96ac819197
This facilitates "universal" builds, ones that target multiple architectures, e.g. ARMv5 through ARMv7. (Imported from upstream's c1669e1c205dc8e695fb0c10a655f434e758b9f7) This is a change from a while ago which was a source of divergence between our perlasm and upstream's. This change in upstream came with the following comment in Configure: Note that -march is not among compiler options in below linux-armv4 target line. Not specifying one is intentional to give you choice to: a) rely on your compiler default by not specifying one; b) specify your target platform explicitly for optimal performance, e.g. -march=armv6 or -march=armv7-a; c) build "universal" binary that targets *range* of platforms by specifying minimum and maximum supported architecture; As for c) option. It actually makes no sense to specify maximum to be less than ARMv7, because it's the least requirement for run-time switch between platform-specific code paths. And without run-time switch performance would be equivalent to one for minimum. Secondly, there are some natural limitations that you'd have to accept and respect. Most notably you can *not* build "universal" binary for big-endian platform. This is because ARMv7 processor always picks instructions in little-endian order. Another similar limitation is that -mthumb can't "cross" -march=armv6t2 boundary, because that's where it became Thumb-2. Well, this limitation is a bit artificial, because it's not really impossible, but it's deemed too tricky to support. And of course you have to be sure that your binutils are actually up to the task of handling maximum target platform. Change-Id: Ie5f674d603393f0a1354a0d0973987484a4a650c Reviewed-on: https://boringssl-review.googlesource.com/4488 Reviewed-by: Adam Langley <agl@google.com>
504 lines
13 KiB
Prolog
504 lines
13 KiB
Prolog
#!/usr/bin/env perl
|
|
#
|
|
# ====================================================================
|
|
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
|
# project. The module is, however, dual licensed under OpenSSL and
|
|
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
|
# details see http://www.openssl.org/~appro/cryptogams/.
|
|
# ====================================================================
|
|
#
|
|
# April 2010
|
|
#
|
|
# The module implements "4-bit" GCM GHASH function and underlying
|
|
# single multiplication operation in GF(2^128). "4-bit" means that it
|
|
# uses 256 bytes per-key table [+32 bytes shared table]. There is no
|
|
# experimental performance data available yet. The only approximation
|
|
# that can be made at this point is based on code size. Inner loop is
|
|
# 32 instructions long and on single-issue core should execute in <40
|
|
# cycles. Having verified that gcc 3.4 didn't unroll corresponding
|
|
# loop, this assembler loop body was found to be ~3x smaller than
|
|
# compiler-generated one...
|
|
#
|
|
# July 2010
|
|
#
|
|
# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
|
|
# Cortex A8 core and ~25 cycles per processed byte (which was observed
|
|
# to be ~3 times faster than gcc-generated code:-)
|
|
#
|
|
# February 2011
|
|
#
|
|
# Profiler-assisted and platform-specific optimization resulted in 7%
|
|
# improvement on Cortex A8 core and ~23.5 cycles per byte.
|
|
#
|
|
# March 2011
|
|
#
|
|
# Add NEON implementation featuring polynomial multiplication, i.e. no
|
|
# lookup tables involved. On Cortex A8 it was measured to process one
|
|
# byte in 15 cycles or 55% faster than integer-only code.
|
|
#
|
|
# April 2014
|
|
#
|
|
# Switch to multiplication algorithm suggested in paper referred
|
|
# below and combine it with reduction algorithm from x86 module.
|
|
# Performance improvement over previous version varies from 65% on
|
|
# Snapdragon S4 to 110% on Cortex A9. In absolute terms Cortex A8
|
|
# processes one byte in 8.45 cycles, A9 - in 10.2, A15 - in 7.63,
|
|
# Snapdragon S4 - in 9.33.
|
|
#
|
|
# Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software
|
|
# Polynomial Multiplication on ARM Processors using the NEON Engine.
|
|
#
|
|
# http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf
|
|
|
|
# ====================================================================
|
|
# Note about "528B" variant. In ARM case it makes lesser sense to
|
|
# implement it for following reasons:
|
|
#
|
|
# - performance improvement won't be anywhere near 50%, because 128-
|
|
# bit shift operation is neatly fused with 128-bit xor here, and
|
|
# "538B" variant would eliminate only 4-5 instructions out of 32
|
|
# in the inner loop (meaning that estimated improvement is ~15%);
|
|
# - ARM-based systems are often embedded ones and extra memory
|
|
# consumption might be unappreciated (for so little improvement);
|
|
#
|
|
# Byte order [in]dependence. =========================================
|
|
#
|
|
# Caller is expected to maintain specific *dword* order in Htable,
|
|
# namely with *least* significant dword of 128-bit value at *lower*
|
|
# address. This differs completely from C code and has everything to
|
|
# do with ldm instruction and order in which dwords are "consumed" by
|
|
# algorithm. *Byte* order within these dwords in turn is whatever
|
|
# *native* byte order on current platform. See gcm128.c for working
|
|
# example...
|
|
|
|
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
|
|
open STDOUT,">$output";
|
|
|
|
$Xi="r0"; # argument block
|
|
$Htbl="r1";
|
|
$inp="r2";
|
|
$len="r3";
|
|
|
|
$Zll="r4"; # variables
|
|
$Zlh="r5";
|
|
$Zhl="r6";
|
|
$Zhh="r7";
|
|
$Tll="r8";
|
|
$Tlh="r9";
|
|
$Thl="r10";
|
|
$Thh="r11";
|
|
$nlo="r12";
|
|
################# r13 is stack pointer
|
|
$nhi="r14";
|
|
################# r15 is program counter
|
|
|
|
$rem_4bit=$inp; # used in gcm_gmult_4bit
|
|
$cnt=$len;
|
|
|
|
sub Zsmash() {
|
|
my $i=12;
|
|
my @args=@_;
|
|
for ($Zll,$Zlh,$Zhl,$Zhh) {
|
|
$code.=<<___;
|
|
#if __ARM_ARCH__>=7 && defined(__ARMEL__)
|
|
rev $_,$_
|
|
str $_,[$Xi,#$i]
|
|
#elif defined(__ARMEB__)
|
|
str $_,[$Xi,#$i]
|
|
#else
|
|
mov $Tlh,$_,lsr#8
|
|
strb $_,[$Xi,#$i+3]
|
|
mov $Thl,$_,lsr#16
|
|
strb $Tlh,[$Xi,#$i+2]
|
|
mov $Thh,$_,lsr#24
|
|
strb $Thl,[$Xi,#$i+1]
|
|
strb $Thh,[$Xi,#$i]
|
|
#endif
|
|
___
|
|
$code.="\t".shift(@args)."\n";
|
|
$i-=4;
|
|
}
|
|
}
|
|
|
|
$code=<<___;
|
|
#if defined(__arm__)
|
|
#include "arm_arch.h"
|
|
|
|
.syntax unified
|
|
|
|
.text
|
|
.code 32
|
|
|
|
.type rem_4bit,%object
|
|
.align 5
|
|
rem_4bit:
|
|
.short 0x0000,0x1C20,0x3840,0x2460
|
|
.short 0x7080,0x6CA0,0x48C0,0x54E0
|
|
.short 0xE100,0xFD20,0xD940,0xC560
|
|
.short 0x9180,0x8DA0,0xA9C0,0xB5E0
|
|
.size rem_4bit,.-rem_4bit
|
|
|
|
.type rem_4bit_get,%function
|
|
rem_4bit_get:
|
|
sub $rem_4bit,pc,#8
|
|
sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit
|
|
b .Lrem_4bit_got
|
|
nop
|
|
.size rem_4bit_get,.-rem_4bit_get
|
|
|
|
.global gcm_ghash_4bit
|
|
.hidden gcm_ghash_4bit
|
|
.type gcm_ghash_4bit,%function
|
|
gcm_ghash_4bit:
|
|
sub r12,pc,#8
|
|
add $len,$inp,$len @ $len to point at the end
|
|
stmdb sp!,{r3-r11,lr} @ save $len/end too
|
|
sub r12,r12,#48 @ &rem_4bit
|
|
|
|
ldmia r12,{r4-r11} @ copy rem_4bit ...
|
|
stmdb sp!,{r4-r11} @ ... to stack
|
|
|
|
ldrb $nlo,[$inp,#15]
|
|
ldrb $nhi,[$Xi,#15]
|
|
.Louter:
|
|
eor $nlo,$nlo,$nhi
|
|
and $nhi,$nlo,#0xf0
|
|
and $nlo,$nlo,#0x0f
|
|
mov $cnt,#14
|
|
|
|
add $Zhh,$Htbl,$nlo,lsl#4
|
|
ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
|
|
add $Thh,$Htbl,$nhi
|
|
ldrb $nlo,[$inp,#14]
|
|
|
|
and $nhi,$Zll,#0xf @ rem
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
add $nhi,$nhi,$nhi
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
ldrb $nhi,[$Xi,#14]
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
eor $nlo,$nlo,$nhi
|
|
and $nhi,$nlo,#0xf0
|
|
and $nlo,$nlo,#0x0f
|
|
eor $Zhh,$Zhh,$Tll,lsl#16
|
|
|
|
.Linner:
|
|
add $Thh,$Htbl,$nlo,lsl#4
|
|
and $nlo,$Zll,#0xf @ rem
|
|
subs $cnt,$cnt,#1
|
|
add $nlo,$nlo,$nlo
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
ldrh $Tll,[sp,$nlo] @ rem_4bit[rem]
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
ldrbpl $nlo,[$inp,$cnt]
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
|
|
add $Thh,$Htbl,$nhi
|
|
and $nhi,$Zll,#0xf @ rem
|
|
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
|
add $nhi,$nhi,$nhi
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
ldrbpl $Tll,[$Xi,$cnt]
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
ldrh $Tlh,[sp,$nhi]
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eorpl $nlo,$nlo,$Tll
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
andpl $nhi,$nlo,#0xf0
|
|
andpl $nlo,$nlo,#0x0f
|
|
eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem]
|
|
bpl .Linner
|
|
|
|
ldr $len,[sp,#32] @ re-load $len/end
|
|
add $inp,$inp,#16
|
|
mov $nhi,$Zll
|
|
___
|
|
&Zsmash("cmp\t$inp,$len","ldrbne\t$nlo,[$inp,#15]");
|
|
$code.=<<___;
|
|
bne .Louter
|
|
|
|
add sp,sp,#36
|
|
#if __ARM_ARCH__>=5
|
|
ldmia sp!,{r4-r11,pc}
|
|
#else
|
|
ldmia sp!,{r4-r11,lr}
|
|
tst lr,#1
|
|
moveq pc,lr @ be binary compatible with V4, yet
|
|
bx lr @ interoperable with Thumb ISA:-)
|
|
#endif
|
|
.size gcm_ghash_4bit,.-gcm_ghash_4bit
|
|
|
|
.global gcm_gmult_4bit
|
|
.hidden gcm_gmult_4bit
|
|
.type gcm_gmult_4bit,%function
|
|
gcm_gmult_4bit:
|
|
stmdb sp!,{r4-r11,lr}
|
|
ldrb $nlo,[$Xi,#15]
|
|
b rem_4bit_get
|
|
.Lrem_4bit_got:
|
|
and $nhi,$nlo,#0xf0
|
|
and $nlo,$nlo,#0x0f
|
|
mov $cnt,#14
|
|
|
|
add $Zhh,$Htbl,$nlo,lsl#4
|
|
ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
|
|
ldrb $nlo,[$Xi,#14]
|
|
|
|
add $Thh,$Htbl,$nhi
|
|
and $nhi,$Zll,#0xf @ rem
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
add $nhi,$nhi,$nhi
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
and $nhi,$nlo,#0xf0
|
|
eor $Zhh,$Zhh,$Tll,lsl#16
|
|
and $nlo,$nlo,#0x0f
|
|
|
|
.Loop:
|
|
add $Thh,$Htbl,$nlo,lsl#4
|
|
and $nlo,$Zll,#0xf @ rem
|
|
subs $cnt,$cnt,#1
|
|
add $nlo,$nlo,$nlo
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem]
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
ldrbpl $nlo,[$Xi,$cnt]
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
|
|
add $Thh,$Htbl,$nhi
|
|
and $nhi,$Zll,#0xf @ rem
|
|
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
|
add $nhi,$nhi,$nhi
|
|
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
|
eor $Zll,$Tll,$Zll,lsr#4
|
|
eor $Zll,$Zll,$Zlh,lsl#28
|
|
eor $Zlh,$Tlh,$Zlh,lsr#4
|
|
ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
|
|
eor $Zlh,$Zlh,$Zhl,lsl#28
|
|
eor $Zhl,$Thl,$Zhl,lsr#4
|
|
eor $Zhl,$Zhl,$Zhh,lsl#28
|
|
eor $Zhh,$Thh,$Zhh,lsr#4
|
|
andpl $nhi,$nlo,#0xf0
|
|
andpl $nlo,$nlo,#0x0f
|
|
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
|
bpl .Loop
|
|
___
|
|
&Zsmash();
|
|
$code.=<<___;
|
|
#if __ARM_ARCH__>=5
|
|
ldmia sp!,{r4-r11,pc}
|
|
#else
|
|
ldmia sp!,{r4-r11,lr}
|
|
tst lr,#1
|
|
moveq pc,lr @ be binary compatible with V4, yet
|
|
bx lr @ interoperable with Thumb ISA:-)
|
|
#endif
|
|
.size gcm_gmult_4bit,.-gcm_gmult_4bit
|
|
___
|
|
{
|
|
my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
|
|
my ($t0,$t1,$t2,$t3)=map("q$_",(8..12));
|
|
my ($Hlo,$Hhi,$Hhl,$k48,$k32,$k16)=map("d$_",(26..31));
|
|
|
|
sub clmul64x64 {
|
|
my ($r,$a,$b)=@_;
|
|
$code.=<<___;
|
|
vext.8 $t0#lo, $a, $a, #1 @ A1
|
|
vmull.p8 $t0, $t0#lo, $b @ F = A1*B
|
|
vext.8 $r#lo, $b, $b, #1 @ B1
|
|
vmull.p8 $r, $a, $r#lo @ E = A*B1
|
|
vext.8 $t1#lo, $a, $a, #2 @ A2
|
|
vmull.p8 $t1, $t1#lo, $b @ H = A2*B
|
|
vext.8 $t3#lo, $b, $b, #2 @ B2
|
|
vmull.p8 $t3, $a, $t3#lo @ G = A*B2
|
|
vext.8 $t2#lo, $a, $a, #3 @ A3
|
|
veor $t0, $t0, $r @ L = E + F
|
|
vmull.p8 $t2, $t2#lo, $b @ J = A3*B
|
|
vext.8 $r#lo, $b, $b, #3 @ B3
|
|
veor $t1, $t1, $t3 @ M = G + H
|
|
vmull.p8 $r, $a, $r#lo @ I = A*B3
|
|
veor $t0#lo, $t0#lo, $t0#hi @ t0 = (L) (P0 + P1) << 8
|
|
vand $t0#hi, $t0#hi, $k48
|
|
vext.8 $t3#lo, $b, $b, #4 @ B4
|
|
veor $t1#lo, $t1#lo, $t1#hi @ t1 = (M) (P2 + P3) << 16
|
|
vand $t1#hi, $t1#hi, $k32
|
|
vmull.p8 $t3, $a, $t3#lo @ K = A*B4
|
|
veor $t2, $t2, $r @ N = I + J
|
|
veor $t0#lo, $t0#lo, $t0#hi
|
|
veor $t1#lo, $t1#lo, $t1#hi
|
|
veor $t2#lo, $t2#lo, $t2#hi @ t2 = (N) (P4 + P5) << 24
|
|
vand $t2#hi, $t2#hi, $k16
|
|
vext.8 $t0, $t0, $t0, #15
|
|
veor $t3#lo, $t3#lo, $t3#hi @ t3 = (K) (P6 + P7) << 32
|
|
vmov.i64 $t3#hi, #0
|
|
vext.8 $t1, $t1, $t1, #14
|
|
veor $t2#lo, $t2#lo, $t2#hi
|
|
vmull.p8 $r, $a, $b @ D = A*B
|
|
vext.8 $t3, $t3, $t3, #12
|
|
vext.8 $t2, $t2, $t2, #13
|
|
veor $t0, $t0, $t1
|
|
veor $t2, $t2, $t3
|
|
veor $r, $r, $t0
|
|
veor $r, $r, $t2
|
|
___
|
|
}
|
|
|
|
$code.=<<___;
|
|
#if __ARM_MAX_ARCH__>=7
|
|
.arch armv7-a
|
|
.fpu neon
|
|
|
|
.global gcm_init_neon
|
|
.hidden gcm_init_neon
|
|
.type gcm_init_neon,%function
|
|
.align 4
|
|
gcm_init_neon:
|
|
vld1.64 $IN#hi,[r1,:64]! @ load H
|
|
vmov.i8 $t0,#0xe1
|
|
vld1.64 $IN#lo,[r1,:64]
|
|
vshl.i64 $t0#hi,#57
|
|
vshr.u64 $t0#lo,#63 @ t0=0xc2....01
|
|
vdup.8 $t1,$IN#hi[7]
|
|
vshr.u64 $Hlo,$IN#lo,#63
|
|
vshr.s8 $t1,#7 @ broadcast carry bit
|
|
vshl.i64 $IN,$IN,#1
|
|
vand $t0,$t0,$t1
|
|
vorr $IN#hi,$Hlo @ H<<<=1
|
|
veor $IN,$IN,$t0 @ twisted H
|
|
vstmia r0,{$IN}
|
|
|
|
ret @ bx lr
|
|
.size gcm_init_neon,.-gcm_init_neon
|
|
|
|
.global gcm_gmult_neon
|
|
.hidden gcm_gmult_neon
|
|
.type gcm_gmult_neon,%function
|
|
.align 4
|
|
gcm_gmult_neon:
|
|
vld1.64 $IN#hi,[$Xi,:64]! @ load Xi
|
|
vld1.64 $IN#lo,[$Xi,:64]!
|
|
vmov.i64 $k48,#0x0000ffffffffffff
|
|
vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H
|
|
vmov.i64 $k32,#0x00000000ffffffff
|
|
#ifdef __ARMEL__
|
|
vrev64.8 $IN,$IN
|
|
#endif
|
|
vmov.i64 $k16,#0x000000000000ffff
|
|
veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing
|
|
mov $len,#16
|
|
b .Lgmult_neon
|
|
.size gcm_gmult_neon,.-gcm_gmult_neon
|
|
|
|
.global gcm_ghash_neon
|
|
.hidden gcm_ghash_neon
|
|
.type gcm_ghash_neon,%function
|
|
.align 4
|
|
gcm_ghash_neon:
|
|
vld1.64 $Xl#hi,[$Xi,:64]! @ load Xi
|
|
vld1.64 $Xl#lo,[$Xi,:64]!
|
|
vmov.i64 $k48,#0x0000ffffffffffff
|
|
vldmia $Htbl,{$Hlo-$Hhi} @ load twisted H
|
|
vmov.i64 $k32,#0x00000000ffffffff
|
|
#ifdef __ARMEL__
|
|
vrev64.8 $Xl,$Xl
|
|
#endif
|
|
vmov.i64 $k16,#0x000000000000ffff
|
|
veor $Hhl,$Hlo,$Hhi @ Karatsuba pre-processing
|
|
|
|
.Loop_neon:
|
|
vld1.64 $IN#hi,[$inp]! @ load inp
|
|
vld1.64 $IN#lo,[$inp]!
|
|
#ifdef __ARMEL__
|
|
vrev64.8 $IN,$IN
|
|
#endif
|
|
veor $IN,$Xl @ inp^=Xi
|
|
.Lgmult_neon:
|
|
___
|
|
&clmul64x64 ($Xl,$Hlo,"$IN#lo"); # H.lo·Xi.lo
|
|
$code.=<<___;
|
|
veor $IN#lo,$IN#lo,$IN#hi @ Karatsuba pre-processing
|
|
___
|
|
&clmul64x64 ($Xm,$Hhl,"$IN#lo"); # (H.lo+H.hi)·(Xi.lo+Xi.hi)
|
|
&clmul64x64 ($Xh,$Hhi,"$IN#hi"); # H.hi·Xi.hi
|
|
$code.=<<___;
|
|
veor $Xm,$Xm,$Xl @ Karatsuba post-processing
|
|
veor $Xm,$Xm,$Xh
|
|
veor $Xl#hi,$Xl#hi,$Xm#lo
|
|
veor $Xh#lo,$Xh#lo,$Xm#hi @ Xh|Xl - 256-bit result
|
|
|
|
@ equivalent of reduction_avx from ghash-x86_64.pl
|
|
vshl.i64 $t1,$Xl,#57 @ 1st phase
|
|
vshl.i64 $t2,$Xl,#62
|
|
veor $t2,$t2,$t1 @
|
|
vshl.i64 $t1,$Xl,#63
|
|
veor $t2, $t2, $t1 @
|
|
veor $Xl#hi,$Xl#hi,$t2#lo @
|
|
veor $Xh#lo,$Xh#lo,$t2#hi
|
|
|
|
vshr.u64 $t2,$Xl,#1 @ 2nd phase
|
|
veor $Xh,$Xh,$Xl
|
|
veor $Xl,$Xl,$t2 @
|
|
vshr.u64 $t2,$t2,#6
|
|
vshr.u64 $Xl,$Xl,#1 @
|
|
veor $Xl,$Xl,$Xh @
|
|
veor $Xl,$Xl,$t2 @
|
|
|
|
subs $len,#16
|
|
bne .Loop_neon
|
|
|
|
#ifdef __ARMEL__
|
|
vrev64.8 $Xl,$Xl
|
|
#endif
|
|
sub $Xi,#16
|
|
vst1.64 $Xl#hi,[$Xi,:64]! @ write out Xi
|
|
vst1.64 $Xl#lo,[$Xi,:64]
|
|
|
|
ret @ bx lr
|
|
.size gcm_ghash_neon,.-gcm_ghash_neon
|
|
#endif
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
.asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
|
|
.align 2
|
|
|
|
#endif
|
|
___
|
|
|
|
foreach (split("\n",$code)) {
|
|
s/\`([^\`]*)\`/eval $1/geo;
|
|
|
|
s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or
|
|
s/\bret\b/bx lr/go or
|
|
s/\bbx\s+lr\b/.word\t0xe12fff1e/go; # make it possible to compile with -march=armv4
|
|
|
|
print $_,"\n";
|
|
}
|
|
close STDOUT; # enforce flush
|