boringssl/ssl/internal.h
David Benjamin b4d65fda70 Implement asynchronous private key operations for client auth.
This adds a new API, SSL_set_private_key_method, which allows the consumer to
customize private key operations. For simplicity, it is incompatible with the
multiple slots feature (which will hopefully go away) but does not, for now,
break it.

The new method is only routed up for the client for now. The server will
require a decrypt hook as well for the plain RSA key exchange.

BUG=347404

Change-Id: I35d69095c29134c34c2af88c613ad557d6957614
Reviewed-on: https://boringssl-review.googlesource.com/5049
Reviewed-by: Adam Langley <agl@google.com>
2015-06-18 22:14:51 +00:00

1187 lines
49 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
/* ====================================================================
* Copyright 2005 Nokia. All rights reserved.
*
* The portions of the attached software ("Contribution") is developed by
* Nokia Corporation and is licensed pursuant to the OpenSSL open source
* license.
*
* The Contribution, originally written by Mika Kousa and Pasi Eronen of
* Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
* support (see RFC 4279) to OpenSSL.
*
* No patent licenses or other rights except those expressly stated in
* the OpenSSL open source license shall be deemed granted or received
* expressly, by implication, estoppel, or otherwise.
*
* No assurances are provided by Nokia that the Contribution does not
* infringe the patent or other intellectual property rights of any third
* party or that the license provides you with all the necessary rights
* to make use of the Contribution.
*
* THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
* ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
* SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
* OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
* OTHERWISE.
*/
#ifndef OPENSSL_HEADER_SSL_INTERNAL_H
#define OPENSSL_HEADER_SSL_INTERNAL_H
#include <openssl/base.h>
#include <openssl/aead.h>
#include <openssl/pqueue.h>
#include <openssl/ssl.h>
#include <openssl/stack.h>
#if defined(OPENSSL_WINDOWS)
/* Windows defines struct timeval in winsock2.h. */
#pragma warning(push, 3)
#include <winsock2.h>
#pragma warning(pop)
#else
#include <sys/types.h>
#endif
/* Cipher suites. */
/* Bits for |algorithm_mkey| (key exchange algorithm). */
#define SSL_kRSA 0x00000001L
#define SSL_kDHE 0x00000002L
#define SSL_kECDHE 0x00000004L
/* SSL_kPSK is only set for plain PSK, not ECDHE_PSK. */
#define SSL_kPSK 0x00000008L
/* Bits for |algorithm_auth| (server authentication). */
#define SSL_aRSA 0x00000001L
#define SSL_aECDSA 0x00000002L
/* SSL_aPSK is set for both PSK and ECDHE_PSK. */
#define SSL_aPSK 0x00000004L
/* Bits for |algorithm_enc| (symmetric encryption). */
#define SSL_3DES 0x00000001L
#define SSL_RC4 0x00000002L
#define SSL_AES128 0x00000004L
#define SSL_AES256 0x00000008L
#define SSL_AES128GCM 0x00000010L
#define SSL_AES256GCM 0x00000020L
#define SSL_CHACHA20POLY1305 0x00000040L
#define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
/* Bits for |algorithm_mac| (symmetric authentication). */
#define SSL_MD5 0x00000001L
#define SSL_SHA1 0x00000002L
#define SSL_SHA256 0x00000004L
#define SSL_SHA384 0x00000008L
/* SSL_AEAD is set for all AEADs. */
#define SSL_AEAD 0x00000010L
/* Bits for |algorithm_ssl| (protocol version). These denote the first protocol
* version which introduced the cipher.
*
* TODO(davidben): These are extremely confusing, both in code and in
* cipher rules. Try to remove them. */
#define SSL_SSLV3 0x00000002L
#define SSL_TLSV1 SSL_SSLV3
#define SSL_TLSV1_2 0x00000004L
/* Bits for |algorithm2| (handshake digests and other extra flags). */
#define SSL_HANDSHAKE_MAC_MD5 0x10
#define SSL_HANDSHAKE_MAC_SHA 0x20
#define SSL_HANDSHAKE_MAC_SHA256 0x40
#define SSL_HANDSHAKE_MAC_SHA384 0x80
#define SSL_HANDSHAKE_MAC_DEFAULT \
(SSL_HANDSHAKE_MAC_MD5 | SSL_HANDSHAKE_MAC_SHA)
/* SSL_MAX_DIGEST is the number of digest types which exist. When adding a new
* one, update the table in ssl_cipher.c. */
#define SSL_MAX_DIGEST 4
/* SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD is a flag in
* SSL_CIPHER.algorithm2 which indicates that the variable part of the nonce is
* included as a prefix of the record. (AES-GCM, for example, does with with an
* 8-byte variable nonce.) */
#define SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD (1<<22)
/* Bits for |algo_strength|, cipher strength information. */
#define SSL_MEDIUM 0x00000001L
#define SSL_HIGH 0x00000002L
#define SSL_FIPS 0x00000004L
/* ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
* object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
* and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
* respectively. The MAC key length is zero except for legacy block and stream
* ciphers. It returns 1 on success and 0 on error. */
int ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
size_t *out_mac_secret_len,
size_t *out_fixed_iv_len,
const SSL_CIPHER *cipher, uint16_t version);
/* ssl_get_handshake_digest looks up the |i|th handshake digest type and sets
* |*out_mask| to the |SSL_HANDSHAKE_MAC_*| mask and |*out_md| to the
* |EVP_MD|. It returns one on successs and zero if |i| >= |SSL_MAX_DIGEST|. */
int ssl_get_handshake_digest(uint32_t *out_mask, const EVP_MD **out_md,
size_t i);
/* ssl_create_cipher_list evaluates |rule_str| according to the ciphers in
* |ssl_method|. It sets |*out_cipher_list| to a newly-allocated
* |ssl_cipher_preference_list_st| containing the result.
* |*out_cipher_list_by_id| is set to a list of selected ciphers sorted by
* id. It returns |(*out_cipher_list)->ciphers| on success and NULL on
* failure. */
STACK_OF(SSL_CIPHER) *
ssl_create_cipher_list(const SSL_PROTOCOL_METHOD *ssl_method,
struct ssl_cipher_preference_list_st **out_cipher_list,
STACK_OF(SSL_CIPHER) **out_cipher_list_by_id,
const char *rule_str);
/* SSL_PKEY_* denote certificate types. */
#define SSL_PKEY_RSA_ENC 0
#define SSL_PKEY_RSA_SIGN 1
#define SSL_PKEY_ECC 2
#define SSL_PKEY_NUM 3
/* ssl_cipher_get_value returns the cipher suite id of |cipher|. */
uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher);
/* ssl_cipher_get_cert_index returns the |SSL_PKEY_*| value corresponding to the
* certificate type of |cipher| or -1 if there is none. */
int ssl_cipher_get_cert_index(const SSL_CIPHER *cipher);
/* ssl_cipher_has_server_public_key returns 1 if |cipher| involves a server
* public key in the key exchange, sent in a server Certificate message.
* Otherwise it returns 0. */
int ssl_cipher_has_server_public_key(const SSL_CIPHER *cipher);
/* ssl_cipher_requires_server_key_exchange returns 1 if |cipher| requires a
* ServerKeyExchange message. Otherwise it returns 0.
*
* Unlike ssl_cipher_has_server_public_key, some ciphers take optional
* ServerKeyExchanges. PSK and RSA_PSK only use the ServerKeyExchange to
* communicate a psk_identity_hint, so it is optional. */
int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
/* Encryption layer. */
/* SSL_AEAD_CTX contains information about an AEAD that is being used to encrypt
* an SSL connection. */
struct ssl_aead_ctx_st {
const SSL_CIPHER *cipher;
EVP_AEAD_CTX ctx;
/* fixed_nonce contains any bytes of the nonce that are fixed for all
* records. */
uint8_t fixed_nonce[8];
uint8_t fixed_nonce_len, variable_nonce_len;
/* variable_nonce_included_in_record is non-zero if the variable nonce
* for a record is included as a prefix before the ciphertext. */
char variable_nonce_included_in_record;
/* random_variable_nonce is non-zero if the variable nonce is
* randomly generated, rather than derived from the sequence
* number. */
char random_variable_nonce;
/* omit_length_in_ad is non-zero if the length should be omitted in the
* AEAD's ad parameter. */
char omit_length_in_ad;
/* omit_version_in_ad is non-zero if the version should be omitted
* in the AEAD's ad parameter. */
char omit_version_in_ad;
} /* SSL_AEAD_CTX */;
/* SSL_AEAD_CTX_new creates a newly-allocated |SSL_AEAD_CTX| using the supplied
* key material. It returns NULL on error. Only one of |SSL_AEAD_CTX_open| or
* |SSL_AEAD_CTX_seal| may be used with the resulting object, depending on
* |direction|. |version| is the normalized protocol version, so DTLS 1.0 is
* represented as 0x0301, not 0xffef. */
SSL_AEAD_CTX *SSL_AEAD_CTX_new(enum evp_aead_direction_t direction,
uint16_t version, const SSL_CIPHER *cipher,
const uint8_t *enc_key, size_t enc_key_len,
const uint8_t *mac_key, size_t mac_key_len,
const uint8_t *fixed_iv, size_t fixed_iv_len);
/* SSL_AEAD_CTX_free frees |ctx|. */
void SSL_AEAD_CTX_free(SSL_AEAD_CTX *ctx);
/* SSL_AEAD_CTX_explicit_nonce_len returns the length of the explicit nonce for
* |ctx|, if any. |ctx| may be NULL to denote the null cipher. */
size_t SSL_AEAD_CTX_explicit_nonce_len(SSL_AEAD_CTX *ctx);
/* SSL_AEAD_CTX_max_overhead returns the maximum overhead of calling
* |SSL_AEAD_CTX_seal|. |ctx| may be NULL to denote the null cipher. */
size_t SSL_AEAD_CTX_max_overhead(SSL_AEAD_CTX *ctx);
/* SSL_AEAD_CTX_open authenticates and decrypts |in_len| bytes from |in| and
* writes the result to |out|. It returns one on success and zero on
* error. |ctx| may be NULL to denote the null cipher.
*
* If |in| and |out| alias then |out| must be <= |in| + |explicit_nonce_len|. */
int SSL_AEAD_CTX_open(SSL_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
size_t max_out, uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], const uint8_t *in,
size_t in_len);
/* SSL_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
* writes the result to |out|. It returns one on success and zero on
* error. |ctx| may be NULL to denote the null cipher.
*
* If |in| and |out| alias then |out| + |explicit_nonce_len| must be <= |in| */
int SSL_AEAD_CTX_seal(SSL_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
size_t max_out, uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], const uint8_t *in,
size_t in_len);
/* Private key operations. */
/* ssl_private_key_* call the corresponding function on the
* |SSL_PRIVATE_KEY_METHOD| for |ssl|, if configured. Otherwise, they implement
* the operation on |pkey|.
*
* TODO(davidben): The |EVP_PKEY| must be passed in to due to the multiple
* certificate slots feature. Remove it. */
int ssl_private_key_type(SSL *ssl, const EVP_PKEY *pkey);
int ssl_private_key_supports_digest(SSL *ssl, const EVP_PKEY *pkey,
const EVP_MD *md);
size_t ssl_private_key_max_signature_len(SSL *ssl, const EVP_PKEY *pkey);
enum ssl_private_key_result_t ssl_private_key_sign(
SSL *ssl, EVP_PKEY *pkey, uint8_t *out, size_t *out_len, size_t max_out,
const EVP_MD *md, const uint8_t *in, size_t in_len);
enum ssl_private_key_result_t ssl_private_key_sign_complete(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out);
/* Underdocumented functions.
*
* Functions below here haven't been touched up and may be underdocumented. */
#define c2l(c, l) \
(l = ((unsigned long)(*((c)++))), l |= (((unsigned long)(*((c)++))) << 8), \
l |= (((unsigned long)(*((c)++))) << 16), \
l |= (((unsigned long)(*((c)++))) << 24))
/* NOTE - c is not incremented as per c2l */
#define c2ln(c, l1, l2, n) \
{ \
c += n; \
l1 = l2 = 0; \
switch (n) { \
case 8: \
l2 = ((unsigned long)(*(--(c)))) << 24; \
case 7: \
l2 |= ((unsigned long)(*(--(c)))) << 16; \
case 6: \
l2 |= ((unsigned long)(*(--(c)))) << 8; \
case 5: \
l2 |= ((unsigned long)(*(--(c)))); \
case 4: \
l1 = ((unsigned long)(*(--(c)))) << 24; \
case 3: \
l1 |= ((unsigned long)(*(--(c)))) << 16; \
case 2: \
l1 |= ((unsigned long)(*(--(c)))) << 8; \
case 1: \
l1 |= ((unsigned long)(*(--(c)))); \
} \
}
#define l2c(l, c) \
(*((c)++) = (uint8_t)(((l)) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 8) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 16) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 24) & 0xff))
#define n2l(c, l) \
(l = ((unsigned long)(*((c)++))) << 24, \
l |= ((unsigned long)(*((c)++))) << 16, \
l |= ((unsigned long)(*((c)++))) << 8, l |= ((unsigned long)(*((c)++))))
#define l2n(l, c) \
(*((c)++) = (uint8_t)(((l) >> 24) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 16) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 8) & 0xff), \
*((c)++) = (uint8_t)(((l)) & 0xff))
#define l2n8(l, c) \
(*((c)++) = (uint8_t)(((l) >> 56) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 48) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 40) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 32) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 24) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 16) & 0xff), \
*((c)++) = (uint8_t)(((l) >> 8) & 0xff), \
*((c)++) = (uint8_t)(((l)) & 0xff))
/* NOTE - c is not incremented as per l2c */
#define l2cn(l1, l2, c, n) \
{ \
c += n; \
switch (n) { \
case 8: \
*(--(c)) = (uint8_t)(((l2) >> 24) & 0xff); \
case 7: \
*(--(c)) = (uint8_t)(((l2) >> 16) & 0xff); \
case 6: \
*(--(c)) = (uint8_t)(((l2) >> 8) & 0xff); \
case 5: \
*(--(c)) = (uint8_t)(((l2)) & 0xff); \
case 4: \
*(--(c)) = (uint8_t)(((l1) >> 24) & 0xff); \
case 3: \
*(--(c)) = (uint8_t)(((l1) >> 16) & 0xff); \
case 2: \
*(--(c)) = (uint8_t)(((l1) >> 8) & 0xff); \
case 1: \
*(--(c)) = (uint8_t)(((l1)) & 0xff); \
} \
}
#define n2s(c, s) \
((s = (((unsigned int)(c[0])) << 8) | (((unsigned int)(c[1])))), c += 2)
#define s2n(s, c) \
((c[0] = (uint8_t)(((s) >> 8) & 0xff), \
c[1] = (uint8_t)(((s)) & 0xff)), \
c += 2)
#define n2l3(c, l) \
((l = (((unsigned long)(c[0])) << 16) | (((unsigned long)(c[1])) << 8) | \
(((unsigned long)(c[2])))), \
c += 3)
#define l2n3(l, c) \
((c[0] = (uint8_t)(((l) >> 16) & 0xff), \
c[1] = (uint8_t)(((l) >> 8) & 0xff), \
c[2] = (uint8_t)(((l)) & 0xff)), \
c += 3)
/* LOCAL STUFF */
#define TLSEXT_CHANNEL_ID_SIZE 128
/* Check if an SSL structure is using DTLS */
#define SSL_IS_DTLS(s) (s->method->is_dtls)
/* See if we need explicit IV */
#define SSL_USE_EXPLICIT_IV(s) \
(s->enc_method->enc_flags & SSL_ENC_FLAG_EXPLICIT_IV)
/* See if we use signature algorithms extension and signature algorithm before
* signatures. */
#define SSL_USE_SIGALGS(s) (s->enc_method->enc_flags & SSL_ENC_FLAG_SIGALGS)
/* Allow TLS 1.2 ciphersuites: applies to DTLS 1.2 as well as TLS 1.2: may
* apply to others in future. */
#define SSL_USE_TLS1_2_CIPHERS(s) \
(s->enc_method->enc_flags & SSL_ENC_FLAG_TLS1_2_CIPHERS)
/* Determine if a client can use TLS 1.2 ciphersuites: can't rely on method
* flags because it may not be set to correct version yet. */
#define SSL_CLIENT_USE_TLS1_2_CIPHERS(s) \
((SSL_IS_DTLS(s) && s->client_version <= DTLS1_2_VERSION) || \
(!SSL_IS_DTLS(s) && s->client_version >= TLS1_2_VERSION))
/* SSL_kRSA <- RSA_ENC | (RSA_TMP & RSA_SIGN) |
* <- (EXPORT & (RSA_ENC | RSA_TMP) & RSA_SIGN)
* SSL_kDH <- DH_ENC & (RSA_ENC | RSA_SIGN | DSA_SIGN)
* SSL_kDHE <- RSA_ENC | RSA_SIGN | DSA_SIGN
* SSL_aRSA <- RSA_ENC | RSA_SIGN
* SSL_aDSS <- DSA_SIGN */
#define PENDING_SESSION -10000
/* From RFC4492, used in encoding the curve type in ECParameters */
#define EXPLICIT_PRIME_CURVE_TYPE 1
#define EXPLICIT_CHAR2_CURVE_TYPE 2
#define NAMED_CURVE_TYPE 3
enum ssl_hash_message_t {
ssl_dont_hash_message,
ssl_hash_message,
};
typedef struct cert_pkey_st {
X509 *x509;
EVP_PKEY *privatekey;
/* Chain for this certificate */
STACK_OF(X509) *chain;
} CERT_PKEY;
typedef struct cert_st {
/* Current active set */
CERT_PKEY *key; /* ALWAYS points to an element of the pkeys array
* Probably it would make more sense to store
* an index, not a pointer. */
/* key_method, if non-NULL, is a set of callbacks to call for private key
* operations. */
const SSL_PRIVATE_KEY_METHOD *key_method;
/* For clients the following masks are of *disabled* key and auth algorithms
* based on the current session.
*
* TODO(davidben): Remove these. They get checked twice: when sending the
* ClientHello and when processing the ServerHello. However, mask_ssl is a
* different value both times. mask_k and mask_a are not, but is a
* round-about way of checking the server's cipher was one of the advertised
* ones. (Currently it checks the masks and then the list of ciphers prior to
* applying the masks in ClientHello.) */
uint32_t mask_k;
uint32_t mask_a;
uint32_t mask_ssl;
DH *dh_tmp;
DH *(*dh_tmp_cb)(SSL *ssl, int is_export, int keysize);
/* ecdh_nid, if not |NID_undef|, is the NID of the curve to use for ephemeral
* ECDH keys. If unset, |ecdh_tmp_cb| is consulted. */
int ecdh_nid;
/* ecdh_tmp_cb is a callback for selecting the curve to use for ephemeral ECDH
* keys. If NULL, a curve is selected automatically. See
* |SSL_CTX_set_tmp_ecdh_callback|. */
EC_KEY *(*ecdh_tmp_cb)(SSL *ssl, int is_export, int keysize);
CERT_PKEY pkeys[SSL_PKEY_NUM];
/* Server-only: client_certificate_types is list of certificate types to
* include in the CertificateRequest message.
*/
uint8_t *client_certificate_types;
size_t num_client_certificate_types;
/* signature algorithms peer reports: e.g. supported signature
* algorithms extension for server or as part of a certificate
* request for client. */
uint8_t *peer_sigalgs;
/* Size of above array */
size_t peer_sigalgslen;
/* suppported signature algorithms.
* When set on a client this is sent in the client hello as the
* supported signature algorithms extension. For servers
* it represents the signature algorithms we are willing to use. */
uint8_t *conf_sigalgs;
/* Size of above array */
size_t conf_sigalgslen;
/* Client authentication signature algorithms, if not set then
* uses conf_sigalgs. On servers these will be the signature
* algorithms sent to the client in a cerificate request for TLS 1.2.
* On a client this represents the signature algortithms we are
* willing to use for client authentication. */
uint8_t *client_sigalgs;
/* Size of above array */
size_t client_sigalgslen;
/* Signature algorithms shared by client and server: cached
* because these are used most often. */
TLS_SIGALGS *shared_sigalgs;
size_t shared_sigalgslen;
/* Certificate setup callback: if set is called whenever a
* certificate may be required (client or server). the callback
* can then examine any appropriate parameters and setup any
* certificates required. This allows advanced applications
* to select certificates on the fly: for example based on
* supported signature algorithms or curves. */
int (*cert_cb)(SSL *ssl, void *arg);
void *cert_cb_arg;
/* Optional X509_STORE for chain building or certificate validation
* If NULL the parent SSL_CTX store is used instead. */
X509_STORE *chain_store;
X509_STORE *verify_store;
} CERT;
typedef struct sess_cert_st {
/* cert_chain is the certificate chain sent by the peer. NOTE: for a client,
* this does includes the server's leaf certificate, but, for a server, this
* does NOT include the client's leaf. */
STACK_OF(X509) *cert_chain;
/* peer_cert, on a client, is the leaf certificate of the peer. */
X509 *peer_cert;
DH *peer_dh_tmp;
EC_KEY *peer_ecdh_tmp;
} SESS_CERT;
/* Structure containing decoded values of signature algorithms extension */
struct tls_sigalgs_st {
/* NID of hash algorithm */
int hash_nid;
/* NID of signature algorithm */
int sign_nid;
/* Combined hash and signature NID */
int signandhash_nid;
/* Raw values used in extension */
uint8_t rsign;
uint8_t rhash;
};
/* SSL_METHOD is a compatibility structure to support the legacy version-locked
* methods. */
struct ssl_method_st {
/* version, if non-zero, is the only protocol version acceptable to an
* SSL_CTX initialized from this method. */
uint16_t version;
/* method is the underlying SSL_PROTOCOL_METHOD that initializes the
* SSL_CTX. */
const SSL_PROTOCOL_METHOD *method;
};
/* Used to hold functions for SSLv2 or SSLv3/TLSv1 functions */
struct ssl_protocol_method_st {
/* is_dtls is one if the protocol is DTLS and zero otherwise. */
char is_dtls;
int (*ssl_new)(SSL *s);
void (*ssl_free)(SSL *s);
int (*ssl_accept)(SSL *s);
int (*ssl_connect)(SSL *s);
long (*ssl_get_message)(SSL *s, int header_state, int body_state,
int msg_type, long max,
enum ssl_hash_message_t hash_message, int *ok);
int (*ssl_read_app_data)(SSL *s, uint8_t *buf, int len, int peek);
void (*ssl_read_close_notify)(SSL *s);
int (*ssl_write_app_data)(SSL *s, const void *buf_, int len);
int (*ssl_dispatch_alert)(SSL *s);
long (*ssl_ctrl)(SSL *s, int cmd, long larg, void *parg);
long (*ssl_ctx_ctrl)(SSL_CTX *ctx, int cmd, long larg, void *parg);
/* supports_cipher returns one if |cipher| is supported by this protocol and
* zero otherwise. */
int (*supports_cipher)(const SSL_CIPHER *cipher);
/* Handshake header length */
unsigned int hhlen;
/* Set the handshake header */
int (*set_handshake_header)(SSL *s, int type, unsigned long len);
/* Write out handshake message */
int (*do_write)(SSL *s);
};
/* This is for the SSLv3/TLSv1.0 differences in crypto/hash stuff It is a bit
* of a mess of functions, but hell, think of it as an opaque structure. */
struct ssl3_enc_method {
int (*prf)(SSL *, uint8_t *, size_t, const uint8_t *, size_t, const char *,
size_t, const uint8_t *, size_t, const uint8_t *, size_t);
int (*setup_key_block)(SSL *);
int (*generate_master_secret)(SSL *, uint8_t *, const uint8_t *, size_t);
int (*change_cipher_state)(SSL *, int);
int (*final_finish_mac)(SSL *, const char *, int, uint8_t *);
int (*cert_verify_mac)(SSL *, int, uint8_t *);
const char *client_finished_label;
int client_finished_label_len;
const char *server_finished_label;
int server_finished_label_len;
int (*alert_value)(int);
int (*export_keying_material)(SSL *, uint8_t *, size_t, const char *, size_t,
const uint8_t *, size_t, int use_context);
/* Various flags indicating protocol version requirements */
unsigned int enc_flags;
};
#define SSL_HM_HEADER_LENGTH(s) s->method->hhlen
#define ssl_handshake_start(s) \
(((uint8_t *)s->init_buf->data) + s->method->hhlen)
#define ssl_set_handshake_header(s, htype, len) \
s->method->set_handshake_header(s, htype, len)
#define ssl_do_write(s) s->method->do_write(s)
/* Values for enc_flags */
/* Uses explicit IV for CBC mode */
#define SSL_ENC_FLAG_EXPLICIT_IV 0x1
/* Uses signature algorithms extension */
#define SSL_ENC_FLAG_SIGALGS 0x2
/* Uses SHA256 default PRF */
#define SSL_ENC_FLAG_SHA256_PRF 0x4
/* Allow TLS 1.2 ciphersuites: applies to DTLS 1.2 as well as TLS 1.2:
* may apply to others in future. */
#define SSL_ENC_FLAG_TLS1_2_CIPHERS 0x8
/* lengths of messages */
#define DTLS1_COOKIE_LENGTH 256
#define DTLS1_RT_HEADER_LENGTH 13
#define DTLS1_HM_HEADER_LENGTH 12
#define DTLS1_CCS_HEADER_LENGTH 1
#define DTLS1_AL_HEADER_LENGTH 2
typedef struct dtls1_bitmap_st {
/* map is a bit mask of the last 64 sequence numbers. Bit
* |1<<i| corresponds to |max_seq_num - i|. */
uint64_t map;
/* max_seq_num is the largest sequence number seen so far. It
* is a 64-bit value in big-endian encoding. */
uint8_t max_seq_num[8];
} DTLS1_BITMAP;
/* TODO(davidben): This structure is used for both incoming messages and
* outgoing messages. |is_ccs| and |epoch| are only used in the latter and
* should be moved elsewhere. */
struct hm_header_st {
uint8_t type;
uint32_t msg_len;
uint16_t seq;
uint32_t frag_off;
uint32_t frag_len;
int is_ccs;
/* epoch, for buffered outgoing messages, is the epoch the message was
* originally sent in. */
uint16_t epoch;
};
/* TODO(davidben): This structure is used for both incoming messages and
* outgoing messages. |fragment| and |reassembly| are only used in the former
* and should be moved elsewhere. */
typedef struct hm_fragment_st {
struct hm_header_st msg_header;
uint8_t *fragment;
uint8_t *reassembly;
} hm_fragment;
typedef struct dtls1_state_st {
/* send_cookie is true if we are resending the ClientHello
* with a cookie from a HelloVerifyRequest. */
unsigned int send_cookie;
uint8_t cookie[DTLS1_COOKIE_LENGTH];
size_t cookie_len;
/* The current data and handshake epoch. This is initially undefined, and
* starts at zero once the initial handshake is completed. */
uint16_t r_epoch;
uint16_t w_epoch;
/* records being received in the current epoch */
DTLS1_BITMAP bitmap;
/* handshake message numbers */
uint16_t handshake_write_seq;
uint16_t next_handshake_write_seq;
uint16_t handshake_read_seq;
/* save last sequence number for retransmissions */
uint8_t last_write_sequence[8];
/* buffered_messages is a priority queue of incoming handshake messages that
* have yet to be processed.
*
* TODO(davidben): This data structure may as well be a ring buffer of fixed
* size. */
pqueue buffered_messages;
/* send_messages is a priority queue of outgoing handshake messages sent in
* the most recent handshake flight.
*
* TODO(davidben): This data structure may as well be a STACK_OF(T). */
pqueue sent_messages;
unsigned int mtu; /* max DTLS packet size */
struct hm_header_st w_msg_hdr;
/* num_timeouts is the number of times the retransmit timer has fired since
* the last time it was reset. */
unsigned int num_timeouts;
/* Indicates when the last handshake msg or heartbeat sent will
* timeout. */
struct timeval next_timeout;
/* Timeout duration */
unsigned short timeout_duration;
unsigned int change_cipher_spec_ok;
} DTLS1_STATE;
extern const SSL3_ENC_METHOD TLSv1_enc_data;
extern const SSL3_ENC_METHOD TLSv1_1_enc_data;
extern const SSL3_ENC_METHOD TLSv1_2_enc_data;
extern const SSL3_ENC_METHOD SSLv3_enc_data;
void ssl_clear_cipher_ctx(SSL *s);
int ssl_clear_bad_session(SSL *s);
CERT *ssl_cert_new(void);
CERT *ssl_cert_dup(CERT *cert);
void ssl_cert_clear_certs(CERT *c);
void ssl_cert_free(CERT *c);
SESS_CERT *ssl_sess_cert_new(void);
SESS_CERT *ssl_sess_cert_dup(const SESS_CERT *sess_cert);
void ssl_sess_cert_free(SESS_CERT *sess_cert);
int ssl_get_new_session(SSL *s, int session);
int ssl_get_prev_session(SSL *s, const struct ssl_early_callback_ctx *ctx);
STACK_OF(SSL_CIPHER) *ssl_bytes_to_cipher_list(SSL *s, const CBS *cbs);
int ssl_cipher_list_to_bytes(SSL *s, STACK_OF(SSL_CIPHER) *sk, uint8_t *p);
struct ssl_cipher_preference_list_st *ssl_cipher_preference_list_dup(
struct ssl_cipher_preference_list_st *cipher_list);
void ssl_cipher_preference_list_free(
struct ssl_cipher_preference_list_st *cipher_list);
struct ssl_cipher_preference_list_st *ssl_cipher_preference_list_from_ciphers(
STACK_OF(SSL_CIPHER) *ciphers);
struct ssl_cipher_preference_list_st *ssl_get_cipher_preferences(SSL *s);
int ssl_cert_set0_chain(CERT *c, STACK_OF(X509) *chain);
int ssl_cert_set1_chain(CERT *c, STACK_OF(X509) *chain);
int ssl_cert_add0_chain_cert(CERT *c, X509 *x);
int ssl_cert_add1_chain_cert(CERT *c, X509 *x);
int ssl_cert_select_current(CERT *c, X509 *x);
void ssl_cert_set_cert_cb(CERT *c, int (*cb)(SSL *ssl, void *arg), void *arg);
int ssl_verify_cert_chain(SSL *s, STACK_OF(X509) *sk);
int ssl_add_cert_chain(SSL *s, CERT_PKEY *cpk, unsigned long *l);
int ssl_build_cert_chain(CERT *c, X509_STORE *chain_store, int flags);
int ssl_cert_set_cert_store(CERT *c, X509_STORE *store, int chain, int ref);
CERT_PKEY *ssl_get_server_send_pkey(const SSL *s);
EVP_PKEY *ssl_get_sign_pkey(SSL *s, const SSL_CIPHER *c);
void ssl_update_cache(SSL *s, int mode);
int ssl_cert_type(EVP_PKEY *pkey);
/* ssl_get_compatible_server_ciphers determines the key exchange and
* authentication cipher suite masks compatible with the server configuration
* and current ClientHello parameters of |s|. It sets |*out_mask_k| to the key
* exchange mask and |*out_mask_a| to the authentication mask. */
void ssl_get_compatible_server_ciphers(SSL *s, uint32_t *out_mask_k,
uint32_t *out_mask_a);
STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *s);
int ssl_verify_alarm_type(long type);
/* ssl_fill_hello_random fills a client_random or server_random field of length
* |len|. It returns one on success and zero on failure. */
int ssl_fill_hello_random(uint8_t *out, size_t len, int is_server);
int ssl3_init_finished_mac(SSL *s);
int ssl3_send_server_certificate(SSL *s);
int ssl3_send_new_session_ticket(SSL *s);
int ssl3_send_cert_status(SSL *s);
int ssl3_get_finished(SSL *s, int state_a, int state_b);
int ssl3_send_change_cipher_spec(SSL *s, int state_a, int state_b);
int ssl3_prf(SSL *s, uint8_t *out, size_t out_len, const uint8_t *secret,
size_t secret_len, const char *label, size_t label_len,
const uint8_t *seed1, size_t seed1_len,
const uint8_t *seed2, size_t seed2_len);
void ssl3_cleanup_key_block(SSL *s);
int ssl3_do_write(SSL *s, int type);
int ssl3_send_alert(SSL *s, int level, int desc);
int ssl3_get_req_cert_type(SSL *s, uint8_t *p);
long ssl3_get_message(SSL *s, int header_state, int body_state, int msg_type,
long max, enum ssl_hash_message_t hash_message, int *ok);
/* ssl3_hash_current_message incorporates the current handshake message into the
* handshake hash. It returns one on success and zero on allocation failure. */
int ssl3_hash_current_message(SSL *s);
/* ssl3_cert_verify_hash writes the CertificateVerify hash into the bytes
* pointed to by |out| and writes the number of bytes to |*out_len|. |out| must
* have room for EVP_MAX_MD_SIZE bytes. For TLS 1.2 and up, |*out_md| is used
* for the hash function, otherwise the hash function depends on the type of
* |pkey| and is written to |*out_md|. It returns one on success and zero on
* failure. */
int ssl3_cert_verify_hash(SSL *s, uint8_t *out, size_t *out_len,
const EVP_MD **out_md, EVP_PKEY *pkey);
int ssl3_send_finished(SSL *s, int a, int b, const char *sender, int slen);
int ssl3_supports_cipher(const SSL_CIPHER *cipher);
int ssl3_dispatch_alert(SSL *s);
int ssl3_expect_change_cipher_spec(SSL *s);
int ssl3_read_app_data(SSL *ssl, uint8_t *buf, int len, int peek);
void ssl3_read_close_notify(SSL *ssl);
int ssl3_read_bytes(SSL *s, int type, uint8_t *buf, int len, int peek);
int ssl3_write_app_data(SSL *ssl, const void *buf, int len);
int ssl3_write_bytes(SSL *s, int type, const void *buf, int len);
int ssl3_final_finish_mac(SSL *s, const char *sender, int slen, uint8_t *p);
int ssl3_cert_verify_mac(SSL *s, int md_nid, uint8_t *p);
int ssl3_finish_mac(SSL *s, const uint8_t *buf, int len);
void ssl3_free_digest_list(SSL *s);
int ssl3_output_cert_chain(SSL *s, CERT_PKEY *cpk);
const SSL_CIPHER *ssl3_choose_cipher(
SSL *ssl, STACK_OF(SSL_CIPHER) *clnt,
struct ssl_cipher_preference_list_st *srvr);
int ssl3_setup_read_buffer(SSL *s);
int ssl3_setup_write_buffer(SSL *s);
int ssl3_release_read_buffer(SSL *s);
int ssl3_release_write_buffer(SSL *s);
enum should_free_handshake_buffer_t {
free_handshake_buffer,
dont_free_handshake_buffer,
};
int ssl3_digest_cached_records(SSL *s, enum should_free_handshake_buffer_t);
int ssl3_new(SSL *s);
void ssl3_free(SSL *s);
int ssl3_accept(SSL *s);
int ssl3_connect(SSL *s);
long ssl3_ctrl(SSL *s, int cmd, long larg, void *parg);
long ssl3_ctx_ctrl(SSL_CTX *s, int cmd, long larg, void *parg);
/* ssl3_record_sequence_update increments the sequence number in |seq|. It
* returns one on success and zero on wraparound. */
int ssl3_record_sequence_update(uint8_t *seq, size_t seq_len);
int ssl3_do_change_cipher_spec(SSL *ssl);
int ssl3_set_handshake_header(SSL *s, int htype, unsigned long len);
int ssl3_handshake_write(SSL *s);
enum dtls1_use_epoch_t {
dtls1_use_previous_epoch,
dtls1_use_current_epoch,
};
int dtls1_do_write(SSL *s, int type, enum dtls1_use_epoch_t use_epoch);
int ssl3_read_n(SSL *s, int n, int extend);
int dtls1_read_app_data(SSL *ssl, uint8_t *buf, int len, int peek);
void dtls1_read_close_notify(SSL *ssl);
int dtls1_read_bytes(SSL *s, int type, uint8_t *buf, int len, int peek);
int ssl3_write_pending(SSL *s, int type, const uint8_t *buf, unsigned int len);
void dtls1_set_message_header(SSL *s, uint8_t mt, unsigned long len,
unsigned short seq_num, unsigned long frag_off,
unsigned long frag_len);
int dtls1_write_app_data(SSL *s, const void *buf, int len);
int dtls1_write_bytes(SSL *s, int type, const void *buf, int len,
enum dtls1_use_epoch_t use_epoch);
int dtls1_send_change_cipher_spec(SSL *s, int a, int b);
int dtls1_send_finished(SSL *s, int a, int b, const char *sender, int slen);
int dtls1_read_failed(SSL *s, int code);
int dtls1_buffer_message(SSL *s, int ccs);
int dtls1_get_queue_priority(unsigned short seq, int is_ccs);
int dtls1_retransmit_buffered_messages(SSL *s);
void dtls1_clear_record_buffer(SSL *s);
void dtls1_get_message_header(uint8_t *data, struct hm_header_st *msg_hdr);
void dtls1_reset_seq_numbers(SSL *s, int rw);
int dtls1_check_timeout_num(SSL *s);
int dtls1_set_handshake_header(SSL *s, int type, unsigned long len);
int dtls1_handshake_write(SSL *s);
int dtls1_supports_cipher(const SSL_CIPHER *cipher);
void dtls1_start_timer(SSL *s);
void dtls1_stop_timer(SSL *s);
int dtls1_is_timer_expired(SSL *s);
void dtls1_double_timeout(SSL *s);
unsigned int dtls1_min_mtu(void);
void dtls1_hm_fragment_free(hm_fragment *frag);
/* some client-only functions */
int ssl3_send_client_hello(SSL *s);
int ssl3_get_server_hello(SSL *s);
int ssl3_get_certificate_request(SSL *s);
int ssl3_get_new_session_ticket(SSL *s);
int ssl3_get_cert_status(SSL *s);
int ssl3_get_server_done(SSL *s);
int ssl3_send_cert_verify(SSL *s);
int ssl3_send_client_certificate(SSL *s);
int ssl_do_client_cert_cb(SSL *s, X509 **px509, EVP_PKEY **ppkey);
int ssl3_send_client_key_exchange(SSL *s);
int ssl3_get_server_key_exchange(SSL *s);
int ssl3_get_server_certificate(SSL *s);
int ssl3_send_next_proto(SSL *s);
int ssl3_send_channel_id(SSL *s);
int dtls1_client_hello(SSL *s);
/* some server-only functions */
int ssl3_get_initial_bytes(SSL *s);
int ssl3_get_v2_client_hello(SSL *s);
int ssl3_get_client_hello(SSL *s);
int ssl3_send_server_hello(SSL *s);
int ssl3_send_server_key_exchange(SSL *s);
int ssl3_send_certificate_request(SSL *s);
int ssl3_send_server_done(SSL *s);
int ssl3_get_client_certificate(SSL *s);
int ssl3_get_client_key_exchange(SSL *s);
int ssl3_get_cert_verify(SSL *s);
int ssl3_get_next_proto(SSL *s);
int ssl3_get_channel_id(SSL *s);
int dtls1_new(SSL *s);
int dtls1_accept(SSL *s);
int dtls1_connect(SSL *s);
void dtls1_free(SSL *s);
long dtls1_get_message(SSL *s, int st1, int stn, int mt, long max,
enum ssl_hash_message_t hash_message, int *ok);
int dtls1_get_record(SSL *s);
int dtls1_dispatch_alert(SSL *s);
int ssl_init_wbio_buffer(SSL *s, int push);
void ssl_free_wbio_buffer(SSL *s);
/* tls1_prf computes the TLS PRF function for |s| as described in RFC 5246,
* section 5 and RFC 2246 section 5. It writes |out_len| bytes to |out|, using
* |secret| as the secret and |label| as the label. |seed1| and |seed2| are
* concatenated to form the seed parameter. It returns one on success and zero
* on failure. */
int tls1_prf(SSL *s, uint8_t *out, size_t out_len, const uint8_t *secret,
size_t secret_len, const char *label, size_t label_len,
const uint8_t *seed1, size_t seed1_len,
const uint8_t *seed2, size_t seed2_len);
int tls1_change_cipher_state(SSL *s, int which);
int tls1_setup_key_block(SSL *s);
int tls1_handshake_digest(SSL *s, uint8_t *out, size_t out_len);
int tls1_final_finish_mac(SSL *s, const char *str, int slen, uint8_t *p);
int tls1_cert_verify_mac(SSL *s, int md_nid, uint8_t *p);
int tls1_generate_master_secret(SSL *s, uint8_t *out, const uint8_t *premaster,
size_t premaster_len);
int tls1_export_keying_material(SSL *s, uint8_t *out, size_t out_len,
const char *label, size_t label_len,
const uint8_t *context, size_t context_len,
int use_context);
int tls1_alert_code(int code);
int ssl3_alert_code(int code);
char ssl_early_callback_init(struct ssl_early_callback_ctx *ctx);
int tls1_ec_curve_id2nid(uint16_t curve_id);
int tls1_ec_nid2curve_id(uint16_t *out_curve_id, int nid);
/* tls1_check_curve parses ECParameters out of |cbs|, modifying it. It
* checks the curve is one of our preferences and writes the
* NamedCurve value to |*out_curve_id|. It returns one on success and
* zero on error. */
int tls1_check_curve(SSL *s, CBS *cbs, uint16_t *out_curve_id);
/* tls1_get_shared_curve returns the NID of the first preferred shared curve
* between client and server preferences. If none can be found, it returns
* NID_undef. */
int tls1_get_shared_curve(SSL *s);
/* tls1_set_curves converts the array of |ncurves| NIDs pointed to by |curves|
* into a newly allocated array of TLS curve IDs. On success, the function
* returns one and writes the array to |*out_curve_ids| and its size to
* |*out_curve_ids_len|. Otherwise, it returns zero. */
int tls1_set_curves(uint16_t **out_curve_ids, size_t *out_curve_ids_len,
const int *curves, size_t ncurves);
/* tls1_check_ec_cert returns one if |x| is an ECC certificate with curve and
* point format compatible with the client's preferences. Otherwise it returns
* zero. */
int tls1_check_ec_cert(SSL *s, X509 *x);
/* tls1_check_ec_tmp_key returns one if the EC temporary key is compatible with
* client extensions and zero otherwise. */
int tls1_check_ec_tmp_key(SSL *s);
int tls1_shared_list(SSL *s, const uint8_t *l1, size_t l1len, const uint8_t *l2,
size_t l2len, int nmatch);
uint8_t *ssl_add_clienthello_tlsext(SSL *s, uint8_t *buf, uint8_t *limit,
size_t header_len);
uint8_t *ssl_add_serverhello_tlsext(SSL *s, uint8_t *buf, uint8_t *limit);
int ssl_parse_clienthello_tlsext(SSL *s, CBS *cbs);
int ssl_parse_serverhello_tlsext(SSL *s, CBS *cbs);
int ssl_prepare_clienthello_tlsext(SSL *s);
int ssl_prepare_serverhello_tlsext(SSL *s);
#define tlsext_tick_md EVP_sha256
int tls1_process_ticket(SSL *s, const struct ssl_early_callback_ctx *ctx,
SSL_SESSION **ret);
int tls12_get_sigandhash(SSL *ssl, uint8_t *p, const EVP_PKEY *pk,
const EVP_MD *md);
int tls12_get_sigid(int pkey_type);
const EVP_MD *tls12_get_hash(uint8_t hash_alg);
int tls1_channel_id_hash(EVP_MD_CTX *ctx, SSL *s);
int tls1_record_handshake_hashes_for_channel_id(SSL *s);
int tls1_set_sigalgs_list(CERT *c, const char *str, int client);
int tls1_set_sigalgs(CERT *c, const int *salg, size_t salglen, int client);
/* ssl_ctx_log_rsa_client_key_exchange logs |premaster| to |ctx|, if logging is
* enabled. It returns one on success and zero on failure. The entry is
* identified by the first 8 bytes of |encrypted_premaster|. */
int ssl_ctx_log_rsa_client_key_exchange(SSL_CTX *ctx,
const uint8_t *encrypted_premaster,
size_t encrypted_premaster_len,
const uint8_t *premaster,
size_t premaster_len);
/* ssl_ctx_log_master_secret logs |master| to |ctx|, if logging is enabled. It
* returns one on success and zero on failure. The entry is identified by
* |client_random|. */
int ssl_ctx_log_master_secret(SSL_CTX *ctx, const uint8_t *client_random,
size_t client_random_len, const uint8_t *master,
size_t master_len);
/* ssl3_can_false_start returns one if |s| is allowed to False Start and zero
* otherwise. */
int ssl3_can_false_start(const SSL *s);
/* ssl3_get_enc_method returns the SSL3_ENC_METHOD corresponding to
* |version|. */
const SSL3_ENC_METHOD *ssl3_get_enc_method(uint16_t version);
/* ssl3_get_max_server_version returns the maximum SSL/TLS version number
* supported by |s| as a server, or zero if all versions are disabled. */
uint16_t ssl3_get_max_server_version(const SSL *s);
/* ssl3_get_mutual_version selects the protocol version on |s| for a client
* which advertises |client_version|. If no suitable version exists, it returns
* zero. */
uint16_t ssl3_get_mutual_version(SSL *s, uint16_t client_version);
/* ssl3_get_max_client_version returns the maximum protocol version configured
* for the client. It is guaranteed that the set of allowed versions at or below
* this maximum version is contiguous. If all versions are disabled, it returns
* zero. */
uint16_t ssl3_get_max_client_version(SSL *s);
/* ssl3_is_version_enabled returns one if |version| is an enabled protocol
* version for |s| and zero otherwise. */
int ssl3_is_version_enabled(SSL *s, uint16_t version);
/* ssl3_version_from_wire maps |wire_version| to a protocol version. For
* SSLv3/TLS, the version is returned as-is. For DTLS, the corresponding TLS
* version is used. Note that this mapping is not injective but preserves
* comparisons.
*
* TODO(davidben): To normalize some DTLS-specific code, move away from using
* the wire version except at API boundaries. */
uint16_t ssl3_version_from_wire(SSL *s, uint16_t wire_version);
int ssl_add_serverhello_renegotiate_ext(SSL *s, uint8_t *p, int *len,
int maxlen);
int ssl_parse_serverhello_renegotiate_ext(SSL *s, CBS *cbs, int *out_alert);
int ssl_add_clienthello_renegotiate_ext(SSL *s, uint8_t *p, int *len,
int maxlen);
int ssl_parse_clienthello_renegotiate_ext(SSL *s, CBS *cbs, int *out_alert);
uint32_t ssl_get_algorithm2(SSL *s);
int tls1_process_sigalgs(SSL *s, const CBS *sigalgs);
/* tls1_choose_signing_digest returns a digest for use with |pkey| based on the
* peer's preferences recorded for |s| and the digests supported by |pkey|. */
const EVP_MD *tls1_choose_signing_digest(SSL *s, EVP_PKEY *pkey);
size_t tls12_get_psigalgs(SSL *s, const uint8_t **psigs);
int tls12_check_peer_sigalg(const EVP_MD **out_md, int *out_alert, SSL *s,
CBS *cbs, EVP_PKEY *pkey);
void ssl_set_client_disabled(SSL *s);
int ssl_add_clienthello_use_srtp_ext(SSL *s, uint8_t *p, int *len, int maxlen);
int ssl_parse_clienthello_use_srtp_ext(SSL *s, CBS *cbs, int *out_alert);
int ssl_add_serverhello_use_srtp_ext(SSL *s, uint8_t *p, int *len, int maxlen);
int ssl_parse_serverhello_use_srtp_ext(SSL *s, CBS *cbs, int *out_alert);
#endif /* OPENSSL_HEADER_SSL_INTERNAL_H */