Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.
 
 
 
 
 
 

818 linhas
26 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/ssl.h>
  57. #include <assert.h>
  58. #include <limits.h>
  59. #include <openssl/ec.h>
  60. #include <openssl/ec_key.h>
  61. #include <openssl/err.h>
  62. #include <openssl/evp.h>
  63. #include <openssl/mem.h>
  64. #include "internal.h"
  65. #include "../crypto/internal.h"
  66. BSSL_NAMESPACE_BEGIN
  67. bool ssl_is_key_type_supported(int key_type) {
  68. return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
  69. key_type == EVP_PKEY_ED25519;
  70. }
  71. static bool ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) {
  72. if (!ssl_is_key_type_supported(pkey->type)) {
  73. OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
  74. return false;
  75. }
  76. if (cert->chain != nullptr &&
  77. sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) != nullptr &&
  78. // Sanity-check that the private key and the certificate match.
  79. !ssl_cert_check_private_key(cert, pkey)) {
  80. return false;
  81. }
  82. cert->privatekey = UpRef(pkey);
  83. return true;
  84. }
  85. typedef struct {
  86. uint16_t sigalg;
  87. int pkey_type;
  88. int curve;
  89. const EVP_MD *(*digest_func)(void);
  90. bool is_rsa_pss;
  91. } SSL_SIGNATURE_ALGORITHM;
  92. static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
  93. {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1,
  94. false},
  95. {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, false},
  96. {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, false},
  97. {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, false},
  98. {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, false},
  99. {SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, true},
  100. {SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, true},
  101. {SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, true},
  102. {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, false},
  103. {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
  104. &EVP_sha256, false},
  105. {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
  106. false},
  107. {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
  108. false},
  109. {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr, false},
  110. };
  111. static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
  112. for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) {
  113. if (kSignatureAlgorithms[i].sigalg == sigalg) {
  114. return &kSignatureAlgorithms[i];
  115. }
  116. }
  117. return NULL;
  118. }
  119. bool ssl_has_private_key(const SSL_HANDSHAKE *hs) {
  120. if (hs->config->cert->privatekey != nullptr ||
  121. hs->config->cert->key_method != nullptr ||
  122. ssl_signing_with_dc(hs)) {
  123. return true;
  124. }
  125. return false;
  126. }
  127. static bool pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
  128. uint16_t sigalg) {
  129. const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
  130. if (alg == NULL ||
  131. EVP_PKEY_id(pkey) != alg->pkey_type) {
  132. return false;
  133. }
  134. if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
  135. // RSA keys may only be used with RSA-PSS.
  136. if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) {
  137. return false;
  138. }
  139. // EC keys have a curve requirement.
  140. if (alg->pkey_type == EVP_PKEY_EC &&
  141. (alg->curve == NID_undef ||
  142. EC_GROUP_get_curve_name(
  143. EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) {
  144. return false;
  145. }
  146. }
  147. return true;
  148. }
  149. static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey,
  150. uint16_t sigalg, bool is_verify) {
  151. if (!pkey_supports_algorithm(ssl, pkey, sigalg)) {
  152. OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
  153. return false;
  154. }
  155. const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
  156. const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL;
  157. EVP_PKEY_CTX *pctx;
  158. if (is_verify) {
  159. if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) {
  160. return false;
  161. }
  162. } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) {
  163. return false;
  164. }
  165. if (alg->is_rsa_pss) {
  166. if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
  167. !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
  168. return false;
  169. }
  170. }
  171. return true;
  172. }
  173. enum ssl_private_key_result_t ssl_private_key_sign(
  174. SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
  175. uint16_t sigalg, Span<const uint8_t> in) {
  176. SSL *const ssl = hs->ssl;
  177. const SSL_PRIVATE_KEY_METHOD *key_method = hs->config->cert->key_method;
  178. EVP_PKEY *privatekey = hs->config->cert->privatekey.get();
  179. if (ssl_signing_with_dc(hs)) {
  180. key_method = hs->config->cert->dc_key_method;
  181. privatekey = hs->config->cert->dc_privatekey.get();
  182. }
  183. if (key_method != NULL) {
  184. enum ssl_private_key_result_t ret;
  185. if (hs->pending_private_key_op) {
  186. ret = key_method->complete(ssl, out, out_len, max_out);
  187. } else {
  188. ret = key_method->sign(ssl, out, out_len, max_out,
  189. sigalg, in.data(), in.size());
  190. }
  191. if (ret == ssl_private_key_failure) {
  192. OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
  193. }
  194. hs->pending_private_key_op = ret == ssl_private_key_retry;
  195. return ret;
  196. }
  197. *out_len = max_out;
  198. ScopedEVP_MD_CTX ctx;
  199. if (!setup_ctx(ssl, ctx.get(), privatekey, sigalg, false /* sign */) ||
  200. !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) {
  201. return ssl_private_key_failure;
  202. }
  203. return ssl_private_key_success;
  204. }
  205. bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
  206. uint16_t sigalg, EVP_PKEY *pkey,
  207. Span<const uint8_t> in) {
  208. ScopedEVP_MD_CTX ctx;
  209. return setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */) &&
  210. EVP_DigestVerify(ctx.get(), signature.data(), signature.size(),
  211. in.data(), in.size());
  212. }
  213. enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
  214. uint8_t *out,
  215. size_t *out_len,
  216. size_t max_out,
  217. Span<const uint8_t> in) {
  218. SSL *const ssl = hs->ssl;
  219. if (hs->config->cert->key_method != NULL) {
  220. enum ssl_private_key_result_t ret;
  221. if (hs->pending_private_key_op) {
  222. ret = hs->config->cert->key_method->complete(ssl, out, out_len, max_out);
  223. } else {
  224. ret = hs->config->cert->key_method->decrypt(ssl, out, out_len, max_out,
  225. in.data(), in.size());
  226. }
  227. if (ret == ssl_private_key_failure) {
  228. OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
  229. }
  230. hs->pending_private_key_op = ret == ssl_private_key_retry;
  231. return ret;
  232. }
  233. RSA *rsa = EVP_PKEY_get0_RSA(hs->config->cert->privatekey.get());
  234. if (rsa == NULL) {
  235. // Decrypt operations are only supported for RSA keys.
  236. OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
  237. return ssl_private_key_failure;
  238. }
  239. // Decrypt with no padding. PKCS#1 padding will be removed as part of the
  240. // timing-sensitive code by the caller.
  241. if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(),
  242. RSA_NO_PADDING)) {
  243. return ssl_private_key_failure;
  244. }
  245. return ssl_private_key_success;
  246. }
  247. bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
  248. uint16_t sigalg) {
  249. SSL *const ssl = hs->ssl;
  250. if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) {
  251. return false;
  252. }
  253. // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
  254. // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
  255. // hash in TLS. Reasonable RSA key sizes are large enough for the largest
  256. // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
  257. // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
  258. // size so that we can fall back to another algorithm in that case.
  259. const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
  260. if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) <
  261. 2 * EVP_MD_size(alg->digest_func()) + 2) {
  262. return false;
  263. }
  264. return true;
  265. }
  266. BSSL_NAMESPACE_END
  267. using namespace bssl;
  268. int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
  269. if (rsa == NULL || ssl->config == NULL) {
  270. OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
  271. return 0;
  272. }
  273. UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
  274. if (!pkey ||
  275. !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
  276. OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
  277. return 0;
  278. }
  279. return ssl_set_pkey(ssl->config->cert.get(), pkey.get());
  280. }
  281. int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
  282. UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
  283. if (!rsa) {
  284. OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
  285. return 0;
  286. }
  287. return SSL_use_RSAPrivateKey(ssl, rsa.get());
  288. }
  289. int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
  290. if (pkey == NULL || ssl->config == NULL) {
  291. OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
  292. return 0;
  293. }
  294. return ssl_set_pkey(ssl->config->cert.get(), pkey);
  295. }
  296. int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
  297. size_t der_len) {
  298. if (der_len > LONG_MAX) {
  299. OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
  300. return 0;
  301. }
  302. const uint8_t *p = der;
  303. UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
  304. if (!pkey || p != der + der_len) {
  305. OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
  306. return 0;
  307. }
  308. return SSL_use_PrivateKey(ssl, pkey.get());
  309. }
  310. int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
  311. if (rsa == NULL) {
  312. OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
  313. return 0;
  314. }
  315. UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
  316. if (!pkey ||
  317. !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
  318. OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
  319. return 0;
  320. }
  321. return ssl_set_pkey(ctx->cert.get(), pkey.get());
  322. }
  323. int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
  324. size_t der_len) {
  325. UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
  326. if (!rsa) {
  327. OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
  328. return 0;
  329. }
  330. return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
  331. }
  332. int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
  333. if (pkey == NULL) {
  334. OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
  335. return 0;
  336. }
  337. return ssl_set_pkey(ctx->cert.get(), pkey);
  338. }
  339. int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
  340. size_t der_len) {
  341. if (der_len > LONG_MAX) {
  342. OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
  343. return 0;
  344. }
  345. const uint8_t *p = der;
  346. UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
  347. if (!pkey || p != der + der_len) {
  348. OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
  349. return 0;
  350. }
  351. return SSL_CTX_use_PrivateKey(ctx, pkey.get());
  352. }
  353. void SSL_set_private_key_method(SSL *ssl,
  354. const SSL_PRIVATE_KEY_METHOD *key_method) {
  355. if (!ssl->config) {
  356. return;
  357. }
  358. ssl->config->cert->key_method = key_method;
  359. }
  360. void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
  361. const SSL_PRIVATE_KEY_METHOD *key_method) {
  362. ctx->cert->key_method = key_method;
  363. }
  364. static constexpr size_t kMaxSignatureAlgorithmNameLen = 23;
  365. // This was "constexpr" rather than "const", but that triggered a bug in MSVC
  366. // where it didn't pad the strings to the correct length.
  367. static const struct {
  368. uint16_t signature_algorithm;
  369. const char name[kMaxSignatureAlgorithmNameLen];
  370. } kSignatureAlgorithmNames[] = {
  371. {SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"},
  372. {SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"},
  373. {SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"},
  374. {SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"},
  375. {SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"},
  376. {SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"},
  377. {SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"},
  378. {SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"},
  379. {SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"},
  380. {SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"},
  381. {SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"},
  382. {SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"},
  383. {SSL_SIGN_ED25519, "ed25519"},
  384. };
  385. const char *SSL_get_signature_algorithm_name(uint16_t sigalg,
  386. int include_curve) {
  387. if (!include_curve) {
  388. switch (sigalg) {
  389. case SSL_SIGN_ECDSA_SECP256R1_SHA256:
  390. return "ecdsa_sha256";
  391. case SSL_SIGN_ECDSA_SECP384R1_SHA384:
  392. return "ecdsa_sha384";
  393. case SSL_SIGN_ECDSA_SECP521R1_SHA512:
  394. return "ecdsa_sha512";
  395. }
  396. }
  397. for (const auto &candidate : kSignatureAlgorithmNames) {
  398. if (candidate.signature_algorithm == sigalg) {
  399. return candidate.name;
  400. }
  401. }
  402. return NULL;
  403. }
  404. int SSL_get_signature_algorithm_key_type(uint16_t sigalg) {
  405. const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
  406. return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE;
  407. }
  408. const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) {
  409. const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
  410. if (alg == nullptr || alg->digest_func == nullptr) {
  411. return nullptr;
  412. }
  413. return alg->digest_func();
  414. }
  415. int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) {
  416. const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
  417. return alg != nullptr && alg->is_rsa_pss;
  418. }
  419. int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
  420. size_t num_prefs) {
  421. return ctx->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
  422. }
  423. int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
  424. size_t num_prefs) {
  425. if (!ssl->config) {
  426. return 0;
  427. }
  428. return ssl->config->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
  429. }
  430. static constexpr struct {
  431. int pkey_type;
  432. int hash_nid;
  433. uint16_t signature_algorithm;
  434. } kSignatureAlgorithmsMapping[] = {
  435. {EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1},
  436. {EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256},
  437. {EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384},
  438. {EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512},
  439. {EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256},
  440. {EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384},
  441. {EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512},
  442. {EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1},
  443. {EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256},
  444. {EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384},
  445. {EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512},
  446. {EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519},
  447. };
  448. static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values,
  449. size_t num_values) {
  450. if ((num_values & 1) == 1) {
  451. return false;
  452. }
  453. const size_t num_pairs = num_values / 2;
  454. if (!out->Init(num_pairs)) {
  455. return false;
  456. }
  457. for (size_t i = 0; i < num_values; i += 2) {
  458. const int hash_nid = values[i];
  459. const int pkey_type = values[i+1];
  460. bool found = false;
  461. for (const auto &candidate : kSignatureAlgorithmsMapping) {
  462. if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) {
  463. (*out)[i / 2] = candidate.signature_algorithm;
  464. found = true;
  465. break;
  466. }
  467. }
  468. if (!found) {
  469. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
  470. ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type);
  471. return false;
  472. }
  473. }
  474. return true;
  475. }
  476. static int compare_uint16_t(const void *p1, const void *p2) {
  477. uint16_t u1 = *((const uint16_t *)p1);
  478. uint16_t u2 = *((const uint16_t *)p2);
  479. if (u1 < u2) {
  480. return -1;
  481. } else if (u1 > u2) {
  482. return 1;
  483. } else {
  484. return 0;
  485. }
  486. }
  487. static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) {
  488. if (in_sigalgs.size() < 2) {
  489. return true;
  490. }
  491. Array<uint16_t> sigalgs;
  492. if (!sigalgs.CopyFrom(in_sigalgs)) {
  493. return false;
  494. }
  495. qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t);
  496. for (size_t i = 1; i < sigalgs.size(); i++) {
  497. if (sigalgs[i - 1] == sigalgs[i]) {
  498. OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM);
  499. return false;
  500. }
  501. }
  502. return true;
  503. }
  504. int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) {
  505. Array<uint16_t> sigalgs;
  506. if (!parse_sigalg_pairs(&sigalgs, values, num_values) ||
  507. !sigalgs_unique(sigalgs)) {
  508. return 0;
  509. }
  510. if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
  511. sigalgs.size()) ||
  512. !ctx->verify_sigalgs.CopyFrom(sigalgs)) {
  513. return 0;
  514. }
  515. return 1;
  516. }
  517. int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) {
  518. if (!ssl->config) {
  519. OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  520. return 0;
  521. }
  522. Array<uint16_t> sigalgs;
  523. if (!parse_sigalg_pairs(&sigalgs, values, num_values) ||
  524. !sigalgs_unique(sigalgs)) {
  525. return 0;
  526. }
  527. if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
  528. !ssl->config->verify_sigalgs.CopyFrom(sigalgs)) {
  529. return 0;
  530. }
  531. return 1;
  532. }
  533. static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) {
  534. // str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256".
  535. // Count colons to give the number of output elements from any successful
  536. // parse.
  537. size_t num_elements = 1;
  538. size_t len = 0;
  539. for (const char *p = str; *p; p++) {
  540. len++;
  541. if (*p == ':') {
  542. num_elements++;
  543. }
  544. }
  545. if (!out->Init(num_elements)) {
  546. return false;
  547. }
  548. size_t out_i = 0;
  549. enum {
  550. pkey_or_name,
  551. hash_name,
  552. } state = pkey_or_name;
  553. char buf[kMaxSignatureAlgorithmNameLen];
  554. // buf_used is always < sizeof(buf). I.e. it's always safe to write
  555. // buf[buf_used] = 0.
  556. size_t buf_used = 0;
  557. int pkey_type = 0, hash_nid = 0;
  558. // Note that the loop runs to len+1, i.e. it'll process the terminating NUL.
  559. for (size_t offset = 0; offset < len+1; offset++) {
  560. const char c = str[offset];
  561. switch (c) {
  562. case '+':
  563. if (state == hash_name) {
  564. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
  565. ERR_add_error_dataf("+ found in hash name at offset %zu", offset);
  566. return false;
  567. }
  568. if (buf_used == 0) {
  569. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
  570. ERR_add_error_dataf("empty public key type at offset %zu", offset);
  571. return false;
  572. }
  573. buf[buf_used] = 0;
  574. if (strcmp(buf, "RSA") == 0) {
  575. pkey_type = EVP_PKEY_RSA;
  576. } else if (strcmp(buf, "RSA-PSS") == 0 ||
  577. strcmp(buf, "PSS") == 0) {
  578. pkey_type = EVP_PKEY_RSA_PSS;
  579. } else if (strcmp(buf, "ECDSA") == 0) {
  580. pkey_type = EVP_PKEY_EC;
  581. } else {
  582. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
  583. ERR_add_error_dataf("unknown public key type '%s'", buf);
  584. return false;
  585. }
  586. state = hash_name;
  587. buf_used = 0;
  588. break;
  589. case ':':
  590. OPENSSL_FALLTHROUGH;
  591. case 0:
  592. if (buf_used == 0) {
  593. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
  594. ERR_add_error_dataf("empty element at offset %zu", offset);
  595. return false;
  596. }
  597. buf[buf_used] = 0;
  598. if (state == pkey_or_name) {
  599. // No '+' was seen thus this is a TLS 1.3-style name.
  600. bool found = false;
  601. for (const auto &candidate : kSignatureAlgorithmNames) {
  602. if (strcmp(candidate.name, buf) == 0) {
  603. assert(out_i < num_elements);
  604. (*out)[out_i++] = candidate.signature_algorithm;
  605. found = true;
  606. break;
  607. }
  608. }
  609. if (!found) {
  610. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
  611. ERR_add_error_dataf("unknown signature algorithm '%s'", buf);
  612. return false;
  613. }
  614. } else {
  615. if (strcmp(buf, "SHA1") == 0) {
  616. hash_nid = NID_sha1;
  617. } else if (strcmp(buf, "SHA256") == 0) {
  618. hash_nid = NID_sha256;
  619. } else if (strcmp(buf, "SHA384") == 0) {
  620. hash_nid = NID_sha384;
  621. } else if (strcmp(buf, "SHA512") == 0) {
  622. hash_nid = NID_sha512;
  623. } else {
  624. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
  625. ERR_add_error_dataf("unknown hash function '%s'", buf);
  626. return false;
  627. }
  628. bool found = false;
  629. for (const auto &candidate : kSignatureAlgorithmsMapping) {
  630. if (candidate.pkey_type == pkey_type &&
  631. candidate.hash_nid == hash_nid) {
  632. assert(out_i < num_elements);
  633. (*out)[out_i++] = candidate.signature_algorithm;
  634. found = true;
  635. break;
  636. }
  637. }
  638. if (!found) {
  639. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
  640. ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf);
  641. return false;
  642. }
  643. }
  644. state = pkey_or_name;
  645. buf_used = 0;
  646. break;
  647. default:
  648. if (buf_used == sizeof(buf) - 1) {
  649. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
  650. ERR_add_error_dataf("substring too long at offset %zu", offset);
  651. return false;
  652. }
  653. if ((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') ||
  654. (c >= 'A' && c <= 'Z') || c == '-' || c == '_') {
  655. buf[buf_used++] = c;
  656. } else {
  657. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
  658. ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c,
  659. offset);
  660. return false;
  661. }
  662. }
  663. }
  664. assert(out_i == out->size());
  665. return true;
  666. }
  667. int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) {
  668. Array<uint16_t> sigalgs;
  669. if (!parse_sigalgs_list(&sigalgs, str) ||
  670. !sigalgs_unique(sigalgs)) {
  671. return 0;
  672. }
  673. if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
  674. sigalgs.size()) ||
  675. !ctx->verify_sigalgs.CopyFrom(sigalgs)) {
  676. return 0;
  677. }
  678. return 1;
  679. }
  680. int SSL_set1_sigalgs_list(SSL *ssl, const char *str) {
  681. if (!ssl->config) {
  682. OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  683. return 0;
  684. }
  685. Array<uint16_t> sigalgs;
  686. if (!parse_sigalgs_list(&sigalgs, str) ||
  687. !sigalgs_unique(sigalgs)) {
  688. return 0;
  689. }
  690. if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
  691. !ssl->config->verify_sigalgs.CopyFrom(sigalgs)) {
  692. return 0;
  693. }
  694. return 1;
  695. }
  696. int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
  697. size_t num_prefs) {
  698. return ctx->verify_sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
  699. }