Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.
 
 
 
 
 
 

4117 rader
152 KiB

  1. /* Copyright (c) 2014, Google Inc.
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
  14. #include <stdio.h>
  15. #include <string.h>
  16. #include <time.h>
  17. #include <algorithm>
  18. #include <string>
  19. #include <utility>
  20. #include <vector>
  21. #include <gtest/gtest.h>
  22. #include <openssl/base64.h>
  23. #include <openssl/bio.h>
  24. #include <openssl/cipher.h>
  25. #include <openssl/crypto.h>
  26. #include <openssl/err.h>
  27. #include <openssl/hmac.h>
  28. #include <openssl/pem.h>
  29. #include <openssl/sha.h>
  30. #include <openssl/ssl.h>
  31. #include <openssl/rand.h>
  32. #include <openssl/x509.h>
  33. #include "internal.h"
  34. #include "../crypto/internal.h"
  35. #include "../crypto/test/test_util.h"
  36. #if defined(OPENSSL_WINDOWS)
  37. // Windows defines struct timeval in winsock2.h.
  38. OPENSSL_MSVC_PRAGMA(warning(push, 3))
  39. #include <winsock2.h>
  40. OPENSSL_MSVC_PRAGMA(warning(pop))
  41. #else
  42. #include <sys/time.h>
  43. #endif
  44. namespace bssl {
  45. namespace {
  46. #define TRACED_CALL(code) \
  47. do { \
  48. SCOPED_TRACE("<- called from here"); \
  49. code; \
  50. if (::testing::Test::HasFatalFailure()) { \
  51. return; \
  52. } \
  53. } while (false)
  54. struct VersionParam {
  55. uint16_t version;
  56. enum { is_tls, is_dtls } ssl_method;
  57. const char name[8];
  58. };
  59. static const size_t kTicketKeyLen = 48;
  60. static const VersionParam kAllVersions[] = {
  61. {SSL3_VERSION, VersionParam::is_tls, "SSL3"},
  62. {TLS1_VERSION, VersionParam::is_tls, "TLS1"},
  63. {TLS1_1_VERSION, VersionParam::is_tls, "TLS1_1"},
  64. {TLS1_2_VERSION, VersionParam::is_tls, "TLS1_2"},
  65. {TLS1_3_VERSION, VersionParam::is_tls, "TLS1_3"},
  66. {DTLS1_VERSION, VersionParam::is_dtls, "DTLS1"},
  67. {DTLS1_2_VERSION, VersionParam::is_dtls, "DTLS1_2"},
  68. };
  69. struct ExpectedCipher {
  70. unsigned long id;
  71. int in_group_flag;
  72. };
  73. struct CipherTest {
  74. // The rule string to apply.
  75. const char *rule;
  76. // The list of expected ciphers, in order.
  77. std::vector<ExpectedCipher> expected;
  78. // True if this cipher list should fail in strict mode.
  79. bool strict_fail;
  80. };
  81. struct CurveTest {
  82. // The rule string to apply.
  83. const char *rule;
  84. // The list of expected curves, in order.
  85. std::vector<uint16_t> expected;
  86. };
  87. static const CipherTest kCipherTests[] = {
  88. // Selecting individual ciphers should work.
  89. {
  90. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  91. "ECDHE-RSA-CHACHA20-POLY1305:"
  92. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  93. "ECDHE-RSA-AES128-GCM-SHA256",
  94. {
  95. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  96. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  97. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  98. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  99. },
  100. false,
  101. },
  102. // + reorders selected ciphers to the end, keeping their relative order.
  103. {
  104. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  105. "ECDHE-RSA-CHACHA20-POLY1305:"
  106. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  107. "ECDHE-RSA-AES128-GCM-SHA256:"
  108. "+aRSA",
  109. {
  110. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  111. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  112. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  113. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  114. },
  115. false,
  116. },
  117. // ! banishes ciphers from future selections.
  118. {
  119. "!aRSA:"
  120. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  121. "ECDHE-RSA-CHACHA20-POLY1305:"
  122. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  123. "ECDHE-RSA-AES128-GCM-SHA256",
  124. {
  125. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  126. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  127. },
  128. false,
  129. },
  130. // Multiple masks can be ANDed in a single rule.
  131. {
  132. "kRSA+AESGCM+AES128",
  133. {
  134. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  135. },
  136. false,
  137. },
  138. // - removes selected ciphers, but preserves their order for future
  139. // selections. Select AES_128_GCM, but order the key exchanges RSA,
  140. // ECDHE_RSA.
  141. {
  142. "ALL:-kECDHE:"
  143. "-kRSA:-ALL:"
  144. "AESGCM+AES128+aRSA",
  145. {
  146. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  147. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  148. },
  149. false,
  150. },
  151. // Unknown selectors are no-ops, except in strict mode.
  152. {
  153. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  154. "ECDHE-RSA-CHACHA20-POLY1305:"
  155. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  156. "ECDHE-RSA-AES128-GCM-SHA256:"
  157. "BOGUS1",
  158. {
  159. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  160. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  161. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  162. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  163. },
  164. true,
  165. },
  166. // Unknown selectors are no-ops, except in strict mode.
  167. {
  168. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  169. "ECDHE-RSA-CHACHA20-POLY1305:"
  170. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  171. "ECDHE-RSA-AES128-GCM-SHA256:"
  172. "-BOGUS2:+BOGUS3:!BOGUS4",
  173. {
  174. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  175. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  176. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  177. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  178. },
  179. true,
  180. },
  181. // Square brackets specify equi-preference groups.
  182. {
  183. "[ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256]:"
  184. "[ECDHE-RSA-CHACHA20-POLY1305]:"
  185. "ECDHE-RSA-AES128-GCM-SHA256",
  186. {
  187. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
  188. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  189. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  190. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  191. },
  192. false,
  193. },
  194. // Standard names may be used instead of OpenSSL names.
  195. {
  196. "[TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256|"
  197. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256]:"
  198. "[TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256]:"
  199. "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
  200. {
  201. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
  202. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  203. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  204. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  205. },
  206. false,
  207. },
  208. // @STRENGTH performs a stable strength-sort of the selected ciphers and
  209. // only the selected ciphers.
  210. {
  211. // To simplify things, banish all but {ECDHE_RSA,RSA} x
  212. // {CHACHA20,AES_256_CBC,AES_128_CBC} x SHA1.
  213. "!AESGCM:!3DES:"
  214. // Order some ciphers backwards by strength.
  215. "ALL:-CHACHA20:-AES256:-AES128:-ALL:"
  216. // Select ECDHE ones and sort them by strength. Ties should resolve
  217. // based on the order above.
  218. "kECDHE:@STRENGTH:-ALL:"
  219. // Now bring back everything uses RSA. ECDHE_RSA should be first, sorted
  220. // by strength. Then RSA, backwards by strength.
  221. "aRSA",
  222. {
  223. {TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, 0},
  224. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  225. {TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, 0},
  226. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  227. {TLS1_CK_RSA_WITH_AES_256_SHA, 0},
  228. },
  229. false,
  230. },
  231. // Additional masks after @STRENGTH get silently discarded.
  232. //
  233. // TODO(davidben): Make this an error. If not silently discarded, they get
  234. // interpreted as + opcodes which are very different.
  235. {
  236. "ECDHE-RSA-AES128-GCM-SHA256:"
  237. "ECDHE-RSA-AES256-GCM-SHA384:"
  238. "@STRENGTH+AES256",
  239. {
  240. {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0},
  241. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  242. },
  243. false,
  244. },
  245. {
  246. "ECDHE-RSA-AES128-GCM-SHA256:"
  247. "ECDHE-RSA-AES256-GCM-SHA384:"
  248. "@STRENGTH+AES256:"
  249. "ECDHE-RSA-CHACHA20-POLY1305",
  250. {
  251. {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0},
  252. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  253. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  254. },
  255. false,
  256. },
  257. // Exact ciphers may not be used in multi-part rules; they are treated
  258. // as unknown aliases.
  259. {
  260. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  261. "ECDHE-RSA-AES128-GCM-SHA256:"
  262. "!ECDHE-RSA-AES128-GCM-SHA256+RSA:"
  263. "!ECDSA+ECDHE-ECDSA-AES128-GCM-SHA256",
  264. {
  265. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  266. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  267. },
  268. true,
  269. },
  270. // SSLv3 matches everything that existed before TLS 1.2.
  271. {
  272. "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!SSLv3",
  273. {
  274. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  275. },
  276. false,
  277. },
  278. // TLSv1.2 matches everything added in TLS 1.2.
  279. {
  280. "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2",
  281. {
  282. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  283. },
  284. false,
  285. },
  286. // The two directives have no intersection. But each component is valid, so
  287. // even in strict mode it is accepted.
  288. {
  289. "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2+SSLv3",
  290. {
  291. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  292. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  293. },
  294. false,
  295. },
  296. // Spaces, semi-colons and commas are separators.
  297. {
  298. "AES128-SHA: ECDHE-RSA-AES128-GCM-SHA256 AES256-SHA ,ECDHE-ECDSA-AES128-GCM-SHA256 ; AES128-GCM-SHA256",
  299. {
  300. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  301. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  302. {TLS1_CK_RSA_WITH_AES_256_SHA, 0},
  303. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  304. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  305. },
  306. // …but not in strict mode.
  307. true,
  308. },
  309. };
  310. static const char *kBadRules[] = {
  311. // Invalid brackets.
  312. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256",
  313. "RSA]",
  314. "[[RSA]]",
  315. // Operators inside brackets.
  316. "[+RSA]",
  317. // Unknown directive.
  318. "@BOGUS",
  319. // Empty cipher lists error at SSL_CTX_set_cipher_list.
  320. "",
  321. "BOGUS",
  322. // COMPLEMENTOFDEFAULT is empty.
  323. "COMPLEMENTOFDEFAULT",
  324. // Invalid command.
  325. "?BAR",
  326. // Special operators are not allowed if groups are used.
  327. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:+FOO",
  328. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:!FOO",
  329. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:-FOO",
  330. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:@STRENGTH",
  331. // Opcode supplied, but missing selector.
  332. "+",
  333. // Spaces are forbidden in equal-preference groups.
  334. "[AES128-SHA | AES128-SHA256]",
  335. };
  336. static const char *kMustNotIncludeNull[] = {
  337. "ALL",
  338. "DEFAULT",
  339. "HIGH",
  340. "FIPS",
  341. "SHA",
  342. "SHA1",
  343. "RSA",
  344. "SSLv3",
  345. "TLSv1",
  346. "TLSv1.2",
  347. };
  348. static const CurveTest kCurveTests[] = {
  349. {
  350. "P-256",
  351. { SSL_CURVE_SECP256R1 },
  352. },
  353. {
  354. "P-256:P-384:P-521:X25519",
  355. {
  356. SSL_CURVE_SECP256R1,
  357. SSL_CURVE_SECP384R1,
  358. SSL_CURVE_SECP521R1,
  359. SSL_CURVE_X25519,
  360. },
  361. },
  362. {
  363. "prime256v1:secp384r1:secp521r1:x25519",
  364. {
  365. SSL_CURVE_SECP256R1,
  366. SSL_CURVE_SECP384R1,
  367. SSL_CURVE_SECP521R1,
  368. SSL_CURVE_X25519,
  369. },
  370. },
  371. };
  372. static const char *kBadCurvesLists[] = {
  373. "",
  374. ":",
  375. "::",
  376. "P-256::X25519",
  377. "RSA:P-256",
  378. "P-256:RSA",
  379. "X25519:P-256:",
  380. ":X25519:P-256",
  381. };
  382. static std::string CipherListToString(SSL_CTX *ctx) {
  383. bool in_group = false;
  384. std::string ret;
  385. const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx);
  386. for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
  387. const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i);
  388. if (!in_group && SSL_CTX_cipher_in_group(ctx, i)) {
  389. ret += "\t[\n";
  390. in_group = true;
  391. }
  392. ret += "\t";
  393. if (in_group) {
  394. ret += " ";
  395. }
  396. ret += SSL_CIPHER_get_name(cipher);
  397. ret += "\n";
  398. if (in_group && !SSL_CTX_cipher_in_group(ctx, i)) {
  399. ret += "\t]\n";
  400. in_group = false;
  401. }
  402. }
  403. return ret;
  404. }
  405. static bool CipherListsEqual(SSL_CTX *ctx,
  406. const std::vector<ExpectedCipher> &expected) {
  407. const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx);
  408. if (sk_SSL_CIPHER_num(ciphers) != expected.size()) {
  409. return false;
  410. }
  411. for (size_t i = 0; i < expected.size(); i++) {
  412. const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i);
  413. if (expected[i].id != SSL_CIPHER_get_id(cipher) ||
  414. expected[i].in_group_flag != !!SSL_CTX_cipher_in_group(ctx, i)) {
  415. return false;
  416. }
  417. }
  418. return true;
  419. }
  420. TEST(SSLTest, CipherRules) {
  421. for (const CipherTest &t : kCipherTests) {
  422. SCOPED_TRACE(t.rule);
  423. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  424. ASSERT_TRUE(ctx);
  425. // Test lax mode.
  426. ASSERT_TRUE(SSL_CTX_set_cipher_list(ctx.get(), t.rule));
  427. EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected))
  428. << "Cipher rule evaluated to:\n"
  429. << CipherListToString(ctx.get());
  430. // Test strict mode.
  431. if (t.strict_fail) {
  432. EXPECT_FALSE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule));
  433. } else {
  434. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule));
  435. EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected))
  436. << "Cipher rule evaluated to:\n"
  437. << CipherListToString(ctx.get());
  438. }
  439. }
  440. for (const char *rule : kBadRules) {
  441. SCOPED_TRACE(rule);
  442. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  443. ASSERT_TRUE(ctx);
  444. EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), rule));
  445. ERR_clear_error();
  446. }
  447. for (const char *rule : kMustNotIncludeNull) {
  448. SCOPED_TRACE(rule);
  449. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  450. ASSERT_TRUE(ctx);
  451. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule));
  452. for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) {
  453. EXPECT_NE(NID_undef, SSL_CIPHER_get_cipher_nid(cipher));
  454. }
  455. }
  456. }
  457. TEST(SSLTest, CurveRules) {
  458. for (const CurveTest &t : kCurveTests) {
  459. SCOPED_TRACE(t.rule);
  460. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  461. ASSERT_TRUE(ctx);
  462. ASSERT_TRUE(SSL_CTX_set1_curves_list(ctx.get(), t.rule));
  463. ASSERT_EQ(t.expected.size(), ctx->supported_group_list_len);
  464. for (size_t i = 0; i < t.expected.size(); i++) {
  465. EXPECT_EQ(t.expected[i], ctx->supported_group_list[i]);
  466. }
  467. }
  468. for (const char *rule : kBadCurvesLists) {
  469. SCOPED_TRACE(rule);
  470. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  471. ASSERT_TRUE(ctx);
  472. EXPECT_FALSE(SSL_CTX_set1_curves_list(ctx.get(), rule));
  473. ERR_clear_error();
  474. }
  475. }
  476. // kOpenSSLSession is a serialized SSL_SESSION.
  477. static const char kOpenSSLSession[] =
  478. "MIIFqgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  479. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  480. "IWoJoQYCBFRDO46iBAICASyjggR6MIIEdjCCA16gAwIBAgIIK9dUvsPWSlUwDQYJ"
  481. "KoZIhvcNAQEFBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
  482. "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTQxMDA4"
  483. "MTIwNzU3WhcNMTUwMTA2MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
  484. "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
  485. "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
  486. "AQUAA4IBDwAwggEKAoIBAQCcKeLrplAC+Lofy8t/wDwtB6eu72CVp0cJ4V3lknN6"
  487. "huH9ct6FFk70oRIh/VBNBBz900jYy+7111Jm1b8iqOTQ9aT5C7SEhNcQFJvqzH3e"
  488. "MPkb6ZSWGm1yGF7MCQTGQXF20Sk/O16FSjAynU/b3oJmOctcycWYkY0ytS/k3LBu"
  489. "Id45PJaoMqjB0WypqvNeJHC3q5JjCB4RP7Nfx5jjHSrCMhw8lUMW4EaDxjaR9KDh"
  490. "PLgjsk+LDIySRSRDaCQGhEOWLJZVLzLo4N6/UlctCHEllpBUSvEOyFga52qroGjg"
  491. "rf3WOQ925MFwzd6AK+Ich0gDRg8sQfdLH5OuP1cfLfU1AgMBAAGjggFBMIIBPTAd"
  492. "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
  493. "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
  494. "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
  495. "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBQ7a+CcxsZByOpc+xpYFcIbnUMZ"
  496. "hTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
  497. "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
  498. "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQCa"
  499. "OXCBdoqUy5bxyq+Wrh1zsyyCFim1PH5VU2+yvDSWrgDY8ibRGJmfff3r4Lud5kal"
  500. "dKs9k8YlKD3ITG7P0YT/Rk8hLgfEuLcq5cc0xqmE42xJ+Eo2uzq9rYorc5emMCxf"
  501. "5L0TJOXZqHQpOEcuptZQ4OjdYMfSxk5UzueUhA3ogZKRcRkdB3WeWRp+nYRhx4St"
  502. "o2rt2A0MKmY9165GHUqMK9YaaXHDXqBu7Sefr1uSoAP9gyIJKeihMivsGqJ1TD6Z"
  503. "cc6LMe+dN2P8cZEQHtD1y296ul4Mivqk3jatUVL8/hCwgch9A8O4PGZq9WqBfEWm"
  504. "IyHh1dPtbg1lOXdYCWtjpAIEAKUDAgEUqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36S"
  505. "YTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9B"
  506. "sNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yE"
  507. "OTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdA"
  508. "i4gv7Y5oliyntgMBAQA=";
  509. // kCustomSession is a custom serialized SSL_SESSION generated by
  510. // filling in missing fields from |kOpenSSLSession|. This includes
  511. // providing |peer_sha256|, so |peer| is not serialized.
  512. static const char kCustomSession[] =
  513. "MIIBZAIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  514. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  515. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUqAcEBXdvcmxkqQUCAwGJwKqBpwSB"
  516. "pBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38"
  517. "VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd"
  518. "3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hg"
  519. "b+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYGBgYGBgYGBgYGBgYGBgYGBgYG"
  520. "BgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
  521. // kBoringSSLSession is a serialized SSL_SESSION generated from bssl client.
  522. static const char kBoringSSLSession[] =
  523. "MIIRwQIBAQICAwMEAsAvBCDdoGxGK26mR+8lM0uq6+k9xYuxPnwAjpcF9n0Yli9R"
  524. "kQQwbyshfWhdi5XQ1++7n2L1qqrcVlmHBPpr6yknT/u4pUrpQB5FZ7vqvNn8MdHf"
  525. "9rWgoQYCBFXgs7uiBAICHCCjggR6MIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJ"
  526. "KoZIhvcNAQELBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
  527. "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEy"
  528. "MTQ1MzE1WhcNMTUxMTEwMDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
  529. "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
  530. "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
  531. "AQUAA4IBDwAwggEKAoIBAQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpo"
  532. "PLuBinvhkXZo3DC133NpCBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU"
  533. "792c7hFyNXSUCG7At8Ifi3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mce"
  534. "Tv9iGKqSkSTlp8puy/9SZ/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/"
  535. "RCh8/UKc8PaL+cxlt531qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eL"
  536. "EucWQ72YZU8mUzXBoXGn0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAd"
  537. "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
  538. "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
  539. "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
  540. "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjG"
  541. "GjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
  542. "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
  543. "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAb"
  544. "qdWPZEHk0X7iKPCTHL6S3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovE"
  545. "kQZSHwT+pyOPWQhsSjO+1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXd"
  546. "X+s0WdbOpn6MStKAiBVloPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+"
  547. "n0OTucD9sHV7EVj9XUxi51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779a"
  548. "f07vR03r349Iz/KTzk95rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1y"
  549. "TTlM80jBMOwyjZXmjRAhpAIEAKUDAgEUqQUCAwGJwKqBpwSBpOgebbmn9NRUtMWH"
  550. "+eJpqA5JLMFSMCChOsvKey3toBaCNGU7HfAEiiXNuuAdCBoK262BjQc2YYfqFzqH"
  551. "zuppopXCvhohx7j/tnCNZIMgLYt/O9SXK2RYI5z8FhCCHvB4CbD5G0LGl5EFP27s"
  552. "Jb6S3aTTYPkQe8yZSlxevg6NDwmTogLO9F7UUkaYmVcMQhzssEE2ZRYNwSOU6KjE"
  553. "0Yj+8fAiBtbQriIEIN2L8ZlpaVrdN5KFNdvcmOxJu81P8q53X55xQyGTnGWwsgMC"
  554. "ARezggvvMIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJKoZIhvcNAQELBQAwSTEL"
  555. "MAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2ds"
  556. "ZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEyMTQ1MzE1WhcNMTUxMTEw"
  557. "MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG"
  558. "A1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UE"
  559. "AwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB"
  560. "AQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpoPLuBinvhkXZo3DC133Np"
  561. "CBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU792c7hFyNXSUCG7At8If"
  562. "i3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mceTv9iGKqSkSTlp8puy/9S"
  563. "Z/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/RCh8/UKc8PaL+cxlt531"
  564. "qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eLEucWQ72YZU8mUzXBoXGn"
  565. "0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEF"
  566. "BQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYB"
  567. "BQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB"
  568. "RzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9v"
  569. "Y3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjGGjAMBgNVHRMBAf8EAjAA"
  570. "MB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYK"
  571. "KwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5j"
  572. "b20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAbqdWPZEHk0X7iKPCTHL6S"
  573. "3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovEkQZSHwT+pyOPWQhsSjO+"
  574. "1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXdX+s0WdbOpn6MStKAiBVl"
  575. "oPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+n0OTucD9sHV7EVj9XUxi"
  576. "51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779af07vR03r349Iz/KTzk95"
  577. "rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1yTTlM80jBMOwyjZXmjRAh"
  578. "MIID8DCCAtigAwIBAgIDAjqDMA0GCSqGSIb3DQEBCwUAMEIxCzAJBgNVBAYTAlVT"
  579. "MRYwFAYDVQQKEw1HZW9UcnVzdCBJbmMuMRswGQYDVQQDExJHZW9UcnVzdCBHbG9i"
  580. "YWwgQ0EwHhcNMTMwNDA1MTUxNTU2WhcNMTYxMjMxMjM1OTU5WjBJMQswCQYDVQQG"
  581. "EwJVUzETMBEGA1UEChMKR29vZ2xlIEluYzElMCMGA1UEAxMcR29vZ2xlIEludGVy"
  582. "bmV0IEF1dGhvcml0eSBHMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB"
  583. "AJwqBHdc2FCROgajguDYUEi8iT/xGXAaiEZ+4I/F8YnOIe5a/mENtzJEiaB0C1NP"
  584. "VaTOgmKV7utZX8bhBYASxF6UP7xbSDj0U/ck5vuR6RXEz/RTDfRK/J9U3n2+oGtv"
  585. "h8DQUB8oMANA2ghzUWx//zo8pzcGjr1LEQTrfSTe5vn8MXH7lNVg8y5Kr0LSy+rE"
  586. "ahqyzFPdFUuLH8gZYR/Nnag+YyuENWllhMgZxUYi+FOVvuOAShDGKuy6lyARxzmZ"
  587. "EASg8GF6lSWMTlJ14rbtCMoU/M4iarNOz0YDl5cDfsCx3nuvRTPPuj5xt970JSXC"
  588. "DTWJnZ37DhF5iR43xa+OcmkCAwEAAaOB5zCB5DAfBgNVHSMEGDAWgBTAephojYn7"
  589. "qwVkDBF9qn1luMrMTjAdBgNVHQ4EFgQUSt0GFhu89mi1dvWBtrtiGrpagS8wDgYD"
  590. "VR0PAQH/BAQDAgEGMC4GCCsGAQUFBwEBBCIwIDAeBggrBgEFBQcwAYYSaHR0cDov"
  591. "L2cuc3ltY2QuY29tMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCig"
  592. "JoYkaHR0cDovL2cuc3ltY2IuY29tL2NybHMvZ3RnbG9iYWwuY3JsMBcGA1UdIAQQ"
  593. "MA4wDAYKKwYBBAHWeQIFATANBgkqhkiG9w0BAQsFAAOCAQEAqvqpIM1qZ4PtXtR+"
  594. "3h3Ef+AlBgDFJPupyC1tft6dgmUsgWM0Zj7pUsIItMsv91+ZOmqcUHqFBYx90SpI"
  595. "hNMJbHzCzTWf84LuUt5oX+QAihcglvcpjZpNy6jehsgNb1aHA30DP9z6eX0hGfnI"
  596. "Oi9RdozHQZJxjyXON/hKTAAj78Q1EK7gI4BzfE00LshukNYQHpmEcxpw8u1VDu4X"
  597. "Bupn7jLrLN1nBz/2i8Jw3lsA5rsb0zYaImxssDVCbJAJPZPpZAkiDoUGn8JzIdPm"
  598. "X4DkjYUiOnMDsWCOrmji9D6X52ASCWg23jrW4kOVWzeBkoEfu43XrVJkFleW2V40"
  599. "fsg12DCCA30wggLmoAMCAQICAxK75jANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQG"
  600. "EwJVUzEQMA4GA1UEChMHRXF1aWZheDEtMCsGA1UECxMkRXF1aWZheCBTZWN1cmUg"
  601. "Q2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTAyMDUyMTA0MDAwMFoXDTE4MDgyMTA0"
  602. "MDAwMFowQjELMAkGA1UEBhMCVVMxFjAUBgNVBAoTDUdlb1RydXN0IEluYy4xGzAZ"
  603. "BgNVBAMTEkdlb1RydXN0IEdsb2JhbCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEP"
  604. "ADCCAQoCggEBANrMGGMw/fQXIxpWflvfPGw45HG3eJHUvKHYTPioQ7YD6U0hBwiI"
  605. "2lgvZjkpvQV4i5046AW3an5xpObEYKaw74DkiSgPniXW7YPzraaRx5jJQhg1FJ2t"
  606. "mEaSLk/K8YdDwRaVVy1Q74ktgHpXrfLuX2vSAI25FPgUFTXZwEaje3LIkb/JVSvN"
  607. "0Jc+nCZkzN/Ogxlxyk7m1NV7qRnNVd7I7NJeOFPlXE+MLf5QIzb8ZubLjqQ5GQC3"
  608. "lQI5kQsO/jgu0R0FmvZNPm8PBx2vLB6PYDni+jZTEznUXiYr2z2oFL0y6xgDKFIE"
  609. "ceWrMz3hOLsHNoRinHnqFjD0X8Ar6HFr5PkCAwEAAaOB8DCB7TAfBgNVHSMEGDAW"
  610. "gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHQ4EFgQUwHqYaI2J+6sFZAwRfap9"
  611. "ZbjKzE4wDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwOgYDVR0fBDMw"
  612. "MTAvoC2gK4YpaHR0cDovL2NybC5nZW90cnVzdC5jb20vY3Jscy9zZWN1cmVjYS5j"
  613. "cmwwTgYDVR0gBEcwRTBDBgRVHSAAMDswOQYIKwYBBQUHAgEWLWh0dHBzOi8vd3d3"
  614. "Lmdlb3RydXN0LmNvbS9yZXNvdXJjZXMvcmVwb3NpdG9yeTANBgkqhkiG9w0BAQUF"
  615. "AAOBgQB24RJuTksWEoYwBrKBCM/wCMfHcX5m7sLt1Dsf//DwyE7WQziwuTB9GNBV"
  616. "g6JqyzYRnOhIZqNtf7gT1Ef+i1pcc/yu2RsyGTirlzQUqpbS66McFAhJtrvlke+D"
  617. "NusdVm/K2rxzY5Dkf3s+Iss9B+1fOHSc4wNQTqGvmO5h8oQ/Eg==";
  618. // kBadSessionExtraField is a custom serialized SSL_SESSION generated by replacing
  619. // the final (optional) element of |kCustomSession| with tag number 30.
  620. static const char kBadSessionExtraField[] =
  621. "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  622. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  623. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  624. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  625. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  626. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  627. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  628. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBL4DBAEF";
  629. // kBadSessionVersion is a custom serialized SSL_SESSION generated by replacing
  630. // the version of |kCustomSession| with 2.
  631. static const char kBadSessionVersion[] =
  632. "MIIBdgIBAgICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  633. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  634. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  635. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  636. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  637. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  638. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  639. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
  640. // kBadSessionTrailingData is a custom serialized SSL_SESSION with trailing data
  641. // appended.
  642. static const char kBadSessionTrailingData[] =
  643. "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  644. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  645. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  646. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  647. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  648. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  649. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  650. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEFAAAA";
  651. static bool DecodeBase64(std::vector<uint8_t> *out, const char *in) {
  652. size_t len;
  653. if (!EVP_DecodedLength(&len, strlen(in))) {
  654. fprintf(stderr, "EVP_DecodedLength failed\n");
  655. return false;
  656. }
  657. out->resize(len);
  658. if (!EVP_DecodeBase64(out->data(), &len, len, (const uint8_t *)in,
  659. strlen(in))) {
  660. fprintf(stderr, "EVP_DecodeBase64 failed\n");
  661. return false;
  662. }
  663. out->resize(len);
  664. return true;
  665. }
  666. static bool TestSSL_SESSIONEncoding(const char *input_b64) {
  667. const uint8_t *cptr;
  668. uint8_t *ptr;
  669. // Decode the input.
  670. std::vector<uint8_t> input;
  671. if (!DecodeBase64(&input, input_b64)) {
  672. return false;
  673. }
  674. // Verify the SSL_SESSION decodes.
  675. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  676. if (!ssl_ctx) {
  677. return false;
  678. }
  679. bssl::UniquePtr<SSL_SESSION> session(
  680. SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
  681. if (!session) {
  682. fprintf(stderr, "SSL_SESSION_from_bytes failed\n");
  683. return false;
  684. }
  685. // Verify the SSL_SESSION encoding round-trips.
  686. size_t encoded_len;
  687. bssl::UniquePtr<uint8_t> encoded;
  688. uint8_t *encoded_raw;
  689. if (!SSL_SESSION_to_bytes(session.get(), &encoded_raw, &encoded_len)) {
  690. fprintf(stderr, "SSL_SESSION_to_bytes failed\n");
  691. return false;
  692. }
  693. encoded.reset(encoded_raw);
  694. if (encoded_len != input.size() ||
  695. OPENSSL_memcmp(input.data(), encoded.get(), input.size()) != 0) {
  696. fprintf(stderr, "SSL_SESSION_to_bytes did not round-trip\n");
  697. hexdump(stderr, "Before: ", input.data(), input.size());
  698. hexdump(stderr, "After: ", encoded_raw, encoded_len);
  699. return false;
  700. }
  701. // Verify the SSL_SESSION also decodes with the legacy API.
  702. cptr = input.data();
  703. session.reset(d2i_SSL_SESSION(NULL, &cptr, input.size()));
  704. if (!session || cptr != input.data() + input.size()) {
  705. fprintf(stderr, "d2i_SSL_SESSION failed\n");
  706. return false;
  707. }
  708. // Verify the SSL_SESSION encoding round-trips via the legacy API.
  709. int len = i2d_SSL_SESSION(session.get(), NULL);
  710. if (len < 0 || (size_t)len != input.size()) {
  711. fprintf(stderr, "i2d_SSL_SESSION(NULL) returned invalid length\n");
  712. return false;
  713. }
  714. encoded.reset((uint8_t *)OPENSSL_malloc(input.size()));
  715. if (!encoded) {
  716. fprintf(stderr, "malloc failed\n");
  717. return false;
  718. }
  719. ptr = encoded.get();
  720. len = i2d_SSL_SESSION(session.get(), &ptr);
  721. if (len < 0 || (size_t)len != input.size()) {
  722. fprintf(stderr, "i2d_SSL_SESSION returned invalid length\n");
  723. return false;
  724. }
  725. if (ptr != encoded.get() + input.size()) {
  726. fprintf(stderr, "i2d_SSL_SESSION did not advance ptr correctly\n");
  727. return false;
  728. }
  729. if (OPENSSL_memcmp(input.data(), encoded.get(), input.size()) != 0) {
  730. fprintf(stderr, "i2d_SSL_SESSION did not round-trip\n");
  731. return false;
  732. }
  733. return true;
  734. }
  735. static bool TestBadSSL_SESSIONEncoding(const char *input_b64) {
  736. std::vector<uint8_t> input;
  737. if (!DecodeBase64(&input, input_b64)) {
  738. return false;
  739. }
  740. // Verify that the SSL_SESSION fails to decode.
  741. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  742. if (!ssl_ctx) {
  743. return false;
  744. }
  745. bssl::UniquePtr<SSL_SESSION> session(
  746. SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
  747. if (session) {
  748. fprintf(stderr, "SSL_SESSION_from_bytes unexpectedly succeeded\n");
  749. return false;
  750. }
  751. ERR_clear_error();
  752. return true;
  753. }
  754. static void ExpectDefaultVersion(uint16_t min_version, uint16_t max_version,
  755. const SSL_METHOD *(*method)(void)) {
  756. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method()));
  757. ASSERT_TRUE(ctx);
  758. EXPECT_EQ(min_version, ctx->conf_min_version);
  759. EXPECT_EQ(max_version, ctx->conf_max_version);
  760. }
  761. TEST(SSLTest, DefaultVersion) {
  762. // TODO(svaldez): Update this when TLS 1.3 is enabled by default.
  763. ExpectDefaultVersion(TLS1_VERSION, TLS1_2_VERSION, &TLS_method);
  764. ExpectDefaultVersion(TLS1_VERSION, TLS1_VERSION, &TLSv1_method);
  765. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &TLSv1_1_method);
  766. ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &TLSv1_2_method);
  767. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_2_VERSION, &DTLS_method);
  768. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &DTLSv1_method);
  769. ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &DTLSv1_2_method);
  770. }
  771. TEST(SSLTest, CipherProperties) {
  772. static const struct {
  773. int id;
  774. const char *standard_name;
  775. int cipher_nid;
  776. int digest_nid;
  777. int kx_nid;
  778. int auth_nid;
  779. int prf_nid;
  780. } kTests[] = {
  781. {
  782. SSL3_CK_RSA_DES_192_CBC3_SHA,
  783. "TLS_RSA_WITH_3DES_EDE_CBC_SHA",
  784. NID_des_ede3_cbc,
  785. NID_sha1,
  786. NID_kx_rsa,
  787. NID_auth_rsa,
  788. NID_md5_sha1,
  789. },
  790. {
  791. TLS1_CK_RSA_WITH_AES_128_SHA,
  792. "TLS_RSA_WITH_AES_128_CBC_SHA",
  793. NID_aes_128_cbc,
  794. NID_sha1,
  795. NID_kx_rsa,
  796. NID_auth_rsa,
  797. NID_md5_sha1,
  798. },
  799. {
  800. TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
  801. "TLS_PSK_WITH_AES_256_CBC_SHA",
  802. NID_aes_256_cbc,
  803. NID_sha1,
  804. NID_kx_psk,
  805. NID_auth_psk,
  806. NID_md5_sha1,
  807. },
  808. {
  809. TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
  810. "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
  811. NID_aes_128_cbc,
  812. NID_sha1,
  813. NID_kx_ecdhe,
  814. NID_auth_rsa,
  815. NID_md5_sha1,
  816. },
  817. {
  818. TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
  819. "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
  820. NID_aes_256_cbc,
  821. NID_sha1,
  822. NID_kx_ecdhe,
  823. NID_auth_rsa,
  824. NID_md5_sha1,
  825. },
  826. {
  827. TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  828. "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
  829. NID_aes_128_gcm,
  830. NID_undef,
  831. NID_kx_ecdhe,
  832. NID_auth_rsa,
  833. NID_sha256,
  834. },
  835. {
  836. TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  837. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
  838. NID_aes_128_gcm,
  839. NID_undef,
  840. NID_kx_ecdhe,
  841. NID_auth_ecdsa,
  842. NID_sha256,
  843. },
  844. {
  845. TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  846. "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
  847. NID_aes_256_gcm,
  848. NID_undef,
  849. NID_kx_ecdhe,
  850. NID_auth_ecdsa,
  851. NID_sha384,
  852. },
  853. {
  854. TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
  855. "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA",
  856. NID_aes_128_cbc,
  857. NID_sha1,
  858. NID_kx_ecdhe,
  859. NID_auth_psk,
  860. NID_md5_sha1,
  861. },
  862. {
  863. TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
  864. "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
  865. NID_chacha20_poly1305,
  866. NID_undef,
  867. NID_kx_ecdhe,
  868. NID_auth_rsa,
  869. NID_sha256,
  870. },
  871. {
  872. TLS1_CK_AES_256_GCM_SHA384,
  873. "TLS_AES_256_GCM_SHA384",
  874. NID_aes_256_gcm,
  875. NID_undef,
  876. NID_kx_any,
  877. NID_auth_any,
  878. NID_sha384,
  879. },
  880. {
  881. TLS1_CK_AES_128_GCM_SHA256,
  882. "TLS_AES_128_GCM_SHA256",
  883. NID_aes_128_gcm,
  884. NID_undef,
  885. NID_kx_any,
  886. NID_auth_any,
  887. NID_sha256,
  888. },
  889. {
  890. TLS1_CK_CHACHA20_POLY1305_SHA256,
  891. "TLS_CHACHA20_POLY1305_SHA256",
  892. NID_chacha20_poly1305,
  893. NID_undef,
  894. NID_kx_any,
  895. NID_auth_any,
  896. NID_sha256,
  897. },
  898. };
  899. for (const auto &t : kTests) {
  900. SCOPED_TRACE(t.standard_name);
  901. const SSL_CIPHER *cipher = SSL_get_cipher_by_value(t.id & 0xffff);
  902. ASSERT_TRUE(cipher);
  903. EXPECT_STREQ(t.standard_name, SSL_CIPHER_standard_name(cipher));
  904. bssl::UniquePtr<char> rfc_name(SSL_CIPHER_get_rfc_name(cipher));
  905. ASSERT_TRUE(rfc_name);
  906. EXPECT_STREQ(t.standard_name, rfc_name.get());
  907. EXPECT_EQ(t.cipher_nid, SSL_CIPHER_get_cipher_nid(cipher));
  908. EXPECT_EQ(t.digest_nid, SSL_CIPHER_get_digest_nid(cipher));
  909. EXPECT_EQ(t.kx_nid, SSL_CIPHER_get_kx_nid(cipher));
  910. EXPECT_EQ(t.auth_nid, SSL_CIPHER_get_auth_nid(cipher));
  911. EXPECT_EQ(t.prf_nid, SSL_CIPHER_get_prf_nid(cipher));
  912. }
  913. }
  914. // CreateSessionWithTicket returns a sample |SSL_SESSION| with the specified
  915. // version and ticket length or nullptr on failure.
  916. static bssl::UniquePtr<SSL_SESSION> CreateSessionWithTicket(uint16_t version,
  917. size_t ticket_len) {
  918. std::vector<uint8_t> der;
  919. if (!DecodeBase64(&der, kOpenSSLSession)) {
  920. return nullptr;
  921. }
  922. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  923. if (!ssl_ctx) {
  924. return nullptr;
  925. }
  926. bssl::UniquePtr<SSL_SESSION> session(
  927. SSL_SESSION_from_bytes(der.data(), der.size(), ssl_ctx.get()));
  928. if (!session) {
  929. return nullptr;
  930. }
  931. session->ssl_version = version;
  932. // Swap out the ticket for a garbage one.
  933. OPENSSL_free(session->tlsext_tick);
  934. session->tlsext_tick = reinterpret_cast<uint8_t*>(OPENSSL_malloc(ticket_len));
  935. if (session->tlsext_tick == nullptr) {
  936. return nullptr;
  937. }
  938. OPENSSL_memset(session->tlsext_tick, 'a', ticket_len);
  939. session->tlsext_ticklen = ticket_len;
  940. // Fix up the timeout.
  941. #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
  942. session->time = 1234;
  943. #else
  944. session->time = time(NULL);
  945. #endif
  946. return session;
  947. }
  948. static bool GetClientHello(SSL *ssl, std::vector<uint8_t> *out) {
  949. bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
  950. if (!bio) {
  951. return false;
  952. }
  953. // Do not configure a reading BIO, but record what's written to a memory BIO.
  954. BIO_up_ref(bio.get());
  955. SSL_set_bio(ssl, nullptr /* rbio */, bio.get());
  956. int ret = SSL_connect(ssl);
  957. if (ret > 0) {
  958. // SSL_connect should fail without a BIO to write to.
  959. return false;
  960. }
  961. ERR_clear_error();
  962. const uint8_t *client_hello;
  963. size_t client_hello_len;
  964. if (!BIO_mem_contents(bio.get(), &client_hello, &client_hello_len)) {
  965. return false;
  966. }
  967. *out = std::vector<uint8_t>(client_hello, client_hello + client_hello_len);
  968. return true;
  969. }
  970. // GetClientHelloLen creates a client SSL connection with the specified version
  971. // and ticket length. It returns the length of the ClientHello, not including
  972. // the record header, on success and zero on error.
  973. static size_t GetClientHelloLen(uint16_t max_version, uint16_t session_version,
  974. size_t ticket_len) {
  975. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  976. bssl::UniquePtr<SSL_SESSION> session =
  977. CreateSessionWithTicket(session_version, ticket_len);
  978. if (!ctx || !session) {
  979. return 0;
  980. }
  981. // Set a one-element cipher list so the baseline ClientHello is unpadded.
  982. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  983. if (!ssl || !SSL_set_session(ssl.get(), session.get()) ||
  984. !SSL_set_strict_cipher_list(ssl.get(), "ECDHE-RSA-AES128-GCM-SHA256") ||
  985. !SSL_set_max_proto_version(ssl.get(), max_version)) {
  986. return 0;
  987. }
  988. std::vector<uint8_t> client_hello;
  989. if (!GetClientHello(ssl.get(), &client_hello) ||
  990. client_hello.size() <= SSL3_RT_HEADER_LENGTH) {
  991. return 0;
  992. }
  993. return client_hello.size() - SSL3_RT_HEADER_LENGTH;
  994. }
  995. struct PaddingTest {
  996. size_t input_len, padded_len;
  997. };
  998. static const PaddingTest kPaddingTests[] = {
  999. // ClientHellos of length below 0x100 do not require padding.
  1000. {0xfe, 0xfe},
  1001. {0xff, 0xff},
  1002. // ClientHellos of length 0x100 through 0x1fb are padded up to 0x200.
  1003. {0x100, 0x200},
  1004. {0x123, 0x200},
  1005. {0x1fb, 0x200},
  1006. // ClientHellos of length 0x1fc through 0x1ff get padded beyond 0x200. The
  1007. // padding extension takes a minimum of four bytes plus one required content
  1008. // byte. (To work around yet more server bugs, we avoid empty final
  1009. // extensions.)
  1010. {0x1fc, 0x201},
  1011. {0x1fd, 0x202},
  1012. {0x1fe, 0x203},
  1013. {0x1ff, 0x204},
  1014. // Finally, larger ClientHellos need no padding.
  1015. {0x200, 0x200},
  1016. {0x201, 0x201},
  1017. };
  1018. static bool TestPaddingExtension(uint16_t max_version,
  1019. uint16_t session_version) {
  1020. // Sample a baseline length.
  1021. size_t base_len = GetClientHelloLen(max_version, session_version, 1);
  1022. if (base_len == 0) {
  1023. return false;
  1024. }
  1025. for (const PaddingTest &test : kPaddingTests) {
  1026. if (base_len > test.input_len) {
  1027. fprintf(stderr,
  1028. "Baseline ClientHello too long (max_version = %04x, "
  1029. "session_version = %04x).\n",
  1030. max_version, session_version);
  1031. return false;
  1032. }
  1033. size_t padded_len = GetClientHelloLen(max_version, session_version,
  1034. 1 + test.input_len - base_len);
  1035. if (padded_len != test.padded_len) {
  1036. fprintf(stderr,
  1037. "%u-byte ClientHello padded to %u bytes, not %u (max_version = "
  1038. "%04x, session_version = %04x).\n",
  1039. static_cast<unsigned>(test.input_len),
  1040. static_cast<unsigned>(padded_len),
  1041. static_cast<unsigned>(test.padded_len), max_version,
  1042. session_version);
  1043. return false;
  1044. }
  1045. }
  1046. return true;
  1047. }
  1048. static bssl::UniquePtr<X509> GetTestCertificate() {
  1049. static const char kCertPEM[] =
  1050. "-----BEGIN CERTIFICATE-----\n"
  1051. "MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n"
  1052. "BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n"
  1053. "aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n"
  1054. "MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n"
  1055. "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n"
  1056. "gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n"
  1057. "HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n"
  1058. "W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n"
  1059. "HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n"
  1060. "Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n"
  1061. "ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n"
  1062. "T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n"
  1063. "j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n"
  1064. "-----END CERTIFICATE-----\n";
  1065. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
  1066. return bssl::UniquePtr<X509>(
  1067. PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
  1068. }
  1069. static bssl::UniquePtr<EVP_PKEY> GetTestKey() {
  1070. static const char kKeyPEM[] =
  1071. "-----BEGIN RSA PRIVATE KEY-----\n"
  1072. "MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92\n"
  1073. "kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF\n"
  1074. "KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB\n"
  1075. "AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe\n"
  1076. "i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+\n"
  1077. "WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ\n"
  1078. "m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj\n"
  1079. "QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk\n"
  1080. "aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj\n"
  1081. "LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk\n"
  1082. "104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/\n"
  1083. "tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd\n"
  1084. "moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==\n"
  1085. "-----END RSA PRIVATE KEY-----\n";
  1086. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1087. return bssl::UniquePtr<EVP_PKEY>(
  1088. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1089. }
  1090. static bssl::UniquePtr<X509> GetECDSATestCertificate() {
  1091. static const char kCertPEM[] =
  1092. "-----BEGIN CERTIFICATE-----\n"
  1093. "MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n"
  1094. "QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp\n"
  1095. "dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ\n"
  1096. "BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l\n"
  1097. "dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni\n"
  1098. "v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa\n"
  1099. "HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw\n"
  1100. "HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ\n"
  1101. "BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E\n"
  1102. "BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=\n"
  1103. "-----END CERTIFICATE-----\n";
  1104. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
  1105. return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
  1106. }
  1107. static bssl::UniquePtr<EVP_PKEY> GetECDSATestKey() {
  1108. static const char kKeyPEM[] =
  1109. "-----BEGIN PRIVATE KEY-----\n"
  1110. "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ\n"
  1111. "TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N\n"
  1112. "Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB\n"
  1113. "-----END PRIVATE KEY-----\n";
  1114. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1115. return bssl::UniquePtr<EVP_PKEY>(
  1116. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1117. }
  1118. static bssl::UniquePtr<CRYPTO_BUFFER> BufferFromPEM(const char *pem) {
  1119. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem)));
  1120. char *name, *header;
  1121. uint8_t *data;
  1122. long data_len;
  1123. if (!PEM_read_bio(bio.get(), &name, &header, &data,
  1124. &data_len)) {
  1125. return nullptr;
  1126. }
  1127. OPENSSL_free(name);
  1128. OPENSSL_free(header);
  1129. auto ret = bssl::UniquePtr<CRYPTO_BUFFER>(
  1130. CRYPTO_BUFFER_new(data, data_len, nullptr));
  1131. OPENSSL_free(data);
  1132. return ret;
  1133. }
  1134. static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestCertificateBuffer() {
  1135. static const char kCertPEM[] =
  1136. "-----BEGIN CERTIFICATE-----\n"
  1137. "MIIC0jCCAbqgAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwDzENMAsGA1UEAwwEQiBD\n"
  1138. "QTAeFw0xNjAyMjgyMDI3MDNaFw0yNjAyMjUyMDI3MDNaMBgxFjAUBgNVBAMMDUNs\n"
  1139. "aWVudCBDZXJ0IEEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDRvaz8\n"
  1140. "CC/cshpCafJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/\n"
  1141. "kLRcH89M/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3\n"
  1142. "tHb+xs2PSs8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+c\n"
  1143. "IDs2rQ+lP7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1\n"
  1144. "z7C8jU50Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9V\n"
  1145. "iLeXANgZi+Xx9KgfAgMBAAGjLzAtMAwGA1UdEwEB/wQCMAAwHQYDVR0lBBYwFAYI\n"
  1146. "KwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQBFEVbmYl+2RtNw\n"
  1147. "rDftRDF1v2QUbcN2ouSnQDHxeDQdSgasLzT3ui8iYu0Rw2WWcZ0DV5e0ztGPhWq7\n"
  1148. "AO0B120aFRMOY+4+bzu9Q2FFkQqc7/fKTvTDzIJI5wrMnFvUfzzvxh3OHWMYSs/w\n"
  1149. "giq33hTKeHEq6Jyk3btCny0Ycecyc3yGXH10sizUfiHlhviCkDuESk8mFDwDDzqW\n"
  1150. "ZF0IipzFbEDHoIxLlm3GQxpiLoEV4k8KYJp3R5KBLFyxM6UGPz8h72mIPCJp2RuK\n"
  1151. "MYgF91UDvVzvnYm6TfseM2+ewKirC00GOrZ7rEcFvtxnKSqYf4ckqfNdSU1Y+RRC\n"
  1152. "1ngWZ7Ih\n"
  1153. "-----END CERTIFICATE-----\n";
  1154. return BufferFromPEM(kCertPEM);
  1155. }
  1156. static bssl::UniquePtr<X509> X509FromBuffer(
  1157. bssl::UniquePtr<CRYPTO_BUFFER> buffer) {
  1158. if (!buffer) {
  1159. return nullptr;
  1160. }
  1161. const uint8_t *derp = CRYPTO_BUFFER_data(buffer.get());
  1162. return bssl::UniquePtr<X509>(
  1163. d2i_X509(NULL, &derp, CRYPTO_BUFFER_len(buffer.get())));
  1164. }
  1165. static bssl::UniquePtr<X509> GetChainTestCertificate() {
  1166. return X509FromBuffer(GetChainTestCertificateBuffer());
  1167. }
  1168. static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestIntermediateBuffer() {
  1169. static const char kCertPEM[] =
  1170. "-----BEGIN CERTIFICATE-----\n"
  1171. "MIICwjCCAaqgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwFDESMBAGA1UEAwwJQyBS\n"
  1172. "b290IENBMB4XDTE2MDIyODIwMjcwM1oXDTI2MDIyNTIwMjcwM1owDzENMAsGA1UE\n"
  1173. "AwwEQiBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALsSCYmDip2D\n"
  1174. "GkjFxw7ykz26JSjELkl6ArlYjFJ3aT/SCh8qbS4gln7RH8CPBd78oFdfhIKQrwtZ\n"
  1175. "3/q21ykD9BAS3qHe2YdcJfm8/kWAy5DvXk6NXU4qX334KofBAEpgdA/igEFq1P1l\n"
  1176. "HAuIfZCpMRfT+i5WohVsGi8f/NgpRvVaMONLNfgw57mz1lbtFeBEISmX0kbsuJxF\n"
  1177. "Qj/Bwhi5/0HAEXG8e7zN4cEx0yPRvmOATRdVb/8dW2pwOHRJq9R5M0NUkIsTSnL7\n"
  1178. "6N/z8hRAHMsV3IudC5Yd7GXW1AGu9a+iKU+Q4xcZCoj0DC99tL4VKujrV1kAeqsM\n"
  1179. "cz5/dKzi6+cCAwEAAaMjMCEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n"
  1180. "AQYwDQYJKoZIhvcNAQELBQADggEBAIIeZiEeNhWWQ8Y4D+AGDwqUUeG8NjCbKrXQ\n"
  1181. "BlHg5wZ8xftFaiP1Dp/UAezmx2LNazdmuwrYB8lm3FVTyaPDTKEGIPS4wJKHgqH1\n"
  1182. "QPDhqNm85ey7TEtI9oYjsNim/Rb+iGkIAMXaxt58SzxbjvP0kMr1JfJIZbic9vye\n"
  1183. "NwIspMFIpP3FB8ywyu0T0hWtCQgL4J47nigCHpOu58deP88fS/Nyz/fyGVWOZ76b\n"
  1184. "WhWwgM3P3X95fQ3d7oFPR/bVh0YV+Cf861INwplokXgXQ3/TCQ+HNXeAMWn3JLWv\n"
  1185. "XFwk8owk9dq/kQGdndGgy3KTEW4ctPX5GNhf3LJ9Q7dLji4ReQ4=\n"
  1186. "-----END CERTIFICATE-----\n";
  1187. return BufferFromPEM(kCertPEM);
  1188. }
  1189. static bssl::UniquePtr<X509> GetChainTestIntermediate() {
  1190. return X509FromBuffer(GetChainTestIntermediateBuffer());
  1191. }
  1192. static bssl::UniquePtr<EVP_PKEY> GetChainTestKey() {
  1193. static const char kKeyPEM[] =
  1194. "-----BEGIN PRIVATE KEY-----\n"
  1195. "MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDRvaz8CC/cshpC\n"
  1196. "afJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/kLRcH89M\n"
  1197. "/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3tHb+xs2P\n"
  1198. "Ss8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+cIDs2rQ+l\n"
  1199. "P7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1z7C8jU50\n"
  1200. "Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9ViLeXANgZ\n"
  1201. "i+Xx9KgfAgMBAAECggEBAK0VjSJzkyPaamcyTVSWjo7GdaBGcK60lk657RjR+lK0\n"
  1202. "YJ7pkej4oM2hdsVZFsP8Cs4E33nXLa/0pDsRov/qrp0WQm2skwqGMC1I/bZ0WRPk\n"
  1203. "wHaDrBBfESWnJDX/AGpVtlyOjPmgmK6J2usMPihQUDkKdAYrVWJePrMIxt1q6BMe\n"
  1204. "iczs3qriMmtY3bUc4UyUwJ5fhDLjshHvfuIpYQyI6EXZM6dZksn9LylXJnigY6QJ\n"
  1205. "HxOYO0BDwOsZ8yQ8J8afLk88i0GizEkgE1z3REtQUwgWfxr1WV/ud+T6/ZhSAgH9\n"
  1206. "042mQvSFZnIUSEsmCvjhWuAunfxHKCTcAoYISWfzWpkCgYEA7gpf3HHU5Tn+CgUn\n"
  1207. "1X5uGpG3DmcMgfeGgs2r2f/IIg/5Ac1dfYILiybL1tN9zbyLCJfcbFpWBc9hJL6f\n"
  1208. "CPc5hUiwWFJqBJewxQkC1Ae/HakHbip+IZ+Jr0842O4BAArvixk4Lb7/N2Ct9sTE\n"
  1209. "NJO6RtK9lbEZ5uK61DglHy8CS2UCgYEA4ZC1o36kPAMQBggajgnucb2yuUEelk0f\n"
  1210. "AEr+GI32MGE+93xMr7rAhBoqLg4AITyIfEnOSQ5HwagnIHonBbv1LV/Gf9ursx8Z\n"
  1211. "YOGbvT8zzzC+SU1bkDzdjAYnFQVGIjMtKOBJ3K07++ypwX1fr4QsQ8uKL8WSOWwt\n"
  1212. "Z3Bym6XiZzMCgYADnhy+2OwHX85AkLt+PyGlPbmuelpyTzS4IDAQbBa6jcuW/2wA\n"
  1213. "UE2km75VUXmD+u2R/9zVuLm99NzhFhSMqlUxdV1YukfqMfP5yp1EY6m/5aW7QuIP\n"
  1214. "2MDa7TVL9rIFMiVZ09RKvbBbQxjhuzPQKL6X/PPspnhiTefQ+dl2k9xREQKBgHDS\n"
  1215. "fMfGNEeAEKezrfSVqxphE9/tXms3L+ZpnCaT+yu/uEr5dTIAawKoQ6i9f/sf1/Sy\n"
  1216. "xedsqR+IB+oKrzIDDWMgoJybN4pkZ8E5lzhVQIjFjKgFdWLzzqyW9z1gYfABQPlN\n"
  1217. "FiS20WX0vgP1vcKAjdNrHzc9zyHBpgQzDmAj3NZZAoGBAI8vKCKdH7w3aL5CNkZQ\n"
  1218. "2buIeWNA2HZazVwAGG5F2TU/LmXfRKnG6dX5bkU+AkBZh56jNZy//hfFSewJB4Kk\n"
  1219. "buB7ERSdaNbO21zXt9FEA3+z0RfMd/Zv2vlIWOSB5nzl/7UKti3sribK6s9ZVLfi\n"
  1220. "SxpiPQ8d/hmSGwn4ksrWUsJD\n"
  1221. "-----END PRIVATE KEY-----\n";
  1222. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1223. return bssl::UniquePtr<EVP_PKEY>(
  1224. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1225. }
  1226. // Test that |SSL_get_client_CA_list| echoes back the configured parameter even
  1227. // before configuring as a server.
  1228. TEST(SSLTest, ClientCAList) {
  1229. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1230. ASSERT_TRUE(ctx);
  1231. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1232. ASSERT_TRUE(ssl);
  1233. bssl::UniquePtr<X509_NAME> name(X509_NAME_new());
  1234. ASSERT_TRUE(name);
  1235. bssl::UniquePtr<X509_NAME> name_dup(X509_NAME_dup(name.get()));
  1236. ASSERT_TRUE(name_dup);
  1237. bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null());
  1238. ASSERT_TRUE(stack);
  1239. ASSERT_TRUE(sk_X509_NAME_push(stack.get(), name_dup.get()));
  1240. name_dup.release();
  1241. // |SSL_set_client_CA_list| takes ownership.
  1242. SSL_set_client_CA_list(ssl.get(), stack.release());
  1243. STACK_OF(X509_NAME) *result = SSL_get_client_CA_list(ssl.get());
  1244. ASSERT_TRUE(result);
  1245. ASSERT_EQ(1u, sk_X509_NAME_num(result));
  1246. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(result, 0), name.get()));
  1247. }
  1248. TEST(SSLTest, AddClientCA) {
  1249. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1250. ASSERT_TRUE(ctx);
  1251. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1252. ASSERT_TRUE(ssl);
  1253. bssl::UniquePtr<X509> cert1 = GetTestCertificate();
  1254. bssl::UniquePtr<X509> cert2 = GetChainTestCertificate();
  1255. ASSERT_TRUE(cert1 && cert2);
  1256. X509_NAME *name1 = X509_get_subject_name(cert1.get());
  1257. X509_NAME *name2 = X509_get_subject_name(cert2.get());
  1258. EXPECT_EQ(0u, sk_X509_NAME_num(SSL_get_client_CA_list(ssl.get())));
  1259. ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get()));
  1260. ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert2.get()));
  1261. STACK_OF(X509_NAME) *list = SSL_get_client_CA_list(ssl.get());
  1262. ASSERT_EQ(2u, sk_X509_NAME_num(list));
  1263. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1));
  1264. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2));
  1265. ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get()));
  1266. list = SSL_get_client_CA_list(ssl.get());
  1267. ASSERT_EQ(3u, sk_X509_NAME_num(list));
  1268. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1));
  1269. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2));
  1270. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 2), name1));
  1271. }
  1272. static void AppendSession(SSL_SESSION *session, void *arg) {
  1273. std::vector<SSL_SESSION*> *out =
  1274. reinterpret_cast<std::vector<SSL_SESSION*>*>(arg);
  1275. out->push_back(session);
  1276. }
  1277. // CacheEquals returns true if |ctx|'s session cache consists of |expected|, in
  1278. // order.
  1279. static bool CacheEquals(SSL_CTX *ctx,
  1280. const std::vector<SSL_SESSION*> &expected) {
  1281. // Check the linked list.
  1282. SSL_SESSION *ptr = ctx->session_cache_head;
  1283. for (SSL_SESSION *session : expected) {
  1284. if (ptr != session) {
  1285. return false;
  1286. }
  1287. // TODO(davidben): This is an absurd way to denote the end of the list.
  1288. if (ptr->next ==
  1289. reinterpret_cast<SSL_SESSION *>(&ctx->session_cache_tail)) {
  1290. ptr = nullptr;
  1291. } else {
  1292. ptr = ptr->next;
  1293. }
  1294. }
  1295. if (ptr != nullptr) {
  1296. return false;
  1297. }
  1298. // Check the hash table.
  1299. std::vector<SSL_SESSION*> actual, expected_copy;
  1300. lh_SSL_SESSION_doall_arg(ctx->sessions, AppendSession, &actual);
  1301. expected_copy = expected;
  1302. std::sort(actual.begin(), actual.end());
  1303. std::sort(expected_copy.begin(), expected_copy.end());
  1304. return actual == expected_copy;
  1305. }
  1306. static bssl::UniquePtr<SSL_SESSION> CreateTestSession(uint32_t number) {
  1307. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  1308. if (!ssl_ctx) {
  1309. return nullptr;
  1310. }
  1311. bssl::UniquePtr<SSL_SESSION> ret(SSL_SESSION_new(ssl_ctx.get()));
  1312. if (!ret) {
  1313. return nullptr;
  1314. }
  1315. ret->session_id_length = SSL3_SSL_SESSION_ID_LENGTH;
  1316. OPENSSL_memset(ret->session_id, 0, ret->session_id_length);
  1317. OPENSSL_memcpy(ret->session_id, &number, sizeof(number));
  1318. return ret;
  1319. }
  1320. // Test that the internal session cache behaves as expected.
  1321. TEST(SSLTest, InternalSessionCache) {
  1322. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1323. ASSERT_TRUE(ctx);
  1324. // Prepare 10 test sessions.
  1325. std::vector<bssl::UniquePtr<SSL_SESSION>> sessions;
  1326. for (int i = 0; i < 10; i++) {
  1327. bssl::UniquePtr<SSL_SESSION> session = CreateTestSession(i);
  1328. ASSERT_TRUE(session);
  1329. sessions.push_back(std::move(session));
  1330. }
  1331. SSL_CTX_sess_set_cache_size(ctx.get(), 5);
  1332. // Insert all the test sessions.
  1333. for (const auto &session : sessions) {
  1334. ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), session.get()));
  1335. }
  1336. // Only the last five should be in the list.
  1337. ASSERT_TRUE(CacheEquals(
  1338. ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(),
  1339. sessions[6].get(), sessions[5].get()}));
  1340. // Inserting an element already in the cache should fail and leave the cache
  1341. // unchanged.
  1342. ASSERT_FALSE(SSL_CTX_add_session(ctx.get(), sessions[7].get()));
  1343. ASSERT_TRUE(CacheEquals(
  1344. ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(),
  1345. sessions[6].get(), sessions[5].get()}));
  1346. // Although collisions should be impossible (256-bit session IDs), the cache
  1347. // must handle them gracefully.
  1348. bssl::UniquePtr<SSL_SESSION> collision(CreateTestSession(7));
  1349. ASSERT_TRUE(collision);
  1350. ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), collision.get()));
  1351. ASSERT_TRUE(CacheEquals(
  1352. ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(),
  1353. sessions[6].get(), sessions[5].get()}));
  1354. // Removing sessions behaves correctly.
  1355. ASSERT_TRUE(SSL_CTX_remove_session(ctx.get(), sessions[6].get()));
  1356. ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(),
  1357. sessions[8].get(), sessions[5].get()}));
  1358. // Removing sessions requires an exact match.
  1359. ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[0].get()));
  1360. ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[7].get()));
  1361. // The cache remains unchanged.
  1362. ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(),
  1363. sessions[8].get(), sessions[5].get()}));
  1364. }
  1365. static uint16_t EpochFromSequence(uint64_t seq) {
  1366. return static_cast<uint16_t>(seq >> 48);
  1367. }
  1368. static const uint8_t kTestName[] = {
  1369. 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13,
  1370. 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08,
  1371. 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65,
  1372. 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49,
  1373. 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67,
  1374. 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64,
  1375. };
  1376. static bool CompleteHandshakes(SSL *client, SSL *server) {
  1377. // Drive both their handshakes to completion.
  1378. for (;;) {
  1379. int client_ret = SSL_do_handshake(client);
  1380. int client_err = SSL_get_error(client, client_ret);
  1381. if (client_err != SSL_ERROR_NONE &&
  1382. client_err != SSL_ERROR_WANT_READ &&
  1383. client_err != SSL_ERROR_WANT_WRITE &&
  1384. client_err != SSL_ERROR_PENDING_TICKET) {
  1385. fprintf(stderr, "Client error: %d\n", client_err);
  1386. return false;
  1387. }
  1388. int server_ret = SSL_do_handshake(server);
  1389. int server_err = SSL_get_error(server, server_ret);
  1390. if (server_err != SSL_ERROR_NONE &&
  1391. server_err != SSL_ERROR_WANT_READ &&
  1392. server_err != SSL_ERROR_WANT_WRITE &&
  1393. server_err != SSL_ERROR_PENDING_TICKET) {
  1394. fprintf(stderr, "Server error: %d\n", server_err);
  1395. return false;
  1396. }
  1397. if (client_ret == 1 && server_ret == 1) {
  1398. break;
  1399. }
  1400. }
  1401. return true;
  1402. }
  1403. struct ClientConfig {
  1404. SSL_SESSION *session = nullptr;
  1405. std::string servername;
  1406. };
  1407. static bool ConnectClientAndServer(bssl::UniquePtr<SSL> *out_client,
  1408. bssl::UniquePtr<SSL> *out_server,
  1409. SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1410. const ClientConfig &config = ClientConfig(),
  1411. bool do_handshake = true,
  1412. bool shed_handshake_config = true) {
  1413. bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
  1414. if (!client || !server) {
  1415. return false;
  1416. }
  1417. SSL_set_connect_state(client.get());
  1418. SSL_set_accept_state(server.get());
  1419. if (config.session) {
  1420. SSL_set_session(client.get(), config.session);
  1421. }
  1422. if (!config.servername.empty() &&
  1423. !SSL_set_tlsext_host_name(client.get(), config.servername.c_str())) {
  1424. return false;
  1425. }
  1426. BIO *bio1, *bio2;
  1427. if (!BIO_new_bio_pair(&bio1, 0, &bio2, 0)) {
  1428. return false;
  1429. }
  1430. // SSL_set_bio takes ownership.
  1431. SSL_set_bio(client.get(), bio1, bio1);
  1432. SSL_set_bio(server.get(), bio2, bio2);
  1433. SSL_set_shed_handshake_config(client.get(), shed_handshake_config);
  1434. SSL_set_shed_handshake_config(server.get(), shed_handshake_config);
  1435. if (do_handshake && !CompleteHandshakes(client.get(), server.get())) {
  1436. return false;
  1437. }
  1438. *out_client = std::move(client);
  1439. *out_server = std::move(server);
  1440. return true;
  1441. }
  1442. // SSLVersionTest executes its test cases under all available protocol versions.
  1443. // Test cases call |Connect| to create a connection using context objects with
  1444. // the protocol version fixed to the current version under test.
  1445. class SSLVersionTest : public ::testing::TestWithParam<VersionParam> {
  1446. protected:
  1447. SSLVersionTest() : cert_(GetTestCertificate()), key_(GetTestKey()) {}
  1448. void SetUp() { ResetContexts(); }
  1449. bssl::UniquePtr<SSL_CTX> CreateContext() const {
  1450. const SSL_METHOD *method = is_dtls() ? DTLS_method() : TLS_method();
  1451. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
  1452. if (!ctx || !SSL_CTX_set_min_proto_version(ctx.get(), version()) ||
  1453. !SSL_CTX_set_max_proto_version(ctx.get(), version())) {
  1454. return nullptr;
  1455. }
  1456. return ctx;
  1457. }
  1458. void ResetContexts() {
  1459. ASSERT_TRUE(cert_);
  1460. ASSERT_TRUE(key_);
  1461. client_ctx_ = CreateContext();
  1462. ASSERT_TRUE(client_ctx_);
  1463. server_ctx_ = CreateContext();
  1464. ASSERT_TRUE(server_ctx_);
  1465. // Set up a server cert. Client certs can be set up explicitly.
  1466. ASSERT_TRUE(UseCertAndKey(server_ctx_.get()));
  1467. }
  1468. bool UseCertAndKey(SSL_CTX *ctx) const {
  1469. return SSL_CTX_use_certificate(ctx, cert_.get()) &&
  1470. SSL_CTX_use_PrivateKey(ctx, key_.get());
  1471. }
  1472. bool Connect(const ClientConfig &config = ClientConfig()) {
  1473. return ConnectClientAndServer(&client_, &server_, client_ctx_.get(),
  1474. server_ctx_.get(), config, true,
  1475. shed_handshake_config_);
  1476. }
  1477. uint16_t version() const { return GetParam().version; }
  1478. bool is_dtls() const {
  1479. return GetParam().ssl_method == VersionParam::is_dtls;
  1480. }
  1481. bool shed_handshake_config_ = true;
  1482. bssl::UniquePtr<SSL> client_, server_;
  1483. bssl::UniquePtr<SSL_CTX> server_ctx_, client_ctx_;
  1484. bssl::UniquePtr<X509> cert_;
  1485. bssl::UniquePtr<EVP_PKEY> key_;
  1486. };
  1487. INSTANTIATE_TEST_CASE_P(WithVersion, SSLVersionTest,
  1488. testing::ValuesIn(kAllVersions),
  1489. [](const testing::TestParamInfo<VersionParam> &i) {
  1490. return i.param.name;
  1491. });
  1492. TEST_P(SSLVersionTest, SequenceNumber) {
  1493. ASSERT_TRUE(Connect());
  1494. // Drain any post-handshake messages to ensure there are no unread records
  1495. // on either end.
  1496. uint8_t byte = 0;
  1497. ASSERT_LE(SSL_read(client_.get(), &byte, 1), 0);
  1498. ASSERT_LE(SSL_read(server_.get(), &byte, 1), 0);
  1499. uint64_t client_read_seq = SSL_get_read_sequence(client_.get());
  1500. uint64_t client_write_seq = SSL_get_write_sequence(client_.get());
  1501. uint64_t server_read_seq = SSL_get_read_sequence(server_.get());
  1502. uint64_t server_write_seq = SSL_get_write_sequence(server_.get());
  1503. if (is_dtls()) {
  1504. // Both client and server must be at epoch 1.
  1505. EXPECT_EQ(EpochFromSequence(client_read_seq), 1);
  1506. EXPECT_EQ(EpochFromSequence(client_write_seq), 1);
  1507. EXPECT_EQ(EpochFromSequence(server_read_seq), 1);
  1508. EXPECT_EQ(EpochFromSequence(server_write_seq), 1);
  1509. // The next record to be written should exceed the largest received.
  1510. EXPECT_GT(client_write_seq, server_read_seq);
  1511. EXPECT_GT(server_write_seq, client_read_seq);
  1512. } else {
  1513. // The next record to be written should equal the next to be received.
  1514. EXPECT_EQ(client_write_seq, server_read_seq);
  1515. EXPECT_EQ(server_write_seq, client_read_seq);
  1516. }
  1517. // Send a record from client to server.
  1518. EXPECT_EQ(SSL_write(client_.get(), &byte, 1), 1);
  1519. EXPECT_EQ(SSL_read(server_.get(), &byte, 1), 1);
  1520. // The client write and server read sequence numbers should have
  1521. // incremented.
  1522. EXPECT_EQ(client_write_seq + 1, SSL_get_write_sequence(client_.get()));
  1523. EXPECT_EQ(server_read_seq + 1, SSL_get_read_sequence(server_.get()));
  1524. }
  1525. TEST_P(SSLVersionTest, OneSidedShutdown) {
  1526. // SSL_shutdown is a no-op in DTLS.
  1527. if (is_dtls()) {
  1528. return;
  1529. }
  1530. ASSERT_TRUE(Connect());
  1531. // Shut down half the connection. SSL_shutdown will return 0 to signal only
  1532. // one side has shut down.
  1533. ASSERT_EQ(SSL_shutdown(client_.get()), 0);
  1534. // Reading from the server should consume the EOF.
  1535. uint8_t byte;
  1536. ASSERT_EQ(SSL_read(server_.get(), &byte, 1), 0);
  1537. ASSERT_EQ(SSL_get_error(server_.get(), 0), SSL_ERROR_ZERO_RETURN);
  1538. // However, the server may continue to write data and then shut down the
  1539. // connection.
  1540. byte = 42;
  1541. ASSERT_EQ(SSL_write(server_.get(), &byte, 1), 1);
  1542. ASSERT_EQ(SSL_read(client_.get(), &byte, 1), 1);
  1543. ASSERT_EQ(byte, 42);
  1544. // The server may then shutdown the connection.
  1545. EXPECT_EQ(SSL_shutdown(server_.get()), 1);
  1546. EXPECT_EQ(SSL_shutdown(client_.get()), 1);
  1547. }
  1548. TEST(SSLTest, SessionDuplication) {
  1549. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  1550. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  1551. ASSERT_TRUE(client_ctx);
  1552. ASSERT_TRUE(server_ctx);
  1553. bssl::UniquePtr<X509> cert = GetTestCertificate();
  1554. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  1555. ASSERT_TRUE(cert);
  1556. ASSERT_TRUE(key);
  1557. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  1558. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  1559. bssl::UniquePtr<SSL> client, server;
  1560. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  1561. server_ctx.get()));
  1562. SSL_SESSION *session0 = SSL_get_session(client.get());
  1563. bssl::UniquePtr<SSL_SESSION> session1 =
  1564. bssl::SSL_SESSION_dup(session0, SSL_SESSION_DUP_ALL);
  1565. ASSERT_TRUE(session1);
  1566. session1->not_resumable = 0;
  1567. uint8_t *s0_bytes, *s1_bytes;
  1568. size_t s0_len, s1_len;
  1569. ASSERT_TRUE(SSL_SESSION_to_bytes(session0, &s0_bytes, &s0_len));
  1570. bssl::UniquePtr<uint8_t> free_s0(s0_bytes);
  1571. ASSERT_TRUE(SSL_SESSION_to_bytes(session1.get(), &s1_bytes, &s1_len));
  1572. bssl::UniquePtr<uint8_t> free_s1(s1_bytes);
  1573. EXPECT_EQ(Bytes(s0_bytes, s0_len), Bytes(s1_bytes, s1_len));
  1574. }
  1575. static void ExpectFDs(const SSL *ssl, int rfd, int wfd) {
  1576. EXPECT_EQ(rfd, SSL_get_fd(ssl));
  1577. EXPECT_EQ(rfd, SSL_get_rfd(ssl));
  1578. EXPECT_EQ(wfd, SSL_get_wfd(ssl));
  1579. // The wrapper BIOs are always equal when fds are equal, even if set
  1580. // individually.
  1581. if (rfd == wfd) {
  1582. EXPECT_EQ(SSL_get_rbio(ssl), SSL_get_wbio(ssl));
  1583. }
  1584. }
  1585. TEST(SSLTest, SetFD) {
  1586. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1587. ASSERT_TRUE(ctx);
  1588. // Test setting different read and write FDs.
  1589. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1590. ASSERT_TRUE(ssl);
  1591. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1592. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
  1593. ExpectFDs(ssl.get(), 1, 2);
  1594. // Test setting the same FD.
  1595. ssl.reset(SSL_new(ctx.get()));
  1596. ASSERT_TRUE(ssl);
  1597. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1598. ExpectFDs(ssl.get(), 1, 1);
  1599. // Test setting the same FD one side at a time.
  1600. ssl.reset(SSL_new(ctx.get()));
  1601. ASSERT_TRUE(ssl);
  1602. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1603. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1604. ExpectFDs(ssl.get(), 1, 1);
  1605. // Test setting the same FD in the other order.
  1606. ssl.reset(SSL_new(ctx.get()));
  1607. ASSERT_TRUE(ssl);
  1608. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1609. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1610. ExpectFDs(ssl.get(), 1, 1);
  1611. // Test changing the read FD partway through.
  1612. ssl.reset(SSL_new(ctx.get()));
  1613. ASSERT_TRUE(ssl);
  1614. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1615. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 2));
  1616. ExpectFDs(ssl.get(), 2, 1);
  1617. // Test changing the write FD partway through.
  1618. ssl.reset(SSL_new(ctx.get()));
  1619. ASSERT_TRUE(ssl);
  1620. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1621. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
  1622. ExpectFDs(ssl.get(), 1, 2);
  1623. // Test a no-op change to the read FD partway through.
  1624. ssl.reset(SSL_new(ctx.get()));
  1625. ASSERT_TRUE(ssl);
  1626. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1627. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1628. ExpectFDs(ssl.get(), 1, 1);
  1629. // Test a no-op change to the write FD partway through.
  1630. ssl.reset(SSL_new(ctx.get()));
  1631. ASSERT_TRUE(ssl);
  1632. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1633. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1634. ExpectFDs(ssl.get(), 1, 1);
  1635. // ASan builds will implicitly test that the internal |BIO| reference-counting
  1636. // is correct.
  1637. }
  1638. TEST(SSLTest, SetBIO) {
  1639. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1640. ASSERT_TRUE(ctx);
  1641. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1642. bssl::UniquePtr<BIO> bio1(BIO_new(BIO_s_mem())), bio2(BIO_new(BIO_s_mem())),
  1643. bio3(BIO_new(BIO_s_mem()));
  1644. ASSERT_TRUE(ssl);
  1645. ASSERT_TRUE(bio1);
  1646. ASSERT_TRUE(bio2);
  1647. ASSERT_TRUE(bio3);
  1648. // SSL_set_bio takes one reference when the parameters are the same.
  1649. BIO_up_ref(bio1.get());
  1650. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1651. // Repeating the call does nothing.
  1652. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1653. // It takes one reference each when the parameters are different.
  1654. BIO_up_ref(bio2.get());
  1655. BIO_up_ref(bio3.get());
  1656. SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
  1657. // Repeating the call does nothing.
  1658. SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
  1659. // It takes one reference when changing only wbio.
  1660. BIO_up_ref(bio1.get());
  1661. SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
  1662. // It takes one reference when changing only rbio and the two are different.
  1663. BIO_up_ref(bio3.get());
  1664. SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
  1665. // If setting wbio to rbio, it takes no additional references.
  1666. SSL_set_bio(ssl.get(), bio3.get(), bio3.get());
  1667. // From there, wbio may be switched to something else.
  1668. BIO_up_ref(bio1.get());
  1669. SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
  1670. // If setting rbio to wbio, it takes no additional references.
  1671. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1672. // From there, rbio may be switched to something else, but, for historical
  1673. // reasons, it takes a reference to both parameters.
  1674. BIO_up_ref(bio1.get());
  1675. BIO_up_ref(bio2.get());
  1676. SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
  1677. // ASAN builds will implicitly test that the internal |BIO| reference-counting
  1678. // is correct.
  1679. }
  1680. static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { return 1; }
  1681. TEST_P(SSLVersionTest, GetPeerCertificate) {
  1682. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  1683. // Configure both client and server to accept any certificate.
  1684. SSL_CTX_set_verify(client_ctx_.get(),
  1685. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1686. nullptr);
  1687. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  1688. SSL_CTX_set_verify(server_ctx_.get(),
  1689. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1690. nullptr);
  1691. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  1692. ASSERT_TRUE(Connect());
  1693. // Client and server should both see the leaf certificate.
  1694. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
  1695. ASSERT_TRUE(peer);
  1696. ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0);
  1697. peer.reset(SSL_get_peer_certificate(client_.get()));
  1698. ASSERT_TRUE(peer);
  1699. ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0);
  1700. // However, for historical reasons, the X509 chain includes the leaf on the
  1701. // client, but does not on the server.
  1702. EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(client_.get())), 1u);
  1703. EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(client_.get())),
  1704. 1u);
  1705. EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(server_.get())), 0u);
  1706. EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(server_.get())),
  1707. 1u);
  1708. }
  1709. TEST_P(SSLVersionTest, NoPeerCertificate) {
  1710. SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER, nullptr);
  1711. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  1712. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  1713. ASSERT_TRUE(Connect());
  1714. // Server should not see a peer certificate.
  1715. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
  1716. ASSERT_FALSE(peer);
  1717. ASSERT_FALSE(SSL_get0_peer_certificates(server_.get()));
  1718. }
  1719. TEST_P(SSLVersionTest, RetainOnlySHA256OfCerts) {
  1720. uint8_t *cert_der = NULL;
  1721. int cert_der_len = i2d_X509(cert_.get(), &cert_der);
  1722. ASSERT_GE(cert_der_len, 0);
  1723. bssl::UniquePtr<uint8_t> free_cert_der(cert_der);
  1724. uint8_t cert_sha256[SHA256_DIGEST_LENGTH];
  1725. SHA256(cert_der, cert_der_len, cert_sha256);
  1726. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  1727. // Configure both client and server to accept any certificate, but the
  1728. // server must retain only the SHA-256 of the peer.
  1729. SSL_CTX_set_verify(client_ctx_.get(),
  1730. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1731. nullptr);
  1732. SSL_CTX_set_verify(server_ctx_.get(),
  1733. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1734. nullptr);
  1735. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  1736. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  1737. SSL_CTX_set_retain_only_sha256_of_client_certs(server_ctx_.get(), 1);
  1738. ASSERT_TRUE(Connect());
  1739. // The peer certificate has been dropped.
  1740. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
  1741. EXPECT_FALSE(peer);
  1742. SSL_SESSION *session = SSL_get_session(server_.get());
  1743. EXPECT_TRUE(SSL_SESSION_has_peer_sha256(session));
  1744. const uint8_t *peer_sha256;
  1745. size_t peer_sha256_len;
  1746. SSL_SESSION_get0_peer_sha256(session, &peer_sha256, &peer_sha256_len);
  1747. EXPECT_EQ(Bytes(cert_sha256), Bytes(peer_sha256, peer_sha256_len));
  1748. }
  1749. // Tests that our ClientHellos do not change unexpectedly. These are purely
  1750. // change detection tests. If they fail as part of an intentional ClientHello
  1751. // change, update the test vector.
  1752. TEST(SSLTest, ClientHello) {
  1753. struct {
  1754. uint16_t max_version;
  1755. std::vector<uint8_t> expected;
  1756. } kTests[] = {
  1757. {SSL3_VERSION,
  1758. {0x16, 0x03, 0x00, 0x00, 0x3b, 0x01, 0x00, 0x00, 0x37, 0x03, 0x00,
  1759. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1760. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1761. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1762. 0x00, 0x10, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00,
  1763. 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x00, 0xff, 0x01, 0x00}},
  1764. {TLS1_VERSION,
  1765. {0x16, 0x03, 0x01, 0x00, 0x5a, 0x01, 0x00, 0x00, 0x56, 0x03, 0x01, 0x00,
  1766. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1767. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1768. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xc0, 0x09,
  1769. 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a,
  1770. 0x01, 0x00, 0x00, 0x1f, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x17, 0x00,
  1771. 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
  1772. 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18}},
  1773. {TLS1_1_VERSION,
  1774. {0x16, 0x03, 0x01, 0x00, 0x5a, 0x01, 0x00, 0x00, 0x56, 0x03, 0x02, 0x00,
  1775. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1776. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1777. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xc0, 0x09,
  1778. 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a,
  1779. 0x01, 0x00, 0x00, 0x1f, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x17, 0x00,
  1780. 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
  1781. 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18}},
  1782. {TLS1_2_VERSION,
  1783. {0x16, 0x03, 0x01, 0x00, 0x82, 0x01, 0x00, 0x00, 0x7e, 0x03, 0x03, 0x00,
  1784. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1785. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1786. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0xcc, 0xa9,
  1787. 0xcc, 0xa8, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, 0xc0, 0x09,
  1788. 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f,
  1789. 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x37, 0xff, 0x01, 0x00, 0x01,
  1790. 0x00, 0x00, 0x17, 0x00, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00,
  1791. 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08,
  1792. 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x00, 0x0b, 0x00,
  1793. 0x02, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00,
  1794. 0x17, 0x00, 0x18}},
  1795. // TODO(davidben): Add a change detector for TLS 1.3 once the spec and our
  1796. // implementation has settled enough that it won't change.
  1797. };
  1798. for (const auto &t : kTests) {
  1799. SCOPED_TRACE(t.max_version);
  1800. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1801. ASSERT_TRUE(ctx);
  1802. // Our default cipher list varies by CPU capabilities, so manually place the
  1803. // ChaCha20 ciphers in front.
  1804. const char *cipher_list = "CHACHA20:ALL";
  1805. // SSLv3 is off by default.
  1806. ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION));
  1807. ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), t.max_version));
  1808. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), cipher_list));
  1809. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1810. ASSERT_TRUE(ssl);
  1811. std::vector<uint8_t> client_hello;
  1812. ASSERT_TRUE(GetClientHello(ssl.get(), &client_hello));
  1813. // Zero the client_random.
  1814. constexpr size_t kRandomOffset = 1 + 2 + 2 + // record header
  1815. 1 + 3 + // handshake message header
  1816. 2; // client_version
  1817. ASSERT_GE(client_hello.size(), kRandomOffset + SSL3_RANDOM_SIZE);
  1818. OPENSSL_memset(client_hello.data() + kRandomOffset, 0, SSL3_RANDOM_SIZE);
  1819. if (client_hello != t.expected) {
  1820. ADD_FAILURE() << "ClientHellos did not match.";
  1821. // Print the value manually so it is easier to update the test vector.
  1822. for (size_t i = 0; i < client_hello.size(); i += 12) {
  1823. printf(" %c", i == 0 ? '{' : ' ');
  1824. for (size_t j = i; j < client_hello.size() && j < i + 12; j++) {
  1825. if (j > i) {
  1826. printf(" ");
  1827. }
  1828. printf("0x%02x", client_hello[j]);
  1829. if (j < client_hello.size() - 1) {
  1830. printf(",");
  1831. }
  1832. }
  1833. if (i + 12 >= client_hello.size()) {
  1834. printf("}}");
  1835. }
  1836. printf("\n");
  1837. }
  1838. }
  1839. }
  1840. }
  1841. static bssl::UniquePtr<SSL_SESSION> g_last_session;
  1842. static int SaveLastSession(SSL *ssl, SSL_SESSION *session) {
  1843. // Save the most recent session.
  1844. g_last_session.reset(session);
  1845. return 1;
  1846. }
  1847. static bssl::UniquePtr<SSL_SESSION> CreateClientSession(
  1848. SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1849. const ClientConfig &config = ClientConfig()) {
  1850. g_last_session = nullptr;
  1851. SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
  1852. // Connect client and server to get a session.
  1853. bssl::UniquePtr<SSL> client, server;
  1854. if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx,
  1855. config)) {
  1856. fprintf(stderr, "Failed to connect client and server.\n");
  1857. return nullptr;
  1858. }
  1859. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  1860. SSL_read(client.get(), nullptr, 0);
  1861. SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
  1862. if (!g_last_session) {
  1863. fprintf(stderr, "Client did not receive a session.\n");
  1864. return nullptr;
  1865. }
  1866. return std::move(g_last_session);
  1867. }
  1868. static void ExpectSessionReused(SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1869. SSL_SESSION *session, bool want_reused) {
  1870. bssl::UniquePtr<SSL> client, server;
  1871. ClientConfig config;
  1872. config.session = session;
  1873. EXPECT_TRUE(
  1874. ConnectClientAndServer(&client, &server, client_ctx, server_ctx, config));
  1875. EXPECT_EQ(SSL_session_reused(client.get()), SSL_session_reused(server.get()));
  1876. bool was_reused = !!SSL_session_reused(client.get());
  1877. EXPECT_EQ(was_reused, want_reused);
  1878. }
  1879. static bssl::UniquePtr<SSL_SESSION> ExpectSessionRenewed(SSL_CTX *client_ctx,
  1880. SSL_CTX *server_ctx,
  1881. SSL_SESSION *session) {
  1882. g_last_session = nullptr;
  1883. SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
  1884. bssl::UniquePtr<SSL> client, server;
  1885. ClientConfig config;
  1886. config.session = session;
  1887. if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx,
  1888. config)) {
  1889. fprintf(stderr, "Failed to connect client and server.\n");
  1890. return nullptr;
  1891. }
  1892. if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) {
  1893. fprintf(stderr, "Client and server were inconsistent.\n");
  1894. return nullptr;
  1895. }
  1896. if (!SSL_session_reused(client.get())) {
  1897. fprintf(stderr, "Session was not reused.\n");
  1898. return nullptr;
  1899. }
  1900. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  1901. SSL_read(client.get(), nullptr, 0);
  1902. SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
  1903. if (!g_last_session) {
  1904. fprintf(stderr, "Client did not receive a renewed session.\n");
  1905. return nullptr;
  1906. }
  1907. return std::move(g_last_session);
  1908. }
  1909. static void ExpectTicketKeyChanged(SSL_CTX *ctx, uint8_t *inout_key,
  1910. bool changed) {
  1911. uint8_t new_key[kTicketKeyLen];
  1912. // May return 0, 1 or 48.
  1913. ASSERT_EQ(SSL_CTX_get_tlsext_ticket_keys(ctx, new_key, kTicketKeyLen), 1);
  1914. if (changed) {
  1915. ASSERT_NE(Bytes(inout_key, kTicketKeyLen), Bytes(new_key));
  1916. } else {
  1917. ASSERT_EQ(Bytes(inout_key, kTicketKeyLen), Bytes(new_key));
  1918. }
  1919. OPENSSL_memcpy(inout_key, new_key, kTicketKeyLen);
  1920. }
  1921. static int SwitchSessionIDContextSNI(SSL *ssl, int *out_alert, void *arg) {
  1922. static const uint8_t kContext[] = {3};
  1923. if (!SSL_set_session_id_context(ssl, kContext, sizeof(kContext))) {
  1924. return SSL_TLSEXT_ERR_ALERT_FATAL;
  1925. }
  1926. return SSL_TLSEXT_ERR_OK;
  1927. }
  1928. TEST_P(SSLVersionTest, SessionIDContext) {
  1929. static const uint8_t kContext1[] = {1};
  1930. static const uint8_t kContext2[] = {2};
  1931. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1,
  1932. sizeof(kContext1)));
  1933. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  1934. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  1935. bssl::UniquePtr<SSL_SESSION> session =
  1936. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  1937. ASSERT_TRUE(session);
  1938. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1939. session.get(),
  1940. true /* expect session reused */));
  1941. // Change the session ID context.
  1942. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext2,
  1943. sizeof(kContext2)));
  1944. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1945. session.get(),
  1946. false /* expect session not reused */));
  1947. // Change the session ID context back and install an SNI callback to switch
  1948. // it.
  1949. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1,
  1950. sizeof(kContext1)));
  1951. SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(),
  1952. SwitchSessionIDContextSNI);
  1953. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1954. session.get(),
  1955. false /* expect session not reused */));
  1956. // Switch the session ID context with the early callback instead.
  1957. SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), nullptr);
  1958. SSL_CTX_set_select_certificate_cb(
  1959. server_ctx_.get(),
  1960. [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
  1961. static const uint8_t kContext[] = {3};
  1962. if (!SSL_set_session_id_context(client_hello->ssl, kContext,
  1963. sizeof(kContext))) {
  1964. return ssl_select_cert_error;
  1965. }
  1966. return ssl_select_cert_success;
  1967. });
  1968. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1969. session.get(),
  1970. false /* expect session not reused */));
  1971. }
  1972. static timeval g_current_time;
  1973. static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
  1974. *out_clock = g_current_time;
  1975. }
  1976. static void FrozenTimeCallback(const SSL *ssl, timeval *out_clock) {
  1977. out_clock->tv_sec = 1000;
  1978. out_clock->tv_usec = 0;
  1979. }
  1980. static int RenewTicketCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
  1981. EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
  1982. int encrypt) {
  1983. static const uint8_t kZeros[16] = {0};
  1984. if (encrypt) {
  1985. OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros));
  1986. RAND_bytes(iv, 16);
  1987. } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) {
  1988. return 0;
  1989. }
  1990. if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
  1991. !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
  1992. return -1;
  1993. }
  1994. // Returning two from the callback in decrypt mode renews the
  1995. // session in TLS 1.2 and below.
  1996. return encrypt ? 1 : 2;
  1997. }
  1998. static bool GetServerTicketTime(long *out, const SSL_SESSION *session) {
  1999. if (session->tlsext_ticklen < 16 + 16 + SHA256_DIGEST_LENGTH) {
  2000. return false;
  2001. }
  2002. const uint8_t *ciphertext = session->tlsext_tick + 16 + 16;
  2003. size_t len = session->tlsext_ticklen - 16 - 16 - SHA256_DIGEST_LENGTH;
  2004. std::unique_ptr<uint8_t[]> plaintext(new uint8_t[len]);
  2005. #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
  2006. // Fuzzer-mode tickets are unencrypted.
  2007. OPENSSL_memcpy(plaintext.get(), ciphertext, len);
  2008. #else
  2009. static const uint8_t kZeros[16] = {0};
  2010. const uint8_t *iv = session->tlsext_tick + 16;
  2011. bssl::ScopedEVP_CIPHER_CTX ctx;
  2012. int len1, len2;
  2013. if (!EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_cbc(), nullptr, kZeros, iv) ||
  2014. !EVP_DecryptUpdate(ctx.get(), plaintext.get(), &len1, ciphertext, len) ||
  2015. !EVP_DecryptFinal_ex(ctx.get(), plaintext.get() + len1, &len2)) {
  2016. return false;
  2017. }
  2018. len = static_cast<size_t>(len1 + len2);
  2019. #endif
  2020. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  2021. if (!ssl_ctx) {
  2022. return false;
  2023. }
  2024. bssl::UniquePtr<SSL_SESSION> server_session(
  2025. SSL_SESSION_from_bytes(plaintext.get(), len, ssl_ctx.get()));
  2026. if (!server_session) {
  2027. return false;
  2028. }
  2029. *out = server_session->time;
  2030. return true;
  2031. }
  2032. TEST_P(SSLVersionTest, SessionTimeout) {
  2033. for (bool server_test : {false, true}) {
  2034. SCOPED_TRACE(server_test);
  2035. ResetContexts();
  2036. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2037. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2038. static const time_t kStartTime = 1000;
  2039. g_current_time.tv_sec = kStartTime;
  2040. // We are willing to use a longer lifetime for TLS 1.3 sessions as
  2041. // resumptions still perform ECDHE.
  2042. const time_t timeout = version() == TLS1_3_VERSION
  2043. ? SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT
  2044. : SSL_DEFAULT_SESSION_TIMEOUT;
  2045. // Both client and server must enforce session timeouts. We configure the
  2046. // other side with a frozen clock so it never expires tickets.
  2047. if (server_test) {
  2048. SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback);
  2049. SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback);
  2050. } else {
  2051. SSL_CTX_set_current_time_cb(client_ctx_.get(), CurrentTimeCallback);
  2052. SSL_CTX_set_current_time_cb(server_ctx_.get(), FrozenTimeCallback);
  2053. }
  2054. // Configure a ticket callback which renews tickets.
  2055. SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback);
  2056. bssl::UniquePtr<SSL_SESSION> session =
  2057. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  2058. ASSERT_TRUE(session);
  2059. // Advance the clock just behind the timeout.
  2060. g_current_time.tv_sec += timeout - 1;
  2061. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2062. session.get(),
  2063. true /* expect session reused */));
  2064. // Advance the clock one more second.
  2065. g_current_time.tv_sec++;
  2066. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2067. session.get(),
  2068. false /* expect session not reused */));
  2069. // Rewind the clock to before the session was minted.
  2070. g_current_time.tv_sec = kStartTime - 1;
  2071. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2072. session.get(),
  2073. false /* expect session not reused */));
  2074. // SSL 3.0 cannot renew sessions.
  2075. if (version() == SSL3_VERSION) {
  2076. continue;
  2077. }
  2078. // Renew the session 10 seconds before expiration.
  2079. time_t new_start_time = kStartTime + timeout - 10;
  2080. g_current_time.tv_sec = new_start_time;
  2081. bssl::UniquePtr<SSL_SESSION> new_session = ExpectSessionRenewed(
  2082. client_ctx_.get(), server_ctx_.get(), session.get());
  2083. ASSERT_TRUE(new_session);
  2084. // This new session is not the same object as before.
  2085. EXPECT_NE(session.get(), new_session.get());
  2086. // Check the sessions have timestamps measured from issuance.
  2087. long session_time = 0;
  2088. if (server_test) {
  2089. ASSERT_TRUE(GetServerTicketTime(&session_time, new_session.get()));
  2090. } else {
  2091. session_time = new_session->time;
  2092. }
  2093. ASSERT_EQ(session_time, g_current_time.tv_sec);
  2094. if (version() == TLS1_3_VERSION) {
  2095. // Renewal incorporates fresh key material in TLS 1.3, so we extend the
  2096. // lifetime TLS 1.3.
  2097. g_current_time.tv_sec = new_start_time + timeout - 1;
  2098. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2099. new_session.get(),
  2100. true /* expect session reused */));
  2101. // The new session expires after the new timeout.
  2102. g_current_time.tv_sec = new_start_time + timeout + 1;
  2103. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2104. new_session.get(),
  2105. false /* expect session ot reused */));
  2106. // Renew the session until it begins just past the auth timeout.
  2107. time_t auth_end_time = kStartTime + SSL_DEFAULT_SESSION_AUTH_TIMEOUT;
  2108. while (new_start_time < auth_end_time - 1000) {
  2109. // Get as close as possible to target start time.
  2110. new_start_time =
  2111. std::min(auth_end_time - 1000, new_start_time + timeout - 1);
  2112. g_current_time.tv_sec = new_start_time;
  2113. new_session = ExpectSessionRenewed(client_ctx_.get(), server_ctx_.get(),
  2114. new_session.get());
  2115. ASSERT_TRUE(new_session);
  2116. }
  2117. // Now the session's lifetime is bound by the auth timeout.
  2118. g_current_time.tv_sec = auth_end_time - 1;
  2119. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2120. new_session.get(),
  2121. true /* expect session reused */));
  2122. g_current_time.tv_sec = auth_end_time + 1;
  2123. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2124. new_session.get(),
  2125. false /* expect session ot reused */));
  2126. } else {
  2127. // The new session is usable just before the old expiration.
  2128. g_current_time.tv_sec = kStartTime + timeout - 1;
  2129. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2130. new_session.get(),
  2131. true /* expect session reused */));
  2132. // Renewal does not extend the lifetime, so it is not usable beyond the
  2133. // old expiration.
  2134. g_current_time.tv_sec = kStartTime + timeout + 1;
  2135. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2136. new_session.get(),
  2137. false /* expect session not reused */));
  2138. }
  2139. }
  2140. }
  2141. TEST_P(SSLVersionTest, DefaultTicketKeyInitialization) {
  2142. static const uint8_t kZeroKey[kTicketKeyLen] = {};
  2143. uint8_t ticket_key[kTicketKeyLen];
  2144. ASSERT_EQ(1, SSL_CTX_get_tlsext_ticket_keys(server_ctx_.get(), ticket_key,
  2145. kTicketKeyLen));
  2146. ASSERT_NE(0, OPENSSL_memcmp(ticket_key, kZeroKey, kTicketKeyLen));
  2147. }
  2148. TEST_P(SSLVersionTest, DefaultTicketKeyRotation) {
  2149. if (GetParam().version == SSL3_VERSION) {
  2150. return;
  2151. }
  2152. static const time_t kStartTime = 1001;
  2153. g_current_time.tv_sec = kStartTime;
  2154. uint8_t ticket_key[kTicketKeyLen];
  2155. // We use session reuse as a proxy for ticket decryption success, hence
  2156. // disable session timeouts.
  2157. SSL_CTX_set_timeout(server_ctx_.get(), std::numeric_limits<uint32_t>::max());
  2158. SSL_CTX_set_session_psk_dhe_timeout(server_ctx_.get(),
  2159. std::numeric_limits<uint32_t>::max());
  2160. SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback);
  2161. SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback);
  2162. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2163. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_OFF);
  2164. // Initialize ticket_key with the current key.
  2165. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2166. true /* changed */));
  2167. // Verify ticket resumption actually works.
  2168. bssl::UniquePtr<SSL> client, server;
  2169. bssl::UniquePtr<SSL_SESSION> session =
  2170. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  2171. ASSERT_TRUE(session);
  2172. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2173. session.get(), true /* reused */));
  2174. // Advance time to just before key rotation.
  2175. g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL - 1;
  2176. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2177. session.get(), true /* reused */));
  2178. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2179. false /* NOT changed */));
  2180. // Force key rotation.
  2181. g_current_time.tv_sec += 1;
  2182. bssl::UniquePtr<SSL_SESSION> new_session =
  2183. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  2184. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2185. true /* changed */));
  2186. // Resumption with both old and new ticket should work.
  2187. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2188. session.get(), true /* reused */));
  2189. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2190. new_session.get(), true /* reused */));
  2191. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2192. false /* NOT changed */));
  2193. // Force key rotation again. Resumption with the old ticket now fails.
  2194. g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL;
  2195. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2196. session.get(), false /* NOT reused */));
  2197. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2198. true /* changed */));
  2199. // But resumption with the newer session still works.
  2200. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2201. new_session.get(), true /* reused */));
  2202. }
  2203. static int SwitchContext(SSL *ssl, int *out_alert, void *arg) {
  2204. SSL_CTX *ctx = reinterpret_cast<SSL_CTX *>(arg);
  2205. SSL_set_SSL_CTX(ssl, ctx);
  2206. return SSL_TLSEXT_ERR_OK;
  2207. }
  2208. TEST_P(SSLVersionTest, SNICallback) {
  2209. // SSL 3.0 lacks extensions.
  2210. if (version() == SSL3_VERSION) {
  2211. return;
  2212. }
  2213. bssl::UniquePtr<X509> cert2 = GetECDSATestCertificate();
  2214. ASSERT_TRUE(cert2);
  2215. bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey();
  2216. ASSERT_TRUE(key2);
  2217. // Test that switching the |SSL_CTX| at the SNI callback behaves correctly.
  2218. static const uint16_t kECDSAWithSHA256 = SSL_SIGN_ECDSA_SECP256R1_SHA256;
  2219. static const uint8_t kSCTList[] = {0, 6, 0, 4, 5, 6, 7, 8};
  2220. static const uint8_t kOCSPResponse[] = {1, 2, 3, 4};
  2221. bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext();
  2222. ASSERT_TRUE(server_ctx2);
  2223. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx2.get(), cert2.get()));
  2224. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx2.get(), key2.get()));
  2225. ASSERT_TRUE(SSL_CTX_set_signed_cert_timestamp_list(
  2226. server_ctx2.get(), kSCTList, sizeof(kSCTList)));
  2227. ASSERT_TRUE(SSL_CTX_set_ocsp_response(server_ctx2.get(), kOCSPResponse,
  2228. sizeof(kOCSPResponse)));
  2229. // Historically signing preferences would be lost in some cases with the
  2230. // SNI callback, which triggers the TLS 1.2 SHA-1 default. To ensure
  2231. // this doesn't happen when |version| is TLS 1.2, configure the private
  2232. // key to only sign SHA-256.
  2233. ASSERT_TRUE(SSL_CTX_set_signing_algorithm_prefs(server_ctx2.get(),
  2234. &kECDSAWithSHA256, 1));
  2235. SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), SwitchContext);
  2236. SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), server_ctx2.get());
  2237. SSL_CTX_enable_signed_cert_timestamps(client_ctx_.get());
  2238. SSL_CTX_enable_ocsp_stapling(client_ctx_.get());
  2239. ASSERT_TRUE(Connect());
  2240. // The client should have received |cert2|.
  2241. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client_.get()));
  2242. ASSERT_TRUE(peer);
  2243. EXPECT_EQ(X509_cmp(peer.get(), cert2.get()), 0);
  2244. // The client should have received |server_ctx2|'s SCT list.
  2245. const uint8_t *data;
  2246. size_t len;
  2247. SSL_get0_signed_cert_timestamp_list(client_.get(), &data, &len);
  2248. EXPECT_EQ(Bytes(kSCTList), Bytes(data, len));
  2249. // The client should have received |server_ctx2|'s OCSP response.
  2250. SSL_get0_ocsp_response(client_.get(), &data, &len);
  2251. EXPECT_EQ(Bytes(kOCSPResponse), Bytes(data, len));
  2252. }
  2253. // Test that the early callback can swap the maximum version.
  2254. TEST(SSLTest, EarlyCallbackVersionSwitch) {
  2255. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2256. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2257. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  2258. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  2259. ASSERT_TRUE(cert);
  2260. ASSERT_TRUE(key);
  2261. ASSERT_TRUE(server_ctx);
  2262. ASSERT_TRUE(client_ctx);
  2263. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  2264. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  2265. ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
  2266. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
  2267. SSL_CTX_set_select_certificate_cb(
  2268. server_ctx.get(),
  2269. [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
  2270. if (!SSL_set_max_proto_version(client_hello->ssl, TLS1_2_VERSION)) {
  2271. return ssl_select_cert_error;
  2272. }
  2273. return ssl_select_cert_success;
  2274. });
  2275. bssl::UniquePtr<SSL> client, server;
  2276. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2277. server_ctx.get()));
  2278. EXPECT_EQ(TLS1_2_VERSION, SSL_version(client.get()));
  2279. }
  2280. TEST(SSLTest, SetVersion) {
  2281. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2282. ASSERT_TRUE(ctx);
  2283. // Set valid TLS versions.
  2284. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
  2285. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION));
  2286. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
  2287. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_1_VERSION));
  2288. // Invalid TLS versions are rejected.
  2289. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
  2290. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x0200));
  2291. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
  2292. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
  2293. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x0200));
  2294. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
  2295. // Zero is the default version.
  2296. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
  2297. EXPECT_EQ(TLS1_2_VERSION, ctx->conf_max_version);
  2298. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
  2299. EXPECT_EQ(TLS1_VERSION, ctx->conf_min_version);
  2300. // SSL 3.0 and TLS 1.3 are available, but not by default.
  2301. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION));
  2302. EXPECT_EQ(SSL3_VERSION, ctx->conf_min_version);
  2303. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION));
  2304. EXPECT_EQ(TLS1_3_VERSION, ctx->conf_max_version);
  2305. // TLS1_3_DRAFT_VERSION is not an API-level version.
  2306. EXPECT_FALSE(
  2307. SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_DRAFT23_VERSION));
  2308. ERR_clear_error();
  2309. ctx.reset(SSL_CTX_new(DTLS_method()));
  2310. ASSERT_TRUE(ctx);
  2311. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
  2312. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_2_VERSION));
  2313. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
  2314. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_2_VERSION));
  2315. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
  2316. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
  2317. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
  2318. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
  2319. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
  2320. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
  2321. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
  2322. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
  2323. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
  2324. EXPECT_EQ(TLS1_2_VERSION, ctx->conf_max_version);
  2325. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
  2326. EXPECT_EQ(TLS1_1_VERSION, ctx->conf_min_version);
  2327. }
  2328. static const char *GetVersionName(uint16_t version) {
  2329. switch (version) {
  2330. case SSL3_VERSION:
  2331. return "SSLv3";
  2332. case TLS1_VERSION:
  2333. return "TLSv1";
  2334. case TLS1_1_VERSION:
  2335. return "TLSv1.1";
  2336. case TLS1_2_VERSION:
  2337. return "TLSv1.2";
  2338. case TLS1_3_VERSION:
  2339. return "TLSv1.3";
  2340. case DTLS1_VERSION:
  2341. return "DTLSv1";
  2342. case DTLS1_2_VERSION:
  2343. return "DTLSv1.2";
  2344. default:
  2345. return "???";
  2346. }
  2347. }
  2348. TEST_P(SSLVersionTest, Version) {
  2349. ASSERT_TRUE(Connect());
  2350. EXPECT_EQ(SSL_version(client_.get()), version());
  2351. EXPECT_EQ(SSL_version(server_.get()), version());
  2352. // Test the version name is reported as expected.
  2353. const char *version_name = GetVersionName(version());
  2354. EXPECT_EQ(strcmp(version_name, SSL_get_version(client_.get())), 0);
  2355. EXPECT_EQ(strcmp(version_name, SSL_get_version(server_.get())), 0);
  2356. // Test SSL_SESSION reports the same name.
  2357. const char *client_name =
  2358. SSL_SESSION_get_version(SSL_get_session(client_.get()));
  2359. const char *server_name =
  2360. SSL_SESSION_get_version(SSL_get_session(server_.get()));
  2361. EXPECT_EQ(strcmp(version_name, client_name), 0);
  2362. EXPECT_EQ(strcmp(version_name, server_name), 0);
  2363. }
  2364. // Tests that that |SSL_get_pending_cipher| is available during the ALPN
  2365. // selection callback.
  2366. TEST_P(SSLVersionTest, ALPNCipherAvailable) {
  2367. // SSL 3.0 lacks extensions.
  2368. if (version() == SSL3_VERSION) {
  2369. return;
  2370. }
  2371. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  2372. static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'};
  2373. ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos,
  2374. sizeof(kALPNProtos)),
  2375. 0);
  2376. // The ALPN callback does not fail the handshake on error, so have the
  2377. // callback write a boolean.
  2378. std::pair<uint16_t, bool> callback_state(version(), false);
  2379. SSL_CTX_set_alpn_select_cb(
  2380. server_ctx_.get(),
  2381. [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in,
  2382. unsigned in_len, void *arg) -> int {
  2383. auto state = reinterpret_cast<std::pair<uint16_t, bool> *>(arg);
  2384. if (SSL_get_pending_cipher(ssl) != nullptr &&
  2385. SSL_version(ssl) == state->first) {
  2386. state->second = true;
  2387. }
  2388. return SSL_TLSEXT_ERR_NOACK;
  2389. },
  2390. &callback_state);
  2391. ASSERT_TRUE(Connect());
  2392. ASSERT_TRUE(callback_state.second);
  2393. }
  2394. TEST_P(SSLVersionTest, SSLClearSessionResumption) {
  2395. // Skip this for TLS 1.3. TLS 1.3's ticket mechanism is incompatible with this
  2396. // API pattern.
  2397. if (version() == TLS1_3_VERSION) {
  2398. return;
  2399. }
  2400. shed_handshake_config_ = false;
  2401. ASSERT_TRUE(Connect());
  2402. EXPECT_FALSE(SSL_session_reused(client_.get()));
  2403. EXPECT_FALSE(SSL_session_reused(server_.get()));
  2404. // Reset everything.
  2405. ASSERT_TRUE(SSL_clear(client_.get()));
  2406. ASSERT_TRUE(SSL_clear(server_.get()));
  2407. // Attempt to connect a second time.
  2408. ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
  2409. // |SSL_clear| should implicitly offer the previous session to the server.
  2410. EXPECT_TRUE(SSL_session_reused(client_.get()));
  2411. EXPECT_TRUE(SSL_session_reused(server_.get()));
  2412. }
  2413. TEST_P(SSLVersionTest, SSLClearFailsWithShedding) {
  2414. shed_handshake_config_ = false;
  2415. ASSERT_TRUE(Connect());
  2416. ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
  2417. // Reset everything.
  2418. ASSERT_TRUE(SSL_clear(client_.get()));
  2419. ASSERT_TRUE(SSL_clear(server_.get()));
  2420. // Now enable shedding, and connect a second time.
  2421. shed_handshake_config_ = true;
  2422. ASSERT_TRUE(Connect());
  2423. ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
  2424. // |SSL_clear| should now fail.
  2425. ASSERT_FALSE(SSL_clear(client_.get()));
  2426. ASSERT_FALSE(SSL_clear(server_.get()));
  2427. }
  2428. static bool ChainsEqual(STACK_OF(X509) * chain,
  2429. const std::vector<X509 *> &expected) {
  2430. if (sk_X509_num(chain) != expected.size()) {
  2431. return false;
  2432. }
  2433. for (size_t i = 0; i < expected.size(); i++) {
  2434. if (X509_cmp(sk_X509_value(chain, i), expected[i]) != 0) {
  2435. return false;
  2436. }
  2437. }
  2438. return true;
  2439. }
  2440. TEST_P(SSLVersionTest, AutoChain) {
  2441. cert_ = GetChainTestCertificate();
  2442. ASSERT_TRUE(cert_);
  2443. key_ = GetChainTestKey();
  2444. ASSERT_TRUE(key_);
  2445. bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate();
  2446. ASSERT_TRUE(intermediate);
  2447. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  2448. ASSERT_TRUE(UseCertAndKey(server_ctx_.get()));
  2449. // Configure both client and server to accept any certificate. Add
  2450. // |intermediate| to the cert store.
  2451. ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx_.get()),
  2452. intermediate.get()));
  2453. ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(server_ctx_.get()),
  2454. intermediate.get()));
  2455. SSL_CTX_set_verify(client_ctx_.get(),
  2456. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  2457. nullptr);
  2458. SSL_CTX_set_verify(server_ctx_.get(),
  2459. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  2460. nullptr);
  2461. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  2462. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  2463. // By default, the client and server should each only send the leaf.
  2464. ASSERT_TRUE(Connect());
  2465. EXPECT_TRUE(
  2466. ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), {cert_.get()}));
  2467. EXPECT_TRUE(
  2468. ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), {cert_.get()}));
  2469. // If auto-chaining is enabled, then the intermediate is sent.
  2470. SSL_CTX_clear_mode(client_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN);
  2471. SSL_CTX_clear_mode(server_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN);
  2472. ASSERT_TRUE(Connect());
  2473. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()),
  2474. {cert_.get(), intermediate.get()}));
  2475. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()),
  2476. {cert_.get(), intermediate.get()}));
  2477. // Auto-chaining does not override explicitly-configured intermediates.
  2478. ASSERT_TRUE(SSL_CTX_add1_chain_cert(client_ctx_.get(), cert_.get()));
  2479. ASSERT_TRUE(SSL_CTX_add1_chain_cert(server_ctx_.get(), cert_.get()));
  2480. ASSERT_TRUE(Connect());
  2481. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()),
  2482. {cert_.get(), cert_.get()}));
  2483. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()),
  2484. {cert_.get(), cert_.get()}));
  2485. }
  2486. static bool ExpectBadWriteRetry() {
  2487. int err = ERR_get_error();
  2488. if (ERR_GET_LIB(err) != ERR_LIB_SSL ||
  2489. ERR_GET_REASON(err) != SSL_R_BAD_WRITE_RETRY) {
  2490. char buf[ERR_ERROR_STRING_BUF_LEN];
  2491. ERR_error_string_n(err, buf, sizeof(buf));
  2492. fprintf(stderr, "Wanted SSL_R_BAD_WRITE_RETRY, got: %s.\n", buf);
  2493. return false;
  2494. }
  2495. if (ERR_peek_error() != 0) {
  2496. fprintf(stderr, "Unexpected error following SSL_R_BAD_WRITE_RETRY.\n");
  2497. return false;
  2498. }
  2499. return true;
  2500. }
  2501. TEST_P(SSLVersionTest, SSLWriteRetry) {
  2502. if (is_dtls()) {
  2503. return;
  2504. }
  2505. for (bool enable_partial_write : {false, true}) {
  2506. SCOPED_TRACE(enable_partial_write);
  2507. // Connect a client and server.
  2508. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  2509. ASSERT_TRUE(Connect());
  2510. if (enable_partial_write) {
  2511. SSL_set_mode(client_.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
  2512. }
  2513. // Write without reading until the buffer is full and we have an unfinished
  2514. // write. Keep a count so we may reread it again later. "hello!" will be
  2515. // written in two chunks, "hello" and "!".
  2516. char data[] = "hello!";
  2517. static const int kChunkLen = 5; // The length of "hello".
  2518. unsigned count = 0;
  2519. for (;;) {
  2520. int ret = SSL_write(client_.get(), data, kChunkLen);
  2521. if (ret <= 0) {
  2522. ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE);
  2523. break;
  2524. }
  2525. ASSERT_EQ(ret, 5);
  2526. count++;
  2527. }
  2528. // Retrying with the same parameters is legal.
  2529. ASSERT_EQ(
  2530. SSL_get_error(client_.get(), SSL_write(client_.get(), data, kChunkLen)),
  2531. SSL_ERROR_WANT_WRITE);
  2532. // Retrying with the same buffer but shorter length is not legal.
  2533. ASSERT_EQ(SSL_get_error(client_.get(),
  2534. SSL_write(client_.get(), data, kChunkLen - 1)),
  2535. SSL_ERROR_SSL);
  2536. ASSERT_TRUE(ExpectBadWriteRetry());
  2537. // Retrying with a different buffer pointer is not legal.
  2538. char data2[] = "hello";
  2539. ASSERT_EQ(SSL_get_error(client_.get(),
  2540. SSL_write(client_.get(), data2, kChunkLen)),
  2541. SSL_ERROR_SSL);
  2542. ASSERT_TRUE(ExpectBadWriteRetry());
  2543. // With |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, the buffer may move.
  2544. SSL_set_mode(client_.get(), SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
  2545. ASSERT_EQ(SSL_get_error(client_.get(),
  2546. SSL_write(client_.get(), data2, kChunkLen)),
  2547. SSL_ERROR_WANT_WRITE);
  2548. // |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| does not disable length checks.
  2549. ASSERT_EQ(SSL_get_error(client_.get(),
  2550. SSL_write(client_.get(), data2, kChunkLen - 1)),
  2551. SSL_ERROR_SSL);
  2552. ASSERT_TRUE(ExpectBadWriteRetry());
  2553. // Retrying with a larger buffer is legal.
  2554. ASSERT_EQ(SSL_get_error(client_.get(),
  2555. SSL_write(client_.get(), data, kChunkLen + 1)),
  2556. SSL_ERROR_WANT_WRITE);
  2557. // Drain the buffer.
  2558. char buf[20];
  2559. for (unsigned i = 0; i < count; i++) {
  2560. ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen);
  2561. ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0);
  2562. }
  2563. // Now that there is space, a retry with a larger buffer should flush the
  2564. // pending record, skip over that many bytes of input (on assumption they
  2565. // are the same), and write the remainder. If SSL_MODE_ENABLE_PARTIAL_WRITE
  2566. // is set, this will complete in two steps.
  2567. char data3[] = "_____!";
  2568. if (enable_partial_write) {
  2569. ASSERT_EQ(SSL_write(client_.get(), data3, kChunkLen + 1), kChunkLen);
  2570. ASSERT_EQ(SSL_write(client_.get(), data3 + kChunkLen, 1), 1);
  2571. } else {
  2572. ASSERT_EQ(SSL_write(client_.get(), data3, kChunkLen + 1), kChunkLen + 1);
  2573. }
  2574. // Check the last write was correct. The data will be spread over two
  2575. // records, so SSL_read returns twice.
  2576. ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen);
  2577. ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0);
  2578. ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), 1);
  2579. ASSERT_EQ(buf[0], '!');
  2580. }
  2581. }
  2582. TEST_P(SSLVersionTest, RecordCallback) {
  2583. for (bool test_server : {true, false}) {
  2584. SCOPED_TRACE(test_server);
  2585. ResetContexts();
  2586. bool read_seen = false;
  2587. bool write_seen = false;
  2588. auto cb = [&](int is_write, int cb_version, int cb_type, const void *buf,
  2589. size_t len, SSL *ssl) {
  2590. if (cb_type != SSL3_RT_HEADER) {
  2591. return;
  2592. }
  2593. // The callback does not report a version for records.
  2594. EXPECT_EQ(0, cb_version);
  2595. if (is_write) {
  2596. write_seen = true;
  2597. } else {
  2598. read_seen = true;
  2599. }
  2600. // Sanity-check that the record header is plausible.
  2601. CBS cbs;
  2602. CBS_init(&cbs, reinterpret_cast<const uint8_t *>(buf), len);
  2603. uint8_t type;
  2604. uint16_t record_version, length;
  2605. ASSERT_TRUE(CBS_get_u8(&cbs, &type));
  2606. ASSERT_TRUE(CBS_get_u16(&cbs, &record_version));
  2607. EXPECT_EQ(record_version & 0xff00, version() & 0xff00);
  2608. if (is_dtls()) {
  2609. uint16_t epoch;
  2610. ASSERT_TRUE(CBS_get_u16(&cbs, &epoch));
  2611. EXPECT_TRUE(epoch == 0 || epoch == 1) << "Invalid epoch: " << epoch;
  2612. ASSERT_TRUE(CBS_skip(&cbs, 6));
  2613. }
  2614. ASSERT_TRUE(CBS_get_u16(&cbs, &length));
  2615. EXPECT_EQ(0u, CBS_len(&cbs));
  2616. };
  2617. using CallbackType = decltype(cb);
  2618. SSL_CTX *ctx = test_server ? server_ctx_.get() : client_ctx_.get();
  2619. SSL_CTX_set_msg_callback(
  2620. ctx, [](int is_write, int cb_version, int cb_type, const void *buf,
  2621. size_t len, SSL *ssl, void *arg) {
  2622. CallbackType *cb_ptr = reinterpret_cast<CallbackType *>(arg);
  2623. (*cb_ptr)(is_write, cb_version, cb_type, buf, len, ssl);
  2624. });
  2625. SSL_CTX_set_msg_callback_arg(ctx, &cb);
  2626. ASSERT_TRUE(Connect());
  2627. EXPECT_TRUE(read_seen);
  2628. EXPECT_TRUE(write_seen);
  2629. }
  2630. }
  2631. TEST_P(SSLVersionTest, GetServerName) {
  2632. // No extensions in SSL 3.0.
  2633. if (version() == SSL3_VERSION) {
  2634. return;
  2635. }
  2636. ClientConfig config;
  2637. config.servername = "host1";
  2638. SSL_CTX_set_tlsext_servername_callback(
  2639. server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int {
  2640. // During the handshake, |SSL_get_servername| must match |config|.
  2641. ClientConfig *config_p = reinterpret_cast<ClientConfig *>(arg);
  2642. EXPECT_STREQ(config_p->servername.c_str(),
  2643. SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name));
  2644. return SSL_TLSEXT_ERR_OK;
  2645. });
  2646. SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), &config);
  2647. ASSERT_TRUE(Connect(config));
  2648. // After the handshake, it must also be available.
  2649. EXPECT_STREQ(config.servername.c_str(),
  2650. SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name));
  2651. // Establish a session under host1.
  2652. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2653. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2654. bssl::UniquePtr<SSL_SESSION> session =
  2655. CreateClientSession(client_ctx_.get(), server_ctx_.get(), config);
  2656. // If the client resumes a session with a different name, |SSL_get_servername|
  2657. // must return the new name.
  2658. ASSERT_TRUE(session);
  2659. config.session = session.get();
  2660. config.servername = "host2";
  2661. ASSERT_TRUE(Connect(config));
  2662. EXPECT_STREQ(config.servername.c_str(),
  2663. SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name));
  2664. }
  2665. // Test that session cache mode bits are honored in the client session callback.
  2666. TEST_P(SSLVersionTest, ClientSessionCacheMode) {
  2667. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_OFF);
  2668. EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  2669. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_CLIENT);
  2670. EXPECT_TRUE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  2671. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_SERVER);
  2672. EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  2673. }
  2674. TEST(SSLTest, AddChainCertHack) {
  2675. // Ensure that we don't accidently break the hack that we have in place to
  2676. // keep curl and serf happy when they use an |X509| even after transfering
  2677. // ownership.
  2678. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2679. ASSERT_TRUE(ctx);
  2680. X509 *cert = GetTestCertificate().release();
  2681. ASSERT_TRUE(cert);
  2682. SSL_CTX_add0_chain_cert(ctx.get(), cert);
  2683. // This should not trigger a use-after-free.
  2684. X509_cmp(cert, cert);
  2685. }
  2686. TEST(SSLTest, GetCertificate) {
  2687. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2688. ASSERT_TRUE(ctx);
  2689. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2690. ASSERT_TRUE(cert);
  2691. ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
  2692. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  2693. ASSERT_TRUE(ssl);
  2694. X509 *cert2 = SSL_CTX_get0_certificate(ctx.get());
  2695. ASSERT_TRUE(cert2);
  2696. X509 *cert3 = SSL_get_certificate(ssl.get());
  2697. ASSERT_TRUE(cert3);
  2698. // The old and new certificates must be identical.
  2699. EXPECT_EQ(0, X509_cmp(cert.get(), cert2));
  2700. EXPECT_EQ(0, X509_cmp(cert.get(), cert3));
  2701. uint8_t *der = nullptr;
  2702. long der_len = i2d_X509(cert.get(), &der);
  2703. ASSERT_LT(0, der_len);
  2704. bssl::UniquePtr<uint8_t> free_der(der);
  2705. uint8_t *der2 = nullptr;
  2706. long der2_len = i2d_X509(cert2, &der2);
  2707. ASSERT_LT(0, der2_len);
  2708. bssl::UniquePtr<uint8_t> free_der2(der2);
  2709. uint8_t *der3 = nullptr;
  2710. long der3_len = i2d_X509(cert3, &der3);
  2711. ASSERT_LT(0, der3_len);
  2712. bssl::UniquePtr<uint8_t> free_der3(der3);
  2713. // They must also encode identically.
  2714. EXPECT_EQ(Bytes(der, der_len), Bytes(der2, der2_len));
  2715. EXPECT_EQ(Bytes(der, der_len), Bytes(der3, der3_len));
  2716. }
  2717. TEST(SSLTest, SetChainAndKeyMismatch) {
  2718. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2719. ASSERT_TRUE(ctx);
  2720. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2721. ASSERT_TRUE(key);
  2722. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2723. ASSERT_TRUE(leaf);
  2724. std::vector<CRYPTO_BUFFER*> chain = {
  2725. leaf.get(),
  2726. };
  2727. // Should fail because |GetTestKey| doesn't match the chain-test certificate.
  2728. ASSERT_FALSE(SSL_CTX_set_chain_and_key(ctx.get(), &chain[0], chain.size(),
  2729. key.get(), nullptr));
  2730. ERR_clear_error();
  2731. }
  2732. TEST(SSLTest, SetChainAndKey) {
  2733. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2734. ASSERT_TRUE(client_ctx);
  2735. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2736. ASSERT_TRUE(server_ctx);
  2737. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2738. ASSERT_TRUE(key);
  2739. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2740. ASSERT_TRUE(leaf);
  2741. bssl::UniquePtr<CRYPTO_BUFFER> intermediate =
  2742. GetChainTestIntermediateBuffer();
  2743. ASSERT_TRUE(intermediate);
  2744. std::vector<CRYPTO_BUFFER*> chain = {
  2745. leaf.get(), intermediate.get(),
  2746. };
  2747. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2748. chain.size(), key.get(), nullptr));
  2749. SSL_CTX_set_custom_verify(
  2750. client_ctx.get(), SSL_VERIFY_PEER,
  2751. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2752. return ssl_verify_ok;
  2753. });
  2754. bssl::UniquePtr<SSL> client, server;
  2755. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2756. server_ctx.get()));
  2757. }
  2758. TEST(SSLTest, BuffersFailWithoutCustomVerify) {
  2759. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2760. ASSERT_TRUE(client_ctx);
  2761. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2762. ASSERT_TRUE(server_ctx);
  2763. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2764. ASSERT_TRUE(key);
  2765. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2766. ASSERT_TRUE(leaf);
  2767. std::vector<CRYPTO_BUFFER*> chain = { leaf.get() };
  2768. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2769. chain.size(), key.get(), nullptr));
  2770. // Without SSL_CTX_set_custom_verify(), i.e. with everything in the default
  2771. // configuration, certificate verification should fail.
  2772. bssl::UniquePtr<SSL> client, server;
  2773. ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2774. server_ctx.get()));
  2775. // Whereas with a verifier, the connection should succeed.
  2776. SSL_CTX_set_custom_verify(
  2777. client_ctx.get(), SSL_VERIFY_PEER,
  2778. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2779. return ssl_verify_ok;
  2780. });
  2781. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2782. server_ctx.get()));
  2783. }
  2784. TEST(SSLTest, CustomVerify) {
  2785. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2786. ASSERT_TRUE(client_ctx);
  2787. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2788. ASSERT_TRUE(server_ctx);
  2789. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2790. ASSERT_TRUE(key);
  2791. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2792. ASSERT_TRUE(leaf);
  2793. std::vector<CRYPTO_BUFFER*> chain = { leaf.get() };
  2794. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2795. chain.size(), key.get(), nullptr));
  2796. SSL_CTX_set_custom_verify(
  2797. client_ctx.get(), SSL_VERIFY_PEER,
  2798. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2799. return ssl_verify_ok;
  2800. });
  2801. bssl::UniquePtr<SSL> client, server;
  2802. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2803. server_ctx.get()));
  2804. // With SSL_VERIFY_PEER, ssl_verify_invalid should result in a dropped
  2805. // connection.
  2806. SSL_CTX_set_custom_verify(
  2807. client_ctx.get(), SSL_VERIFY_PEER,
  2808. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2809. return ssl_verify_invalid;
  2810. });
  2811. ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2812. server_ctx.get()));
  2813. // But with SSL_VERIFY_NONE, ssl_verify_invalid should not cause a dropped
  2814. // connection.
  2815. SSL_CTX_set_custom_verify(
  2816. client_ctx.get(), SSL_VERIFY_NONE,
  2817. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2818. return ssl_verify_invalid;
  2819. });
  2820. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2821. server_ctx.get()));
  2822. }
  2823. TEST(SSLTest, ClientCABuffers) {
  2824. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2825. ASSERT_TRUE(client_ctx);
  2826. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2827. ASSERT_TRUE(server_ctx);
  2828. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2829. ASSERT_TRUE(key);
  2830. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2831. ASSERT_TRUE(leaf);
  2832. bssl::UniquePtr<CRYPTO_BUFFER> intermediate =
  2833. GetChainTestIntermediateBuffer();
  2834. ASSERT_TRUE(intermediate);
  2835. std::vector<CRYPTO_BUFFER *> chain = {
  2836. leaf.get(),
  2837. intermediate.get(),
  2838. };
  2839. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2840. chain.size(), key.get(), nullptr));
  2841. bssl::UniquePtr<CRYPTO_BUFFER> ca_name(
  2842. CRYPTO_BUFFER_new(kTestName, sizeof(kTestName), nullptr));
  2843. ASSERT_TRUE(ca_name);
  2844. bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names(
  2845. sk_CRYPTO_BUFFER_new_null());
  2846. ASSERT_TRUE(ca_names);
  2847. ASSERT_TRUE(sk_CRYPTO_BUFFER_push(ca_names.get(), ca_name.get()));
  2848. ca_name.release();
  2849. SSL_CTX_set0_client_CAs(server_ctx.get(), ca_names.release());
  2850. // Configure client and server to accept all certificates.
  2851. SSL_CTX_set_custom_verify(
  2852. client_ctx.get(), SSL_VERIFY_PEER,
  2853. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2854. return ssl_verify_ok;
  2855. });
  2856. SSL_CTX_set_custom_verify(
  2857. server_ctx.get(), SSL_VERIFY_PEER,
  2858. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2859. return ssl_verify_ok;
  2860. });
  2861. bool cert_cb_called = false;
  2862. SSL_CTX_set_cert_cb(
  2863. client_ctx.get(),
  2864. [](SSL *ssl, void *arg) -> int {
  2865. const STACK_OF(CRYPTO_BUFFER) *peer_names =
  2866. SSL_get0_server_requested_CAs(ssl);
  2867. EXPECT_EQ(1u, sk_CRYPTO_BUFFER_num(peer_names));
  2868. CRYPTO_BUFFER *peer_name = sk_CRYPTO_BUFFER_value(peer_names, 0);
  2869. EXPECT_EQ(Bytes(kTestName), Bytes(CRYPTO_BUFFER_data(peer_name),
  2870. CRYPTO_BUFFER_len(peer_name)));
  2871. *reinterpret_cast<bool *>(arg) = true;
  2872. return 1;
  2873. },
  2874. &cert_cb_called);
  2875. bssl::UniquePtr<SSL> client, server;
  2876. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2877. server_ctx.get()));
  2878. EXPECT_TRUE(cert_cb_called);
  2879. }
  2880. // Configuring the empty cipher list, though an error, should still modify the
  2881. // configuration.
  2882. TEST(SSLTest, EmptyCipherList) {
  2883. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2884. ASSERT_TRUE(ctx);
  2885. // Initially, the cipher list is not empty.
  2886. EXPECT_NE(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get())));
  2887. // Configuring the empty cipher list fails.
  2888. EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), ""));
  2889. ERR_clear_error();
  2890. // But the cipher list is still updated to empty.
  2891. EXPECT_EQ(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get())));
  2892. }
  2893. // ssl_test_ticket_aead_failure_mode enumerates the possible ways in which the
  2894. // test |SSL_TICKET_AEAD_METHOD| can fail.
  2895. enum ssl_test_ticket_aead_failure_mode {
  2896. ssl_test_ticket_aead_ok = 0,
  2897. ssl_test_ticket_aead_seal_fail,
  2898. ssl_test_ticket_aead_open_soft_fail,
  2899. ssl_test_ticket_aead_open_hard_fail,
  2900. };
  2901. struct ssl_test_ticket_aead_state {
  2902. unsigned retry_count;
  2903. ssl_test_ticket_aead_failure_mode failure_mode;
  2904. };
  2905. static int ssl_test_ticket_aead_ex_index_dup(CRYPTO_EX_DATA *to,
  2906. const CRYPTO_EX_DATA *from,
  2907. void **from_d, int index,
  2908. long argl, void *argp) {
  2909. abort();
  2910. }
  2911. static void ssl_test_ticket_aead_ex_index_free(void *parent, void *ptr,
  2912. CRYPTO_EX_DATA *ad, int index,
  2913. long argl, void *argp) {
  2914. auto state = reinterpret_cast<ssl_test_ticket_aead_state*>(ptr);
  2915. if (state == nullptr) {
  2916. return;
  2917. }
  2918. OPENSSL_free(state);
  2919. }
  2920. static CRYPTO_once_t g_ssl_test_ticket_aead_ex_index_once = CRYPTO_ONCE_INIT;
  2921. static int g_ssl_test_ticket_aead_ex_index;
  2922. static int ssl_test_ticket_aead_get_ex_index() {
  2923. CRYPTO_once(&g_ssl_test_ticket_aead_ex_index_once, [] {
  2924. g_ssl_test_ticket_aead_ex_index = SSL_get_ex_new_index(
  2925. 0, nullptr, nullptr, ssl_test_ticket_aead_ex_index_dup,
  2926. ssl_test_ticket_aead_ex_index_free);
  2927. });
  2928. return g_ssl_test_ticket_aead_ex_index;
  2929. }
  2930. static size_t ssl_test_ticket_aead_max_overhead(SSL *ssl) {
  2931. return 1;
  2932. }
  2933. static int ssl_test_ticket_aead_seal(SSL *ssl, uint8_t *out, size_t *out_len,
  2934. size_t max_out_len, const uint8_t *in,
  2935. size_t in_len) {
  2936. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2937. SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index()));
  2938. if (state->failure_mode == ssl_test_ticket_aead_seal_fail ||
  2939. max_out_len < in_len + 1) {
  2940. return 0;
  2941. }
  2942. OPENSSL_memmove(out, in, in_len);
  2943. out[in_len] = 0xff;
  2944. *out_len = in_len + 1;
  2945. return 1;
  2946. }
  2947. static ssl_ticket_aead_result_t ssl_test_ticket_aead_open(
  2948. SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len,
  2949. const uint8_t *in, size_t in_len) {
  2950. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2951. SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index()));
  2952. if (state->retry_count > 0) {
  2953. state->retry_count--;
  2954. return ssl_ticket_aead_retry;
  2955. }
  2956. switch (state->failure_mode) {
  2957. case ssl_test_ticket_aead_ok:
  2958. break;
  2959. case ssl_test_ticket_aead_seal_fail:
  2960. // If |seal| failed then there shouldn't be any ticket to try and
  2961. // decrypt.
  2962. abort();
  2963. break;
  2964. case ssl_test_ticket_aead_open_soft_fail:
  2965. return ssl_ticket_aead_ignore_ticket;
  2966. case ssl_test_ticket_aead_open_hard_fail:
  2967. return ssl_ticket_aead_error;
  2968. }
  2969. if (in_len == 0 || in[in_len - 1] != 0xff) {
  2970. return ssl_ticket_aead_ignore_ticket;
  2971. }
  2972. if (max_out_len < in_len - 1) {
  2973. return ssl_ticket_aead_error;
  2974. }
  2975. OPENSSL_memmove(out, in, in_len - 1);
  2976. *out_len = in_len - 1;
  2977. return ssl_ticket_aead_success;
  2978. }
  2979. static const SSL_TICKET_AEAD_METHOD kSSLTestTicketMethod = {
  2980. ssl_test_ticket_aead_max_overhead,
  2981. ssl_test_ticket_aead_seal,
  2982. ssl_test_ticket_aead_open,
  2983. };
  2984. static void ConnectClientAndServerWithTicketMethod(
  2985. bssl::UniquePtr<SSL> *out_client, bssl::UniquePtr<SSL> *out_server,
  2986. SSL_CTX *client_ctx, SSL_CTX *server_ctx, unsigned retry_count,
  2987. ssl_test_ticket_aead_failure_mode failure_mode, SSL_SESSION *session) {
  2988. bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
  2989. ASSERT_TRUE(client);
  2990. ASSERT_TRUE(server);
  2991. SSL_set_connect_state(client.get());
  2992. SSL_set_accept_state(server.get());
  2993. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2994. OPENSSL_malloc(sizeof(ssl_test_ticket_aead_state)));
  2995. ASSERT_TRUE(state);
  2996. OPENSSL_memset(state, 0, sizeof(ssl_test_ticket_aead_state));
  2997. state->retry_count = retry_count;
  2998. state->failure_mode = failure_mode;
  2999. ASSERT_TRUE(SSL_set_ex_data(server.get(), ssl_test_ticket_aead_get_ex_index(),
  3000. state));
  3001. SSL_set_session(client.get(), session);
  3002. BIO *bio1, *bio2;
  3003. ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0));
  3004. // SSL_set_bio takes ownership.
  3005. SSL_set_bio(client.get(), bio1, bio1);
  3006. SSL_set_bio(server.get(), bio2, bio2);
  3007. if (CompleteHandshakes(client.get(), server.get())) {
  3008. *out_client = std::move(client);
  3009. *out_server = std::move(server);
  3010. } else {
  3011. out_client->reset();
  3012. out_server->reset();
  3013. }
  3014. }
  3015. using TicketAEADMethodParam =
  3016. testing::tuple<uint16_t, unsigned, ssl_test_ticket_aead_failure_mode>;
  3017. class TicketAEADMethodTest
  3018. : public ::testing::TestWithParam<TicketAEADMethodParam> {};
  3019. TEST_P(TicketAEADMethodTest, Resume) {
  3020. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3021. ASSERT_TRUE(cert);
  3022. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3023. ASSERT_TRUE(key);
  3024. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3025. ASSERT_TRUE(server_ctx);
  3026. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3027. ASSERT_TRUE(client_ctx);
  3028. const uint16_t version = testing::get<0>(GetParam());
  3029. const unsigned retry_count = testing::get<1>(GetParam());
  3030. const ssl_test_ticket_aead_failure_mode failure_mode =
  3031. testing::get<2>(GetParam());
  3032. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3033. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3034. ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), version));
  3035. ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), version));
  3036. ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), version));
  3037. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), version));
  3038. SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH);
  3039. SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH);
  3040. SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback);
  3041. SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback);
  3042. SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession);
  3043. SSL_CTX_set_ticket_aead_method(server_ctx.get(), &kSSLTestTicketMethod);
  3044. bssl::UniquePtr<SSL> client, server;
  3045. ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(),
  3046. server_ctx.get(), retry_count,
  3047. failure_mode, nullptr);
  3048. switch (failure_mode) {
  3049. case ssl_test_ticket_aead_ok:
  3050. case ssl_test_ticket_aead_open_hard_fail:
  3051. case ssl_test_ticket_aead_open_soft_fail:
  3052. ASSERT_TRUE(client);
  3053. break;
  3054. case ssl_test_ticket_aead_seal_fail:
  3055. EXPECT_FALSE(client);
  3056. return;
  3057. }
  3058. EXPECT_FALSE(SSL_session_reused(client.get()));
  3059. EXPECT_FALSE(SSL_session_reused(server.get()));
  3060. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  3061. SSL_read(client.get(), nullptr, 0);
  3062. bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session);
  3063. ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(),
  3064. server_ctx.get(), retry_count,
  3065. failure_mode, session.get());
  3066. switch (failure_mode) {
  3067. case ssl_test_ticket_aead_ok:
  3068. ASSERT_TRUE(client);
  3069. EXPECT_TRUE(SSL_session_reused(client.get()));
  3070. EXPECT_TRUE(SSL_session_reused(server.get()));
  3071. break;
  3072. case ssl_test_ticket_aead_seal_fail:
  3073. abort();
  3074. break;
  3075. case ssl_test_ticket_aead_open_hard_fail:
  3076. EXPECT_FALSE(client);
  3077. break;
  3078. case ssl_test_ticket_aead_open_soft_fail:
  3079. ASSERT_TRUE(client);
  3080. EXPECT_FALSE(SSL_session_reused(client.get()));
  3081. EXPECT_FALSE(SSL_session_reused(server.get()));
  3082. }
  3083. }
  3084. std::string TicketAEADMethodParamToString(
  3085. const testing::TestParamInfo<TicketAEADMethodParam> &params) {
  3086. std::string ret = GetVersionName(std::get<0>(params.param));
  3087. // GTest only allows alphanumeric characters and '_' in the parameter
  3088. // string. Additionally filter out the 'v' to get "TLS13" over "TLSv13".
  3089. for (auto it = ret.begin(); it != ret.end();) {
  3090. if (*it == '.' || *it == 'v') {
  3091. it = ret.erase(it);
  3092. } else {
  3093. ++it;
  3094. }
  3095. }
  3096. char retry_count[256];
  3097. snprintf(retry_count, sizeof(retry_count), "%d", std::get<1>(params.param));
  3098. ret += "_";
  3099. ret += retry_count;
  3100. ret += "Retries_";
  3101. switch (std::get<2>(params.param)) {
  3102. case ssl_test_ticket_aead_ok:
  3103. ret += "OK";
  3104. break;
  3105. case ssl_test_ticket_aead_seal_fail:
  3106. ret += "SealFail";
  3107. break;
  3108. case ssl_test_ticket_aead_open_soft_fail:
  3109. ret += "OpenSoftFail";
  3110. break;
  3111. case ssl_test_ticket_aead_open_hard_fail:
  3112. ret += "OpenHardFail";
  3113. break;
  3114. }
  3115. return ret;
  3116. }
  3117. INSTANTIATE_TEST_CASE_P(
  3118. TicketAEADMethodTests, TicketAEADMethodTest,
  3119. testing::Combine(testing::Values(TLS1_2_VERSION, TLS1_3_VERSION),
  3120. testing::Values(0, 1, 2),
  3121. testing::Values(ssl_test_ticket_aead_ok,
  3122. ssl_test_ticket_aead_seal_fail,
  3123. ssl_test_ticket_aead_open_soft_fail,
  3124. ssl_test_ticket_aead_open_hard_fail)),
  3125. TicketAEADMethodParamToString);
  3126. TEST(SSLTest, SelectNextProto) {
  3127. uint8_t *result;
  3128. uint8_t result_len;
  3129. // If there is an overlap, it should be returned.
  3130. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3131. SSL_select_next_proto(&result, &result_len,
  3132. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3133. (const uint8_t *)"\1x\1y\1a\1z", 8));
  3134. EXPECT_EQ(Bytes("a"), Bytes(result, result_len));
  3135. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3136. SSL_select_next_proto(&result, &result_len,
  3137. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3138. (const uint8_t *)"\1x\1y\2bb\1z", 9));
  3139. EXPECT_EQ(Bytes("bb"), Bytes(result, result_len));
  3140. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3141. SSL_select_next_proto(&result, &result_len,
  3142. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3143. (const uint8_t *)"\1x\1y\3ccc\1z", 10));
  3144. EXPECT_EQ(Bytes("ccc"), Bytes(result, result_len));
  3145. // Peer preference order takes precedence over local.
  3146. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3147. SSL_select_next_proto(&result, &result_len,
  3148. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3149. (const uint8_t *)"\3ccc\2bb\1a", 9));
  3150. EXPECT_EQ(Bytes("a"), Bytes(result, result_len));
  3151. // If there is no overlap, return the first local protocol.
  3152. EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP,
  3153. SSL_select_next_proto(&result, &result_len,
  3154. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3155. (const uint8_t *)"\1x\2yy\3zzz", 9));
  3156. EXPECT_EQ(Bytes("x"), Bytes(result, result_len));
  3157. EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP,
  3158. SSL_select_next_proto(&result, &result_len, nullptr, 0,
  3159. (const uint8_t *)"\1x\2yy\3zzz", 9));
  3160. EXPECT_EQ(Bytes("x"), Bytes(result, result_len));
  3161. }
  3162. TEST(SSLTest, SealRecord) {
  3163. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3164. server_ctx(SSL_CTX_new(TLS_method()));
  3165. ASSERT_TRUE(client_ctx);
  3166. ASSERT_TRUE(server_ctx);
  3167. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3168. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3169. ASSERT_TRUE(cert);
  3170. ASSERT_TRUE(key);
  3171. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3172. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3173. bssl::UniquePtr<SSL> client, server;
  3174. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3175. server_ctx.get()));
  3176. const std::vector<uint8_t> record = {1, 2, 3, 4, 5};
  3177. std::vector<uint8_t> prefix(
  3178. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3179. body(record.size()),
  3180. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3181. ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3182. bssl::MakeSpan(body), bssl::MakeSpan(suffix),
  3183. record));
  3184. std::vector<uint8_t> sealed;
  3185. sealed.insert(sealed.end(), prefix.begin(), prefix.end());
  3186. sealed.insert(sealed.end(), body.begin(), body.end());
  3187. sealed.insert(sealed.end(), suffix.begin(), suffix.end());
  3188. std::vector<uint8_t> sealed_copy = sealed;
  3189. bssl::Span<uint8_t> plaintext;
  3190. size_t record_len;
  3191. uint8_t alert = 255;
  3192. EXPECT_EQ(bssl::OpenRecord(server.get(), &plaintext, &record_len, &alert,
  3193. bssl::MakeSpan(sealed)),
  3194. bssl::OpenRecordResult::kOK);
  3195. EXPECT_EQ(record_len, sealed.size());
  3196. EXPECT_EQ(plaintext, record);
  3197. EXPECT_EQ(255, alert);
  3198. }
  3199. TEST(SSLTest, SealRecordInPlace) {
  3200. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3201. server_ctx(SSL_CTX_new(TLS_method()));
  3202. ASSERT_TRUE(client_ctx);
  3203. ASSERT_TRUE(server_ctx);
  3204. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3205. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3206. ASSERT_TRUE(cert);
  3207. ASSERT_TRUE(key);
  3208. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3209. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3210. bssl::UniquePtr<SSL> client, server;
  3211. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3212. server_ctx.get()));
  3213. const std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5};
  3214. std::vector<uint8_t> record = plaintext;
  3215. std::vector<uint8_t> prefix(
  3216. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3217. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3218. ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3219. bssl::MakeSpan(record), bssl::MakeSpan(suffix),
  3220. record));
  3221. record.insert(record.begin(), prefix.begin(), prefix.end());
  3222. record.insert(record.end(), suffix.begin(), suffix.end());
  3223. bssl::Span<uint8_t> result;
  3224. size_t record_len;
  3225. uint8_t alert;
  3226. EXPECT_EQ(bssl::OpenRecord(server.get(), &result, &record_len, &alert,
  3227. bssl::MakeSpan(record)),
  3228. bssl::OpenRecordResult::kOK);
  3229. EXPECT_EQ(record_len, record.size());
  3230. EXPECT_EQ(plaintext, result);
  3231. }
  3232. TEST(SSLTest, SealRecordTrailingData) {
  3233. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3234. server_ctx(SSL_CTX_new(TLS_method()));
  3235. ASSERT_TRUE(client_ctx);
  3236. ASSERT_TRUE(server_ctx);
  3237. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3238. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3239. ASSERT_TRUE(cert);
  3240. ASSERT_TRUE(key);
  3241. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3242. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3243. bssl::UniquePtr<SSL> client, server;
  3244. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3245. server_ctx.get()));
  3246. const std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5};
  3247. std::vector<uint8_t> record = plaintext;
  3248. std::vector<uint8_t> prefix(
  3249. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3250. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3251. ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3252. bssl::MakeSpan(record), bssl::MakeSpan(suffix),
  3253. record));
  3254. record.insert(record.begin(), prefix.begin(), prefix.end());
  3255. record.insert(record.end(), suffix.begin(), suffix.end());
  3256. record.insert(record.end(), {5, 4, 3, 2, 1});
  3257. bssl::Span<uint8_t> result;
  3258. size_t record_len;
  3259. uint8_t alert;
  3260. EXPECT_EQ(bssl::OpenRecord(server.get(), &result, &record_len, &alert,
  3261. bssl::MakeSpan(record)),
  3262. bssl::OpenRecordResult::kOK);
  3263. EXPECT_EQ(record_len, record.size() - 5);
  3264. EXPECT_EQ(plaintext, result);
  3265. }
  3266. TEST(SSLTest, SealRecordInvalidSpanSize) {
  3267. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3268. server_ctx(SSL_CTX_new(TLS_method()));
  3269. ASSERT_TRUE(client_ctx);
  3270. ASSERT_TRUE(server_ctx);
  3271. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3272. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3273. ASSERT_TRUE(cert);
  3274. ASSERT_TRUE(key);
  3275. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3276. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3277. bssl::UniquePtr<SSL> client, server;
  3278. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3279. server_ctx.get()));
  3280. std::vector<uint8_t> record = {1, 2, 3, 4, 5};
  3281. std::vector<uint8_t> prefix(
  3282. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3283. body(record.size()),
  3284. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3285. auto expect_err = []() {
  3286. int err = ERR_get_error();
  3287. EXPECT_EQ(ERR_GET_LIB(err), ERR_LIB_SSL);
  3288. EXPECT_EQ(ERR_GET_REASON(err), SSL_R_BUFFER_TOO_SMALL);
  3289. ERR_clear_error();
  3290. };
  3291. EXPECT_FALSE(bssl::SealRecord(
  3292. client.get(), bssl::MakeSpan(prefix.data(), prefix.size() - 1),
  3293. bssl::MakeSpan(record), bssl::MakeSpan(suffix), record));
  3294. expect_err();
  3295. EXPECT_FALSE(bssl::SealRecord(
  3296. client.get(), bssl::MakeSpan(prefix.data(), prefix.size() + 1),
  3297. bssl::MakeSpan(record), bssl::MakeSpan(suffix), record));
  3298. expect_err();
  3299. EXPECT_FALSE(
  3300. bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3301. bssl::MakeSpan(record.data(), record.size() - 1),
  3302. bssl::MakeSpan(suffix), record));
  3303. expect_err();
  3304. EXPECT_FALSE(
  3305. bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3306. bssl::MakeSpan(record.data(), record.size() + 1),
  3307. bssl::MakeSpan(suffix), record));
  3308. expect_err();
  3309. EXPECT_FALSE(bssl::SealRecord(
  3310. client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record),
  3311. bssl::MakeSpan(suffix.data(), suffix.size() - 1), record));
  3312. expect_err();
  3313. EXPECT_FALSE(bssl::SealRecord(
  3314. client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record),
  3315. bssl::MakeSpan(suffix.data(), suffix.size() + 1), record));
  3316. expect_err();
  3317. }
  3318. // The client should gracefully handle no suitable ciphers being enabled.
  3319. TEST(SSLTest, NoCiphersAvailable) {
  3320. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  3321. ASSERT_TRUE(ctx);
  3322. // Configure |client_ctx| with a cipher list that does not intersect with its
  3323. // version configuration.
  3324. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(
  3325. ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"));
  3326. ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION));
  3327. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  3328. ASSERT_TRUE(ssl);
  3329. SSL_set_connect_state(ssl.get());
  3330. UniquePtr<BIO> rbio(BIO_new(BIO_s_mem())), wbio(BIO_new(BIO_s_mem()));
  3331. ASSERT_TRUE(rbio);
  3332. ASSERT_TRUE(wbio);
  3333. SSL_set0_rbio(ssl.get(), rbio.release());
  3334. SSL_set0_wbio(ssl.get(), wbio.release());
  3335. int ret = SSL_do_handshake(ssl.get());
  3336. EXPECT_EQ(-1, ret);
  3337. EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), ret));
  3338. uint32_t err = ERR_get_error();
  3339. EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err));
  3340. EXPECT_EQ(SSL_R_NO_CIPHERS_AVAILABLE, ERR_GET_REASON(err));
  3341. }
  3342. TEST_P(SSLVersionTest, SessionVersion) {
  3343. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3344. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3345. bssl::UniquePtr<SSL_SESSION> session =
  3346. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  3347. ASSERT_TRUE(session);
  3348. EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get()));
  3349. // Sessions in TLS 1.3 and later should be single-use.
  3350. EXPECT_EQ(version() == TLS1_3_VERSION,
  3351. !!SSL_SESSION_should_be_single_use(session.get()));
  3352. // Making fake sessions for testing works.
  3353. session.reset(SSL_SESSION_new(client_ctx_.get()));
  3354. ASSERT_TRUE(session);
  3355. ASSERT_TRUE(SSL_SESSION_set_protocol_version(session.get(), version()));
  3356. EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get()));
  3357. }
  3358. TEST_P(SSLVersionTest, SSLPending) {
  3359. UniquePtr<SSL> ssl(SSL_new(client_ctx_.get()));
  3360. ASSERT_TRUE(ssl);
  3361. EXPECT_EQ(0, SSL_pending(ssl.get()));
  3362. ASSERT_TRUE(Connect());
  3363. EXPECT_EQ(0, SSL_pending(client_.get()));
  3364. ASSERT_EQ(5, SSL_write(server_.get(), "hello", 5));
  3365. ASSERT_EQ(5, SSL_write(server_.get(), "world", 5));
  3366. EXPECT_EQ(0, SSL_pending(client_.get()));
  3367. char buf[10];
  3368. ASSERT_EQ(1, SSL_peek(client_.get(), buf, 1));
  3369. EXPECT_EQ(5, SSL_pending(client_.get()));
  3370. ASSERT_EQ(1, SSL_read(client_.get(), buf, 1));
  3371. EXPECT_EQ(4, SSL_pending(client_.get()));
  3372. ASSERT_EQ(4, SSL_read(client_.get(), buf, 10));
  3373. EXPECT_EQ(0, SSL_pending(client_.get()));
  3374. ASSERT_EQ(2, SSL_read(client_.get(), buf, 2));
  3375. EXPECT_EQ(3, SSL_pending(client_.get()));
  3376. }
  3377. // Test that post-handshake tickets consumed by |SSL_shutdown| are ignored.
  3378. TEST(SSLTest, ShutdownIgnoresTickets) {
  3379. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  3380. ASSERT_TRUE(ctx);
  3381. ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_3_VERSION));
  3382. ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION));
  3383. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3384. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3385. ASSERT_TRUE(cert);
  3386. ASSERT_TRUE(key);
  3387. ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
  3388. ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get()));
  3389. SSL_CTX_set_session_cache_mode(ctx.get(), SSL_SESS_CACHE_BOTH);
  3390. bssl::UniquePtr<SSL> client, server;
  3391. ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get()));
  3392. SSL_CTX_sess_set_new_cb(ctx.get(), [](SSL *ssl, SSL_SESSION *session) -> int {
  3393. ADD_FAILURE() << "New session callback called during SSL_shutdown";
  3394. return 0;
  3395. });
  3396. // Send close_notify.
  3397. EXPECT_EQ(0, SSL_shutdown(server.get()));
  3398. EXPECT_EQ(0, SSL_shutdown(client.get()));
  3399. // Receive close_notify.
  3400. EXPECT_EQ(1, SSL_shutdown(server.get()));
  3401. EXPECT_EQ(1, SSL_shutdown(client.get()));
  3402. }
  3403. TEST(SSLTest, SignatureAlgorithmProperties) {
  3404. EXPECT_EQ(EVP_PKEY_NONE, SSL_get_signature_algorithm_key_type(0x1234));
  3405. EXPECT_EQ(nullptr, SSL_get_signature_algorithm_digest(0x1234));
  3406. EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(0x1234));
  3407. EXPECT_EQ(EVP_PKEY_RSA,
  3408. SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
  3409. EXPECT_EQ(EVP_md5_sha1(),
  3410. SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
  3411. EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
  3412. EXPECT_EQ(EVP_PKEY_EC, SSL_get_signature_algorithm_key_type(
  3413. SSL_SIGN_ECDSA_SECP256R1_SHA256));
  3414. EXPECT_EQ(EVP_sha256(), SSL_get_signature_algorithm_digest(
  3415. SSL_SIGN_ECDSA_SECP256R1_SHA256));
  3416. EXPECT_FALSE(
  3417. SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_ECDSA_SECP256R1_SHA256));
  3418. EXPECT_EQ(EVP_PKEY_RSA,
  3419. SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PSS_RSAE_SHA384));
  3420. EXPECT_EQ(EVP_sha384(),
  3421. SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PSS_RSAE_SHA384));
  3422. EXPECT_TRUE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PSS_RSAE_SHA384));
  3423. }
  3424. void MoveBIOs(SSL *dest, SSL *src) {
  3425. BIO *rbio = SSL_get_rbio(src);
  3426. BIO_up_ref(rbio);
  3427. SSL_set0_rbio(dest, rbio);
  3428. BIO *wbio = SSL_get_wbio(src);
  3429. BIO_up_ref(wbio);
  3430. SSL_set0_wbio(dest, wbio);
  3431. SSL_set0_rbio(src, nullptr);
  3432. SSL_set0_wbio(src, nullptr);
  3433. }
  3434. TEST(SSLTest, Handoff) {
  3435. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3436. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3437. bssl::UniquePtr<SSL_CTX> handshaker_ctx(SSL_CTX_new(TLS_method()));
  3438. ASSERT_TRUE(client_ctx);
  3439. ASSERT_TRUE(server_ctx);
  3440. ASSERT_TRUE(handshaker_ctx);
  3441. SSL_CTX_set_handoff_mode(server_ctx.get(), 1);
  3442. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION));
  3443. ASSERT_TRUE(
  3444. SSL_CTX_set_max_proto_version(handshaker_ctx.get(), TLS1_2_VERSION));
  3445. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3446. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3447. ASSERT_TRUE(cert);
  3448. ASSERT_TRUE(key);
  3449. ASSERT_TRUE(SSL_CTX_use_certificate(handshaker_ctx.get(), cert.get()));
  3450. ASSERT_TRUE(SSL_CTX_use_PrivateKey(handshaker_ctx.get(), key.get()));
  3451. bssl::UniquePtr<SSL> client, server;
  3452. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3453. server_ctx.get(), ClientConfig(),
  3454. false /* don't handshake */));
  3455. int client_ret = SSL_do_handshake(client.get());
  3456. int client_err = SSL_get_error(client.get(), client_ret);
  3457. ASSERT_EQ(client_err, SSL_ERROR_WANT_READ);
  3458. int server_ret = SSL_do_handshake(server.get());
  3459. int server_err = SSL_get_error(server.get(), server_ret);
  3460. ASSERT_EQ(server_err, SSL_ERROR_HANDOFF);
  3461. ScopedCBB cbb;
  3462. Array<uint8_t> handoff;
  3463. ASSERT_TRUE(CBB_init(cbb.get(), 256));
  3464. ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get()));
  3465. ASSERT_TRUE(CBBFinishArray(cbb.get(), &handoff));
  3466. bssl::UniquePtr<SSL> handshaker(SSL_new(handshaker_ctx.get()));
  3467. ASSERT_TRUE(SSL_apply_handoff(handshaker.get(), handoff));
  3468. MoveBIOs(handshaker.get(), server.get());
  3469. int handshake_ret = SSL_do_handshake(handshaker.get());
  3470. int handshake_err = SSL_get_error(handshaker.get(), handshake_ret);
  3471. ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK);
  3472. // Double-check that additional calls to |SSL_do_handshake| continue
  3473. // to get |SSL_ERRROR_HANDBACK|.
  3474. handshake_ret = SSL_do_handshake(handshaker.get());
  3475. handshake_err = SSL_get_error(handshaker.get(), handshake_ret);
  3476. ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK);
  3477. ScopedCBB cbb_handback;
  3478. Array<uint8_t> handback;
  3479. ASSERT_TRUE(CBB_init(cbb_handback.get(), 1024));
  3480. ASSERT_TRUE(SSL_serialize_handback(handshaker.get(), cbb_handback.get()));
  3481. ASSERT_TRUE(CBBFinishArray(cbb_handback.get(), &handback));
  3482. bssl::UniquePtr<SSL> server2(SSL_new(server_ctx.get()));
  3483. ASSERT_TRUE(SSL_apply_handback(server2.get(), handback));
  3484. MoveBIOs(server2.get(), handshaker.get());
  3485. ASSERT_TRUE(CompleteHandshakes(client.get(), server2.get()));
  3486. uint8_t byte = 42;
  3487. EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1);
  3488. EXPECT_EQ(SSL_read(server2.get(), &byte, 1), 1);
  3489. EXPECT_EQ(42, byte);
  3490. byte = 43;
  3491. EXPECT_EQ(SSL_write(server2.get(), &byte, 1), 1);
  3492. EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1);
  3493. EXPECT_EQ(43, byte);
  3494. }
  3495. TEST(SSLTest, HandoffDeclined) {
  3496. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3497. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3498. ASSERT_TRUE(client_ctx);
  3499. ASSERT_TRUE(server_ctx);
  3500. SSL_CTX_set_handoff_mode(server_ctx.get(), 1);
  3501. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION));
  3502. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3503. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3504. ASSERT_TRUE(cert);
  3505. ASSERT_TRUE(key);
  3506. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3507. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3508. bssl::UniquePtr<SSL> client, server;
  3509. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3510. server_ctx.get(), ClientConfig(),
  3511. false /* don't handshake */));
  3512. int client_ret = SSL_do_handshake(client.get());
  3513. int client_err = SSL_get_error(client.get(), client_ret);
  3514. ASSERT_EQ(client_err, SSL_ERROR_WANT_READ);
  3515. int server_ret = SSL_do_handshake(server.get());
  3516. int server_err = SSL_get_error(server.get(), server_ret);
  3517. ASSERT_EQ(server_err, SSL_ERROR_HANDOFF);
  3518. ScopedCBB cbb;
  3519. ASSERT_TRUE(CBB_init(cbb.get(), 256));
  3520. ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get()));
  3521. ASSERT_TRUE(SSL_decline_handoff(server.get()));
  3522. ASSERT_TRUE(CompleteHandshakes(client.get(), server.get()));
  3523. uint8_t byte = 42;
  3524. EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1);
  3525. EXPECT_EQ(SSL_read(server.get(), &byte, 1), 1);
  3526. EXPECT_EQ(42, byte);
  3527. byte = 43;
  3528. EXPECT_EQ(SSL_write(server.get(), &byte, 1), 1);
  3529. EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1);
  3530. EXPECT_EQ(43, byte);
  3531. }
  3532. // TODO(davidben): Convert this file to GTest properly.
  3533. TEST(SSLTest, AllTests) {
  3534. if (!TestSSL_SESSIONEncoding(kOpenSSLSession) ||
  3535. !TestSSL_SESSIONEncoding(kCustomSession) ||
  3536. !TestSSL_SESSIONEncoding(kBoringSSLSession) ||
  3537. !TestBadSSL_SESSIONEncoding(kBadSessionExtraField) ||
  3538. !TestBadSSL_SESSIONEncoding(kBadSessionVersion) ||
  3539. !TestBadSSL_SESSIONEncoding(kBadSessionTrailingData) ||
  3540. // Test the padding extension at TLS 1.2.
  3541. !TestPaddingExtension(TLS1_2_VERSION, TLS1_2_VERSION) ||
  3542. // Test the padding extension at TLS 1.3 with a TLS 1.2 session, so there
  3543. // will be no PSK binder after the padding extension.
  3544. !TestPaddingExtension(TLS1_3_VERSION, TLS1_2_VERSION) ||
  3545. // Test the padding extension at TLS 1.3 with a TLS 1.3 session, so there
  3546. // will be a PSK binder after the padding extension.
  3547. !TestPaddingExtension(TLS1_3_VERSION, TLS1_3_DRAFT23_VERSION)) {
  3548. ADD_FAILURE() << "Tests failed";
  3549. }
  3550. }
  3551. } // namespace
  3552. } // namespace bssl