->s3->tmp.reuse_message=1;
/* If we get here we don't need any cached handshake records
* as we wont be doing client auth.
*/
if (s->s3->handshake_buffer)
{
if (!ssl3_digest_cached_records(s, free_handshake_buffer))
goto err;
}
return(1);
}
if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE_REQUEST)
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_WRONG_MESSAGE_TYPE);
goto err;
}
/* TLS does not like anon-DH with client cert */
if (s->version > SSL3_VERSION)
{
if (s->s3->tmp.new_cipher->algorithm_auth & SSL_aNULL)
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_TLS_CLIENT_CERT_REQ_WITH_ANON_CIPHER);
goto err;
}
}
CBS_init(&cbs, s->init_msg, n);
ca_sk = sk_X509_NAME_new(ca_dn_cmp);
if (ca_sk == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, ERR_R_MALLOC_FAILURE);
goto err;
}
/* get the certificate types */
if (!CBS_get_u8_length_prefixed(&cbs, &certificate_types))
{
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_DECODE_ERROR);
goto err;
}
if (!CBS_stow(&certificate_types,
&s->s3->tmp.certificate_types,
&s->s3->tmp.num_certificate_types))
{
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
goto err;
}
if (SSL_USE_SIGALGS(s))
{
CBS supported_signature_algorithms;
if (!CBS_get_u16_length_prefixed(&cbs, &supported_signature_algorithms))
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_DECODE_ERROR);
goto err;
}
/* Clear certificate digests and validity flags */
for (i = 0; i < SSL_PKEY_NUM; i++)
{
s->cert->pkeys[i].digest = NULL;
s->cert->pkeys[i].valid_flags = 0;
}
if (!tls1_process_sigalgs(s, &supported_signature_algorithms))
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_SIGNATURE_ALGORITHMS_ERROR);
goto err;
}
}
/* get the CA RDNs */
if (!CBS_get_u16_length_prefixed(&cbs, &certificate_authorities))
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_LENGTH_MISMATCH);
goto err;
}
while (CBS_len(&certificate_authorities) > 0)
{
CBS distinguished_name;
if (!CBS_get_u16_length_prefixed(&certificate_authorities, &distinguished_name))
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_CA_DN_TOO_LONG);
goto err;
}
data = CBS_data(&distinguished_name);
if ((xn=d2i_X509_NAME(NULL, &data, CBS_len(&distinguished_name))) == NULL)
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, ERR_R_ASN1_LIB);
goto err;
}
if (!CBS_skip(&distinguished_name, data - CBS_data(&distinguished_name)))
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_certificate, ERR_R_INTERNAL_ERROR);
goto err;
}
if (CBS_len(&distinguished_name) != 0)
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, SSL_R_CA_DN_LENGTH_MISMATCH);
goto err;
}
if (!sk_X509_NAME_push(ca_sk,xn))
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_certificate_request, ERR_R_MALLOC_FAILURE);
goto err;
}
}
/* we should setup a certificate to return.... */
s->s3->tmp.cert_req=1;
if (s->s3->tmp.ca_names != NULL)
sk_X509_NAME_pop_free(s->s3->tmp.ca_names,X509_NAME_free);
s->s3->tmp.ca_names=ca_sk;
ca_sk=NULL;
ret=1;
err:
if (ca_sk != NULL) sk_X509_NAME_pop_free(ca_sk,X509_NAME_free);
return(ret);
}
int ssl3_get_new_session_ticket(SSL *s)
{
int ok,al,ret=0;
long n;
CBS new_session_ticket, ticket;
n=s->method->ssl_get_message(s,
SSL3_ST_CR_SESSION_TICKET_A,
SSL3_ST_CR_SESSION_TICKET_B,
SSL3_MT_NEWSESSION_TICKET,
16384,
SSL_GET_MESSAGE_HASH_MESSAGE,
&ok);
if (!ok)
return((int)n);
CBS_init(&new_session_ticket, s->init_msg, n);
if (!CBS_get_u32(&new_session_ticket, &s->session->tlsext_tick_lifetime_hint) ||
!CBS_get_u16_length_prefixed(&new_session_ticket, &ticket) ||
CBS_len(&new_session_ticket) != 0)
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_new_session_ticket, SSL_R_DECODE_ERROR);
goto f_err;
}
if (!CBS_stow(&ticket, &s->session->tlsext_tick, &s->session->tlsext_ticklen))
{
OPENSSL_PUT_ERROR(SSL, ssl3_get_new_session_ticket, ERR_R_MALLOC_FAILURE);
goto err;
}
/* There are two ways to detect a resumed ticket sesion.
* One is to set an appropriate session ID and then the server
* must return a match in ServerHello. This allows the normal
* client session ID matching to work and we know much
* earlier that the ticket has been accepted.
*
* The other way is to set zero length session ID when the
* ticket is presented and rely on the handshake to determine
* session resumption.
*
* We choose the former approach because this fits in with
* assumptions elsewhere in OpenSSL. The session ID is set
* to the SHA256 (or SHA1 is SHA256 is disabled) hash of the
* ticket.
*/
EVP_Digest(CBS_data(&ticket), CBS_len(&ticket),
s->session->session_id, &s->session->session_id_length,
EVP_sha256(), NULL);
ret=1;
return(ret);
f_err:
ssl3_send_alert(s,SSL3_AL_FATAL,al);
err:
return(-1);
}
int ssl3_get_cert_status(SSL *s)
{
int ok, al;
long n;
CBS certificate_status, ocsp_response;
uint8_t status_type;
n=s->method->ssl_get_message(s,
SSL3_ST_CR_CERT_STATUS_A,
SSL3_ST_CR_CERT_STATUS_B,
SSL3_MT_CERTIFICATE_STATUS,
16384,
SSL_GET_MESSAGE_HASH_MESSAGE,
&ok);
if (!ok) return((int)n);
CBS_init(&certificate_status, s->init_msg, n);
if (!CBS_get_u8(&certificate_status, &status_type) ||
status_type != TLSEXT_STATUSTYPE_ocsp ||
!CBS_get_u24_length_prefixed(&certificate_status, &ocsp_response) ||
CBS_len(&ocsp_response) == 0 ||
CBS_len(&certificate_status) != 0)
{
al = SSL_AD_DECODE_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_cert_status, SSL_R_DECODE_ERROR);
goto f_err;
}
if (!CBS_stow(&ocsp_response,
&s->session->ocsp_response, &s->session->ocsp_response_length))
{
al = SSL_AD_INTERNAL_ERROR;
OPENSSL_PUT_ERROR(SSL, ssl3_get_cert_status, ERR_R_MALLOC_FAILURE);
goto f_err;
}
return 1;
f_err:
ssl3_send_alert(s,SSL3_AL_FATAL,al);
return(-1);
}
int ssl3_get_server_done(SSL *s)
{
int ok,ret=0;
long n;
n=s->method->ssl_get_message(s,
SSL3_ST_CR_SRVR_DONE_A,
SSL3_ST_CR_SRVR_DONE_B,
SSL3_MT_SERVER_DONE,
30, /* should be very small, like 0 :-) */
SSL_GET_MESSAGE_HASH_MESSAGE,
&ok);
if (!ok) return((int)n);
if (n > 0)
{
/* should contain no data */
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, ssl3_get_server_done, SSL_R_LENGTH_MISMATCH);
return -1;
}
ret=1;
return(ret);
}
int ssl3_send_client_key_exchange(SSL *s)
{
unsigned char *p;
int n = 0;
unsigned long alg_k;
unsigned long alg_a;
unsigned char *q;
EVP_PKEY *pkey=NULL;
EC_KEY *clnt_ecdh = NULL;
const EC_POINT *srvr_ecpoint = NULL;
EVP_PKEY *srvr_pub_pkey = NULL;
unsigned char *encodedPoint = NULL;
int encoded_pt_len = 0;
BN_CTX * bn_ctx = NULL;
unsigned int psk_len = 0;
unsigned char psk[PSK_MAX_PSK_LEN];
uint8_t *pms = NULL;
size_t pms_len = 0;
if (s->state == SSL3_ST_CW_KEY_EXCH_A)
{
p = ssl_handshake_start(s);
alg_k=s->s3->tmp.new_cipher->algorithm_mkey;
alg_a=s->s3->tmp.new_cipher->algorithm_auth;
/* If using a PSK key exchange, prepare the pre-shared key. */
if (alg_a & SSL_aPSK)
{
char identity[PSK_MAX_IDENTITY_LEN + 1];
size_t identity_len;
if (s->psk_client_callback == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, SSL_R_PSK_NO_CLIENT_CB);
goto err;
}
memset(identity, 0, sizeof(identity));
psk_len = s->psk_client_callback(s, s->s3->tmp.peer_psk_identity_hint,
identity, sizeof(identity), psk, sizeof(psk));
if (psk_len > PSK_MAX_PSK_LEN)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR);
goto err;
}
else if (psk_len == 0)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, SSL_R_PSK_IDENTITY_NOT_FOUND);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
goto err;
}
identity_len = OPENSSL_strnlen(identity, sizeof(identity));
if (identity_len > PSK_MAX_IDENTITY_LEN)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR);
goto err;
}
if (s->session->psk_identity != NULL)
OPENSSL_free(s->session->psk_identity);
s->session->psk_identity = BUF_strdup(identity);
if (s->session->psk_identity == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Write out psk_identity. */
s2n(identity_len, p);
memcpy(p, identity, identity_len);
p += identity_len;
n = 2 + identity_len;
}
/* Depending on the key exchange method, compute |pms|
* and |pms_len|. */
if (alg_k & SSL_kRSA)
{
RSA *rsa;
size_t enc_pms_len;
pms_len = SSL_MAX_MASTER_KEY_LENGTH;
pms = OPENSSL_malloc(pms_len);
if (pms == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE);
goto err;
}
if (s->session->sess_cert == NULL)
{
/* We should always have a server certificate with SSL_kRSA. */
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR);
goto err;
}
pkey=X509_get_pubkey(s->session->sess_cert->peer_pkeys[SSL_PKEY_RSA_ENC].x509);
if ((pkey == NULL) ||
(pkey->type != EVP_PKEY_RSA) ||
(pkey->pkey.rsa == NULL))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR);
if (pkey != NULL)
EVP_PKEY_free(pkey);
goto err;
}
rsa=pkey->pkey.rsa;
EVP_PKEY_free(pkey);
pms[0]=s->client_version>>8;
pms[1]=s->client_version&0xff;
if (RAND_bytes(&pms[2],SSL_MAX_MASTER_KEY_LENGTH-2) <= 0)
goto err;
s->session->master_key_length=SSL_MAX_MASTER_KEY_LENGTH;
q=p;
/* In TLS and beyond, reserve space for the length prefix. */
if (s->version > SSL3_VERSION)
{
p += 2;
n += 2;
}
if (!RSA_encrypt(rsa, &enc_pms_len, p, RSA_size(rsa),
pms, pms_len, RSA_PKCS1_PADDING))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, SSL_R_BAD_RSA_ENCRYPT);
goto err;
}
n += enc_pms_len;
/* Log the premaster secret, if logging is enabled. */
if (!ssl_ctx_log_rsa_client_key_exchange(s->ctx,
p, enc_pms_len, pms, pms_len))
{
goto err;
}
/* Fill in the length prefix. */
if (s->version > SSL3_VERSION)
{
s2n(enc_pms_len, q);
}
}
else if (alg_k & SSL_kEDH)
{
DH *dh_srvr, *dh_clnt;
SESS_CERT *scert = s->session->sess_cert;
int dh_len;
size_t pub_len;
if (scert == NULL)
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, SSL_R_UNEXPECTED_MESSAGE);
goto err;
}
if (scert->peer_dh_tmp == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR);
goto err;
}
dh_srvr=scert->peer_dh_tmp;
/* generate a new random key */
if ((dh_clnt=DHparams_dup(dh_srvr)) == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_DH_LIB);
goto err;
}
if (!DH_generate_key(dh_clnt))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_DH_LIB);
DH_free(dh_clnt);
goto err;
}
pms_len = DH_size(dh_clnt);
pms = OPENSSL_malloc(pms_len);
if (pms == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE);
DH_free(dh_clnt);
goto err;
}
dh_len = DH_compute_key(pms, dh_srvr->pub_key, dh_clnt);
if (dh_len <= 0)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_DH_LIB);
DH_free(dh_clnt);
goto err;
}
pms_len = dh_len;
/* send off the data */
pub_len = BN_num_bytes(dh_clnt->pub_key);
s2n(pub_len, p);
BN_bn2bin(dh_clnt->pub_key, p);
n += 2 + pub_len;
DH_free(dh_clnt);
}
else if (alg_k & SSL_kEECDH)
{
const EC_GROUP *srvr_group = NULL;
EC_KEY *tkey;
int field_size = 0, ecdh_len;
if (s->session->sess_cert == NULL)
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, SSL_R_UNEXPECTED_MESSAGE);
goto err;
}
if (s->session->sess_cert->peer_ecdh_tmp == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR);
goto err;
}
tkey = s->session->sess_cert->peer_ecdh_tmp;
srvr_group = EC_KEY_get0_group(tkey);
srvr_ecpoint = EC_KEY_get0_public_key(tkey);
if ((srvr_group == NULL) || (srvr_ecpoint == NULL))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR);
goto err;
}
if ((clnt_ecdh=EC_KEY_new()) == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EC_KEY_set_group(clnt_ecdh, srvr_group))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_EC_LIB);
goto err;
}
/* Generate a new ECDH key pair */
if (!(EC_KEY_generate_key(clnt_ecdh)))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_ECDH_LIB);
goto err;
}
field_size = EC_GROUP_get_degree(srvr_group);
if (field_size <= 0)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_ECDH_LIB);
goto err;
}
pms_len = (field_size + 7) / 8;
pms = OPENSSL_malloc(pms_len);
if (pms == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE);
goto err;
}
ecdh_len = ECDH_compute_key(pms, pms_len, srvr_ecpoint, clnt_ecdh, NULL);
if (ecdh_len <= 0)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_ECDH_LIB);
goto err;
}
pms_len = ecdh_len;
/* First check the size of encoding and
* allocate memory accordingly.
*/
encoded_pt_len =
EC_POINT_point2oct(srvr_group,
EC_KEY_get0_public_key(clnt_ecdh),
POINT_CONVERSION_UNCOMPRESSED,
NULL, 0, NULL);
encodedPoint = (unsigned char *)
OPENSSL_malloc(encoded_pt_len *
sizeof(unsigned char));
bn_ctx = BN_CTX_new();
if ((encodedPoint == NULL) ||
(bn_ctx == NULL))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Encode the public key */
encoded_pt_len = EC_POINT_point2oct(srvr_group,
EC_KEY_get0_public_key(clnt_ecdh),
POINT_CONVERSION_UNCOMPRESSED,
encodedPoint, encoded_pt_len, bn_ctx);
*p = encoded_pt_len; /* length of encoded point */
/* Encoded point will be copied here */
p += 1;
n += 1;
/* copy the point */
memcpy(p, encodedPoint, encoded_pt_len);
/* increment n to account for length field */
n += encoded_pt_len;
/* Free allocated memory */
BN_CTX_free(bn_ctx);
bn_ctx = NULL;
OPENSSL_free(encodedPoint);
encodedPoint = NULL;
EC_KEY_free(clnt_ecdh);
clnt_ecdh = NULL;
EVP_PKEY_free(srvr_pub_pkey);
srvr_pub_pkey = NULL;
}
else if (alg_k & SSL_kPSK)
{
/* For plain PSK, other_secret is a block of 0s with the same
* length as the pre-shared key. */
pms_len = psk_len;
pms = OPENSSL_malloc(pms_len);
if (pms == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE);
goto err;
}
memset(pms, 0, pms_len);
}
else
{
ssl3_send_alert(s, SSL3_AL_FATAL,
SSL_AD_HANDSHAKE_FAILURE);
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR);
goto err;
}
/* For a PSK cipher suite, other_secret is combined
* with the pre-shared key. */
if (alg_a & SSL_aPSK)
{
CBB cbb, child;
uint8_t *new_pms;
size_t new_pms_len;
if (!CBB_init(&cbb, 2 + psk_len + 2 + pms_len))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!CBB_add_u16_length_prefixed(&cbb, &child) ||
!CBB_add_bytes(&child, pms, pms_len) ||
!CBB_add_u16_length_prefixed(&cbb, &child) ||
!CBB_add_bytes(&child, psk, psk_len) ||
!CBB_finish(&cbb, &new_pms, &new_pms_len))
{
CBB_cleanup(&cbb);
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_key_exchange, ERR_R_INTERNAL_ERROR);
goto err;
}
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
pms = new_pms;
pms_len = new_pms_len;
}
ssl_set_handshake_header(s, SSL3_MT_CLIENT_KEY_EXCHANGE, n);
s->state=SSL3_ST_CW_KEY_EXCH_B;
/* The message must be added to the finished hash before
* calculating the master secret. */
s->method->ssl3_enc->add_to_finished_hash(s);
s->session->master_key_length =
s->method->ssl3_enc->generate_master_secret(s,
s->session->master_key,
pms, pms_len);
if (s->session->master_key_length == 0)
{
goto err;
}
s->session->extended_master_secret = s->s3->tmp.extended_master_secret;
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
}
/* SSL3_ST_CW_KEY_EXCH_B */
/* The message has already been added to the finished hash. */
return s->method->ssl3_enc->do_write(s, dont_add_to_finished_hash);
err:
BN_CTX_free(bn_ctx);
if (encodedPoint != NULL) OPENSSL_free(encodedPoint);
if (clnt_ecdh != NULL)
EC_KEY_free(clnt_ecdh);
EVP_PKEY_free(srvr_pub_pkey);
if (pms)
{
OPENSSL_cleanse(pms, pms_len);
OPENSSL_free(pms);
}
return -1;
}
int ssl3_send_cert_verify(SSL *s)
{
unsigned char *buf, *p;
const EVP_MD *md = NULL;
uint8_t digest[EVP_MAX_MD_SIZE];
size_t digest_length;
EVP_PKEY *pkey;
EVP_PKEY_CTX *pctx = NULL;
size_t signature_length = 0;
unsigned long n = 0;
buf=(unsigned char *)s->init_buf->data;
if (s->state == SSL3_ST_CW_CERT_VRFY_A)
{
p= ssl_handshake_start(s);
pkey = s->cert->key->privatekey;
/* Write out the digest type if needbe. */
if (SSL_USE_SIGALGS(s))
{
md = s->cert->key->digest;
if (!tls12_get_sigandhash(p, pkey, md))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_cert_verify, ERR_R_INTERNAL_ERROR);
goto err;
}
p += 2;
n += 2;
}
/* Compute the digest. */
if (!ssl3_cert_verify_hash(s, digest, &digest_length, &md, pkey))
goto err;
/* The handshake buffer is no longer necessary. */
if (s->s3->handshake_buffer && !ssl3_digest_cached_records(s, free_handshake_buffer))
goto err;
/* Sign the digest. */
pctx = EVP_PKEY_CTX_new(pkey, NULL);
if (pctx == NULL)
goto err;
/* Initialize the EVP_PKEY_CTX and determine the size of the signature. */
if (!EVP_PKEY_sign_init(pctx) ||
!EVP_PKEY_CTX_set_signature_md(pctx, md) ||
!EVP_PKEY_sign(pctx, NULL, &signature_length,
digest, digest_length))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_cert_verify, ERR_R_EVP_LIB);
goto err;
}
if (p + 2 + signature_length > buf + SSL3_RT_MAX_PLAIN_LENGTH)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_cert_verify, SSL_R_DATA_LENGTH_TOO_LONG);
goto err;
}
if (!EVP_PKEY_sign(pctx, &p[2], &signature_length,
digest, digest_length))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_cert_verify, ERR_R_EVP_LIB);
goto err;
}
s2n(signature_length, p);
n += signature_length + 2;
ssl_set_handshake_header(s, SSL3_MT_CERTIFICATE_VERIFY, n);
s->state=SSL3_ST_CW_CERT_VRFY_B;
}
EVP_PKEY_CTX_free(pctx);
return ssl_do_write(s);
err:
EVP_PKEY_CTX_free(pctx);
return(-1);
}
/* Check a certificate can be used for client authentication. Currently
* check the cert exists and if we have a suitable digest for TLS 1.2.
*/
static int ssl3_check_client_certificate(SSL *s)
{
if (!s->cert || !s->cert->key->x509 || !s->cert->key->privatekey)
return 0;
/* If no suitable signature algorithm can't use certificate */
if (SSL_USE_SIGALGS(s) && !s->cert->key->digest)
return 0;
/* If strict mode check suitability of chain before using it.
*/
if (s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT &&
!tls1_check_chain(s, NULL, NULL, NULL, -2))
return 0;
return 1;
}
int ssl3_send_client_certificate(SSL *s)
{
X509 *x509=NULL;
EVP_PKEY *pkey=NULL;
int i;
if (s->state == SSL3_ST_CW_CERT_A)
{
/* Let cert callback update client certificates if required */
if (s->cert->cert_cb)
{
i = s->cert->cert_cb(s, s->cert->cert_cb_arg);
if (i < 0)
{
s->rwstate=SSL_X509_LOOKUP;
return -1;
}
if (i == 0)
{
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_INTERNAL_ERROR);
return 0;
}
s->rwstate=SSL_NOTHING;
}
if (ssl3_check_client_certificate(s))
s->state=SSL3_ST_CW_CERT_C;
else
s->state=SSL3_ST_CW_CERT_B;
}
/* We need to get a client cert */
if (s->state == SSL3_ST_CW_CERT_B)
{
/* If we get an error, we need to
* ssl->rwstate=SSL_X509_LOOKUP; return(-1);
* We then get retried later */
i = ssl_do_client_cert_cb(s, &x509, &pkey);
if (i < 0)
{
s->rwstate=SSL_X509_LOOKUP;
return(-1);
}
s->rwstate=SSL_NOTHING;
if ((i == 1) && (pkey != NULL) && (x509 != NULL))
{
s->state=SSL3_ST_CW_CERT_B;
if ( !SSL_use_certificate(s,x509) ||
!SSL_use_PrivateKey(s,pkey))
i=0;
}
else if (i == 1)
{
i=0;
OPENSSL_PUT_ERROR(SSL, ssl3_send_client_certificate, SSL_R_BAD_DATA_RETURNED_BY_CALLBACK);
}
if (x509 != NULL) X509_free(x509);
if (pkey != NULL) EVP_PKEY_free(pkey);
if (i && !ssl3_check_client_certificate(s))
i = 0;
if (i == 0)
{
if (s->version == SSL3_VERSION)
{
s->s3->tmp.cert_req=0;
ssl3_send_alert(s,SSL3_AL_WARNING,SSL_AD_NO_CERTIFICATE);
return(1);
}
else
{
s->s3->tmp.cert_req=2;
}
}
/* Ok, we have a cert */
s->state=SSL3_ST_CW_CERT_C;
}
if (s->state == SSL3_ST_CW_CERT_C)
{
s->state=SSL3_ST_CW_CERT_D;
ssl3_output_cert_chain(s,
(s->s3->tmp.cert_req == 2)?NULL:s->cert->key);
}
/* SSL3_ST_CW_CERT_D */
return ssl_do_write(s);
}
#define has_bits(i,m) (((i)&(m)) == (m))
int ssl3_check_cert_and_algorithm(SSL *s)
{
int i,idx;
long alg_k,alg_a;
EVP_PKEY *pkey=NULL;
SESS_CERT *sc;
DH *dh;
/* we don't have a certificate */
if (!ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher))
return 1;
alg_k=s->s3->tmp.new_cipher->algorithm_mkey;
alg_a=s->s3->tmp.new_cipher->algorithm_auth;
sc=s->session->sess_cert;
if (sc == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, ERR_R_INTERNAL_ERROR);
goto err;
}
dh=s->session->sess_cert->peer_dh_tmp;
/* This is the passed certificate */
idx=sc->peer_cert_type;
if (idx == SSL_PKEY_ECC)
{
if (ssl_check_srvr_ecc_cert_and_alg(sc->peer_pkeys[idx].x509,
s) == 0)
{ /* check failed */
OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, SSL_R_BAD_ECC_CERT);
goto f_err;
}
else
{
return 1;
}
}
else if (alg_a & SSL_aECDSA)
{
OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, SSL_R_MISSING_ECDSA_SIGNING_CERT);
goto f_err;
}
pkey=X509_get_pubkey(sc->peer_pkeys[idx].x509);
i=X509_certificate_type(sc->peer_pkeys[idx].x509,pkey);
EVP_PKEY_free(pkey);
/* Check that we have a certificate if we require one */
if ((alg_a & SSL_aRSA) && !has_bits(i,EVP_PK_RSA|EVP_PKT_SIGN))
{
OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, SSL_R_MISSING_RSA_SIGNING_CERT);
goto f_err;
}
if ((alg_k & SSL_kRSA) && !has_bits(i,EVP_PK_RSA|EVP_PKT_ENC))
{
OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, SSL_R_MISSING_RSA_ENCRYPTING_CERT);
goto f_err;
}
if ((alg_k & SSL_kEDH) &&
!(has_bits(i,EVP_PK_DH|EVP_PKT_EXCH) || (dh != NULL)))
{
OPENSSL_PUT_ERROR(SSL, ssl3_check_cert_and_algorithm, SSL_R_MISSING_DH_KEY);
goto f_err;
}
return(1);
f_err:
ssl3_send_alert(s,SSL3_AL_FATAL,SSL_AD_HANDSHAKE_FAILURE);
err:
return(0);
}
int ssl3_send_next_proto(SSL *s)
{
unsigned int len, padding_len;
unsigned char *d;
if (s->state == SSL3_ST_CW_NEXT_PROTO_A)
{
len = s->next_proto_negotiated_len;
padding_len = 32 - ((len + 2) % 32);
d = (unsigned char *)s->init_buf->data;
d[4] = len;
memcpy(d + 5, s->next_proto_negotiated, len);
d[5 + len] = padding_len;
memset(d + 6 + len, 0, padding_len);
*(d++)=SSL3_MT_NEXT_PROTO;
l2n3(2 + len + padding_len, d);
s->state = SSL3_ST_CW_NEXT_PROTO_B;
s->init_num = 4 + 2 + len + padding_len;
s->init_off = 0;
}
return ssl3_do_write(s, SSL3_RT_HANDSHAKE, add_to_finished_hash);
}
int ssl3_send_channel_id(SSL *s)
{
unsigned char *d;
int ret = -1, public_key_len;
EVP_MD_CTX md_ctx;
size_t sig_len;
ECDSA_SIG *sig = NULL;
unsigned char *public_key = NULL, *derp, *der_sig = NULL;
if (s->state != SSL3_ST_CW_CHANNEL_ID_A)
return ssl3_do_write(s, SSL3_RT_HANDSHAKE, add_to_finished_hash);
if (!s->tlsext_channel_id_private && s->ctx->channel_id_cb)
{
EVP_PKEY *key = NULL;
s->ctx->channel_id_cb(s, &key);
if (key != NULL)
{
s->tlsext_channel_id_private = key;
}
}
if (!s->tlsext_channel_id_private)
{
s->rwstate=SSL_CHANNEL_ID_LOOKUP;
return (-1);
}
s->rwstate=SSL_NOTHING;
d = (unsigned char *)s->init_buf->data;
*(d++)=SSL3_MT_ENCRYPTED_EXTENSIONS;
l2n3(2 + 2 + TLSEXT_CHANNEL_ID_SIZE, d);
if (s->s3->tlsext_channel_id_new)
s2n(TLSEXT_TYPE_channel_id_new, d);
else
s2n(TLSEXT_TYPE_channel_id, d);
s2n(TLSEXT_CHANNEL_ID_SIZE, d);
EVP_MD_CTX_init(&md_ctx);
public_key_len = i2d_PublicKey(s->tlsext_channel_id_private, NULL);
if (public_key_len <= 0)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_CANNOT_SERIALIZE_PUBLIC_KEY);
goto err;
}
/* i2d_PublicKey will produce an ANSI X9.62 public key which, for a
* P-256 key, is 0x04 (meaning uncompressed) followed by the x and y
* field elements as 32-byte, big-endian numbers. */
if (public_key_len != 65)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_CHANNEL_ID_NOT_P256);
goto err;
}
public_key = OPENSSL_malloc(public_key_len);
if (!public_key)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, ERR_R_MALLOC_FAILURE);
goto err;
}
derp = public_key;
i2d_PublicKey(s->tlsext_channel_id_private, &derp);
if (EVP_DigestSignInit(&md_ctx, NULL, EVP_sha256(), NULL,
s->tlsext_channel_id_private) != 1)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_EVP_DIGESTSIGNINIT_FAILED);
goto err;
}
if (!tls1_channel_id_hash(&md_ctx, s))
goto err;
if (!EVP_DigestSignFinal(&md_ctx, NULL, &sig_len))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_EVP_DIGESTSIGNFINAL_FAILED);
goto err;
}
der_sig = OPENSSL_malloc(sig_len);
if (!der_sig)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!EVP_DigestSignFinal(&md_ctx, der_sig, &sig_len))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_EVP_DIGESTSIGNFINAL_FAILED);
goto err;
}
derp = der_sig;
sig = d2i_ECDSA_SIG(NULL, (const unsigned char**) &derp, sig_len);
if (sig == NULL)
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, SSL_R_D2I_ECDSA_SIG);
goto err;
}
/* The first byte of public_key will be 0x4, denoting an uncompressed key. */
memcpy(d, public_key + 1, 64);
d += 64;
if (!BN_bn2bin_padded(d, 32, sig->r) ||
!BN_bn2bin_padded(d + 32, 32, sig->s))
{
OPENSSL_PUT_ERROR(SSL, ssl3_send_channel_id, ERR_R_INTERNAL_ERROR);
goto err;
}
s->state = SSL3_ST_CW_CHANNEL_ID_B;
s->init_num = 4 + 2 + 2 + TLSEXT_CHANNEL_ID_SIZE;
s->init_off = 0;
ret = ssl3_do_write(s, SSL3_RT_HANDSHAKE, add_to_finished_hash);
err:
EVP_MD_CTX_cleanup(&md_ctx);
if (public_key)
OPENSSL_free(public_key);
if (der_sig)
OPENSSL_free(der_sig);
if (sig)
ECDSA_SIG_free(sig);
return ret;
}
int ssl_do_client_cert_cb(SSL *s, X509 **px509, EVP_PKEY **ppkey)
{
int i = 0;
if (s->ctx->client_cert_cb)
i = s->ctx->client_cert_cb(s,px509,ppkey);
return i;
}