Non puoi selezionare più di 25 argomenti Gli argomenti devono iniziare con una lettera o un numero, possono includere trattini ('-') e possono essere lunghi fino a 35 caratteri.
 
 
 
 
 
 

5286 righe
193 KiB

  1. /* Copyright (c) 2014, Google Inc.
  2. *
  3. * Permission to use, copy, modify, and/or distribute this software for any
  4. * purpose with or without fee is hereby granted, provided that the above
  5. * copyright notice and this permission notice appear in all copies.
  6. *
  7. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  8. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  9. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  10. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  11. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  12. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  13. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
  14. #include <stdio.h>
  15. #include <string.h>
  16. #include <time.h>
  17. #include <algorithm>
  18. #include <limits>
  19. #include <string>
  20. #include <utility>
  21. #include <vector>
  22. #include <gtest/gtest.h>
  23. #include <openssl/base64.h>
  24. #include <openssl/bio.h>
  25. #include <openssl/cipher.h>
  26. #include <openssl/crypto.h>
  27. #include <openssl/err.h>
  28. #include <openssl/hmac.h>
  29. #include <openssl/pem.h>
  30. #include <openssl/sha.h>
  31. #include <openssl/ssl.h>
  32. #include <openssl/rand.h>
  33. #include <openssl/x509.h>
  34. #include "internal.h"
  35. #include "../crypto/internal.h"
  36. #include "../crypto/test/test_util.h"
  37. #if defined(OPENSSL_WINDOWS)
  38. // Windows defines struct timeval in winsock2.h.
  39. OPENSSL_MSVC_PRAGMA(warning(push, 3))
  40. #include <winsock2.h>
  41. OPENSSL_MSVC_PRAGMA(warning(pop))
  42. #else
  43. #include <sys/time.h>
  44. #endif
  45. #if defined(OPENSSL_THREADS)
  46. #include <thread>
  47. #endif
  48. BSSL_NAMESPACE_BEGIN
  49. namespace {
  50. #define TRACED_CALL(code) \
  51. do { \
  52. SCOPED_TRACE("<- called from here"); \
  53. code; \
  54. if (::testing::Test::HasFatalFailure()) { \
  55. return; \
  56. } \
  57. } while (false)
  58. struct VersionParam {
  59. uint16_t version;
  60. enum { is_tls, is_dtls } ssl_method;
  61. const char name[8];
  62. };
  63. static const size_t kTicketKeyLen = 48;
  64. static const VersionParam kAllVersions[] = {
  65. {TLS1_VERSION, VersionParam::is_tls, "TLS1"},
  66. {TLS1_1_VERSION, VersionParam::is_tls, "TLS1_1"},
  67. {TLS1_2_VERSION, VersionParam::is_tls, "TLS1_2"},
  68. {TLS1_3_VERSION, VersionParam::is_tls, "TLS1_3"},
  69. {DTLS1_VERSION, VersionParam::is_dtls, "DTLS1"},
  70. {DTLS1_2_VERSION, VersionParam::is_dtls, "DTLS1_2"},
  71. };
  72. struct ExpectedCipher {
  73. unsigned long id;
  74. int in_group_flag;
  75. };
  76. struct CipherTest {
  77. // The rule string to apply.
  78. const char *rule;
  79. // The list of expected ciphers, in order.
  80. std::vector<ExpectedCipher> expected;
  81. // True if this cipher list should fail in strict mode.
  82. bool strict_fail;
  83. };
  84. struct CurveTest {
  85. // The rule string to apply.
  86. const char *rule;
  87. // The list of expected curves, in order.
  88. std::vector<uint16_t> expected;
  89. };
  90. template <typename T>
  91. class UnownedSSLExData {
  92. public:
  93. UnownedSSLExData() {
  94. index_ = SSL_get_ex_new_index(0, nullptr, nullptr, nullptr, nullptr);
  95. }
  96. T *Get(const SSL *ssl) {
  97. return index_ < 0 ? nullptr
  98. : static_cast<T *>(SSL_get_ex_data(ssl, index_));
  99. }
  100. bool Set(SSL *ssl, T *t) {
  101. return index_ >= 0 && SSL_set_ex_data(ssl, index_, t);
  102. }
  103. private:
  104. int index_;
  105. };
  106. static const CipherTest kCipherTests[] = {
  107. // Selecting individual ciphers should work.
  108. {
  109. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  110. "ECDHE-RSA-CHACHA20-POLY1305:"
  111. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  112. "ECDHE-RSA-AES128-GCM-SHA256",
  113. {
  114. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  115. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  116. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  117. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  118. },
  119. false,
  120. },
  121. // + reorders selected ciphers to the end, keeping their relative order.
  122. {
  123. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  124. "ECDHE-RSA-CHACHA20-POLY1305:"
  125. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  126. "ECDHE-RSA-AES128-GCM-SHA256:"
  127. "+aRSA",
  128. {
  129. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  130. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  131. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  132. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  133. },
  134. false,
  135. },
  136. // ! banishes ciphers from future selections.
  137. {
  138. "!aRSA:"
  139. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  140. "ECDHE-RSA-CHACHA20-POLY1305:"
  141. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  142. "ECDHE-RSA-AES128-GCM-SHA256",
  143. {
  144. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  145. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  146. },
  147. false,
  148. },
  149. // Multiple masks can be ANDed in a single rule.
  150. {
  151. "kRSA+AESGCM+AES128",
  152. {
  153. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  154. },
  155. false,
  156. },
  157. // - removes selected ciphers, but preserves their order for future
  158. // selections. Select AES_128_GCM, but order the key exchanges RSA,
  159. // ECDHE_RSA.
  160. {
  161. "ALL:-kECDHE:"
  162. "-kRSA:-ALL:"
  163. "AESGCM+AES128+aRSA",
  164. {
  165. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  166. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  167. },
  168. false,
  169. },
  170. // Unknown selectors are no-ops, except in strict mode.
  171. {
  172. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  173. "ECDHE-RSA-CHACHA20-POLY1305:"
  174. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  175. "ECDHE-RSA-AES128-GCM-SHA256:"
  176. "BOGUS1",
  177. {
  178. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  179. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  180. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  181. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  182. },
  183. true,
  184. },
  185. // Unknown selectors are no-ops, except in strict mode.
  186. {
  187. "ECDHE-ECDSA-CHACHA20-POLY1305:"
  188. "ECDHE-RSA-CHACHA20-POLY1305:"
  189. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  190. "ECDHE-RSA-AES128-GCM-SHA256:"
  191. "-BOGUS2:+BOGUS3:!BOGUS4",
  192. {
  193. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  194. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  195. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  196. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  197. },
  198. true,
  199. },
  200. // Square brackets specify equi-preference groups.
  201. {
  202. "[ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256]:"
  203. "[ECDHE-RSA-CHACHA20-POLY1305]:"
  204. "ECDHE-RSA-AES128-GCM-SHA256",
  205. {
  206. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
  207. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  208. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  209. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  210. },
  211. false,
  212. },
  213. // Standard names may be used instead of OpenSSL names.
  214. {
  215. "[TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256|"
  216. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256]:"
  217. "[TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256]:"
  218. "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
  219. {
  220. {TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
  221. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  222. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  223. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  224. },
  225. false,
  226. },
  227. // @STRENGTH performs a stable strength-sort of the selected ciphers and
  228. // only the selected ciphers.
  229. {
  230. // To simplify things, banish all but {ECDHE_RSA,RSA} x
  231. // {CHACHA20,AES_256_CBC,AES_128_CBC} x SHA1.
  232. "!AESGCM:!3DES:"
  233. // Order some ciphers backwards by strength.
  234. "ALL:-CHACHA20:-AES256:-AES128:-ALL:"
  235. // Select ECDHE ones and sort them by strength. Ties should resolve
  236. // based on the order above.
  237. "kECDHE:@STRENGTH:-ALL:"
  238. // Now bring back everything uses RSA. ECDHE_RSA should be first, sorted
  239. // by strength. Then RSA, backwards by strength.
  240. "aRSA",
  241. {
  242. {TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, 0},
  243. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  244. {TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, 0},
  245. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  246. {TLS1_CK_RSA_WITH_AES_256_SHA, 0},
  247. },
  248. false,
  249. },
  250. // Additional masks after @STRENGTH get silently discarded.
  251. //
  252. // TODO(davidben): Make this an error. If not silently discarded, they get
  253. // interpreted as + opcodes which are very different.
  254. {
  255. "ECDHE-RSA-AES128-GCM-SHA256:"
  256. "ECDHE-RSA-AES256-GCM-SHA384:"
  257. "@STRENGTH+AES256",
  258. {
  259. {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0},
  260. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  261. },
  262. false,
  263. },
  264. {
  265. "ECDHE-RSA-AES128-GCM-SHA256:"
  266. "ECDHE-RSA-AES256-GCM-SHA384:"
  267. "@STRENGTH+AES256:"
  268. "ECDHE-RSA-CHACHA20-POLY1305",
  269. {
  270. {TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0},
  271. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  272. {TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
  273. },
  274. false,
  275. },
  276. // Exact ciphers may not be used in multi-part rules; they are treated
  277. // as unknown aliases.
  278. {
  279. "ECDHE-ECDSA-AES128-GCM-SHA256:"
  280. "ECDHE-RSA-AES128-GCM-SHA256:"
  281. "!ECDHE-RSA-AES128-GCM-SHA256+RSA:"
  282. "!ECDSA+ECDHE-ECDSA-AES128-GCM-SHA256",
  283. {
  284. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  285. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  286. },
  287. true,
  288. },
  289. // SSLv3 matches everything that existed before TLS 1.2.
  290. {
  291. "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!SSLv3",
  292. {
  293. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  294. },
  295. false,
  296. },
  297. // TLSv1.2 matches everything added in TLS 1.2.
  298. {
  299. "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2",
  300. {
  301. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  302. },
  303. false,
  304. },
  305. // The two directives have no intersection. But each component is valid, so
  306. // even in strict mode it is accepted.
  307. {
  308. "AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2+SSLv3",
  309. {
  310. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  311. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  312. },
  313. false,
  314. },
  315. // Spaces, semi-colons and commas are separators.
  316. {
  317. "AES128-SHA: ECDHE-RSA-AES128-GCM-SHA256 AES256-SHA ,ECDHE-ECDSA-AES128-GCM-SHA256 ; AES128-GCM-SHA256",
  318. {
  319. {TLS1_CK_RSA_WITH_AES_128_SHA, 0},
  320. {TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
  321. {TLS1_CK_RSA_WITH_AES_256_SHA, 0},
  322. {TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
  323. {TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
  324. },
  325. // …but not in strict mode.
  326. true,
  327. },
  328. };
  329. static const char *kBadRules[] = {
  330. // Invalid brackets.
  331. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256",
  332. "RSA]",
  333. "[[RSA]]",
  334. // Operators inside brackets.
  335. "[+RSA]",
  336. // Unknown directive.
  337. "@BOGUS",
  338. // Empty cipher lists error at SSL_CTX_set_cipher_list.
  339. "",
  340. "BOGUS",
  341. // COMPLEMENTOFDEFAULT is empty.
  342. "COMPLEMENTOFDEFAULT",
  343. // Invalid command.
  344. "?BAR",
  345. // Special operators are not allowed if groups are used.
  346. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:+FOO",
  347. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:!FOO",
  348. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:-FOO",
  349. "[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:@STRENGTH",
  350. // Opcode supplied, but missing selector.
  351. "+",
  352. // Spaces are forbidden in equal-preference groups.
  353. "[AES128-SHA | AES128-SHA256]",
  354. };
  355. static const char *kMustNotIncludeNull[] = {
  356. "ALL",
  357. "DEFAULT",
  358. "HIGH",
  359. "FIPS",
  360. "SHA",
  361. "SHA1",
  362. "RSA",
  363. "SSLv3",
  364. "TLSv1",
  365. "TLSv1.2",
  366. };
  367. static const CurveTest kCurveTests[] = {
  368. {
  369. "P-256",
  370. { SSL_CURVE_SECP256R1 },
  371. },
  372. {
  373. "P-256:CECPQ2",
  374. { SSL_CURVE_SECP256R1, SSL_CURVE_CECPQ2 },
  375. },
  376. {
  377. "P-256:P-384:P-521:X25519",
  378. {
  379. SSL_CURVE_SECP256R1,
  380. SSL_CURVE_SECP384R1,
  381. SSL_CURVE_SECP521R1,
  382. SSL_CURVE_X25519,
  383. },
  384. },
  385. {
  386. "prime256v1:secp384r1:secp521r1:x25519",
  387. {
  388. SSL_CURVE_SECP256R1,
  389. SSL_CURVE_SECP384R1,
  390. SSL_CURVE_SECP521R1,
  391. SSL_CURVE_X25519,
  392. },
  393. },
  394. };
  395. static const char *kBadCurvesLists[] = {
  396. "",
  397. ":",
  398. "::",
  399. "P-256::X25519",
  400. "RSA:P-256",
  401. "P-256:RSA",
  402. "X25519:P-256:",
  403. ":X25519:P-256",
  404. };
  405. static std::string CipherListToString(SSL_CTX *ctx) {
  406. bool in_group = false;
  407. std::string ret;
  408. const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx);
  409. for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
  410. const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i);
  411. if (!in_group && SSL_CTX_cipher_in_group(ctx, i)) {
  412. ret += "\t[\n";
  413. in_group = true;
  414. }
  415. ret += "\t";
  416. if (in_group) {
  417. ret += " ";
  418. }
  419. ret += SSL_CIPHER_get_name(cipher);
  420. ret += "\n";
  421. if (in_group && !SSL_CTX_cipher_in_group(ctx, i)) {
  422. ret += "\t]\n";
  423. in_group = false;
  424. }
  425. }
  426. return ret;
  427. }
  428. static bool CipherListsEqual(SSL_CTX *ctx,
  429. const std::vector<ExpectedCipher> &expected) {
  430. const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx);
  431. if (sk_SSL_CIPHER_num(ciphers) != expected.size()) {
  432. return false;
  433. }
  434. for (size_t i = 0; i < expected.size(); i++) {
  435. const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i);
  436. if (expected[i].id != SSL_CIPHER_get_id(cipher) ||
  437. expected[i].in_group_flag != !!SSL_CTX_cipher_in_group(ctx, i)) {
  438. return false;
  439. }
  440. }
  441. return true;
  442. }
  443. TEST(SSLTest, CipherRules) {
  444. for (const CipherTest &t : kCipherTests) {
  445. SCOPED_TRACE(t.rule);
  446. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  447. ASSERT_TRUE(ctx);
  448. // Test lax mode.
  449. ASSERT_TRUE(SSL_CTX_set_cipher_list(ctx.get(), t.rule));
  450. EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected))
  451. << "Cipher rule evaluated to:\n"
  452. << CipherListToString(ctx.get());
  453. // Test strict mode.
  454. if (t.strict_fail) {
  455. EXPECT_FALSE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule));
  456. } else {
  457. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule));
  458. EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected))
  459. << "Cipher rule evaluated to:\n"
  460. << CipherListToString(ctx.get());
  461. }
  462. }
  463. for (const char *rule : kBadRules) {
  464. SCOPED_TRACE(rule);
  465. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  466. ASSERT_TRUE(ctx);
  467. EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), rule));
  468. ERR_clear_error();
  469. }
  470. for (const char *rule : kMustNotIncludeNull) {
  471. SCOPED_TRACE(rule);
  472. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  473. ASSERT_TRUE(ctx);
  474. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule));
  475. for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) {
  476. EXPECT_NE(NID_undef, SSL_CIPHER_get_cipher_nid(cipher));
  477. }
  478. }
  479. }
  480. TEST(SSLTest, CurveRules) {
  481. for (const CurveTest &t : kCurveTests) {
  482. SCOPED_TRACE(t.rule);
  483. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  484. ASSERT_TRUE(ctx);
  485. ASSERT_TRUE(SSL_CTX_set1_curves_list(ctx.get(), t.rule));
  486. ASSERT_EQ(t.expected.size(), ctx->supported_group_list.size());
  487. for (size_t i = 0; i < t.expected.size(); i++) {
  488. EXPECT_EQ(t.expected[i], ctx->supported_group_list[i]);
  489. }
  490. }
  491. for (const char *rule : kBadCurvesLists) {
  492. SCOPED_TRACE(rule);
  493. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  494. ASSERT_TRUE(ctx);
  495. EXPECT_FALSE(SSL_CTX_set1_curves_list(ctx.get(), rule));
  496. ERR_clear_error();
  497. }
  498. }
  499. // kOpenSSLSession is a serialized SSL_SESSION.
  500. static const char kOpenSSLSession[] =
  501. "MIIFqgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  502. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  503. "IWoJoQYCBFRDO46iBAICASyjggR6MIIEdjCCA16gAwIBAgIIK9dUvsPWSlUwDQYJ"
  504. "KoZIhvcNAQEFBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
  505. "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTQxMDA4"
  506. "MTIwNzU3WhcNMTUwMTA2MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
  507. "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
  508. "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
  509. "AQUAA4IBDwAwggEKAoIBAQCcKeLrplAC+Lofy8t/wDwtB6eu72CVp0cJ4V3lknN6"
  510. "huH9ct6FFk70oRIh/VBNBBz900jYy+7111Jm1b8iqOTQ9aT5C7SEhNcQFJvqzH3e"
  511. "MPkb6ZSWGm1yGF7MCQTGQXF20Sk/O16FSjAynU/b3oJmOctcycWYkY0ytS/k3LBu"
  512. "Id45PJaoMqjB0WypqvNeJHC3q5JjCB4RP7Nfx5jjHSrCMhw8lUMW4EaDxjaR9KDh"
  513. "PLgjsk+LDIySRSRDaCQGhEOWLJZVLzLo4N6/UlctCHEllpBUSvEOyFga52qroGjg"
  514. "rf3WOQ925MFwzd6AK+Ich0gDRg8sQfdLH5OuP1cfLfU1AgMBAAGjggFBMIIBPTAd"
  515. "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
  516. "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
  517. "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
  518. "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBQ7a+CcxsZByOpc+xpYFcIbnUMZ"
  519. "hTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
  520. "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
  521. "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQCa"
  522. "OXCBdoqUy5bxyq+Wrh1zsyyCFim1PH5VU2+yvDSWrgDY8ibRGJmfff3r4Lud5kal"
  523. "dKs9k8YlKD3ITG7P0YT/Rk8hLgfEuLcq5cc0xqmE42xJ+Eo2uzq9rYorc5emMCxf"
  524. "5L0TJOXZqHQpOEcuptZQ4OjdYMfSxk5UzueUhA3ogZKRcRkdB3WeWRp+nYRhx4St"
  525. "o2rt2A0MKmY9165GHUqMK9YaaXHDXqBu7Sefr1uSoAP9gyIJKeihMivsGqJ1TD6Z"
  526. "cc6LMe+dN2P8cZEQHtD1y296ul4Mivqk3jatUVL8/hCwgch9A8O4PGZq9WqBfEWm"
  527. "IyHh1dPtbg1lOXdYCWtjpAIEAKUDAgEUqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36S"
  528. "YTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9B"
  529. "sNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yE"
  530. "OTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdA"
  531. "i4gv7Y5oliyntgMBAQA=";
  532. // kCustomSession is a custom serialized SSL_SESSION generated by
  533. // filling in missing fields from |kOpenSSLSession|. This includes
  534. // providing |peer_sha256|, so |peer| is not serialized.
  535. static const char kCustomSession[] =
  536. "MIIBZAIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  537. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  538. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUqAcEBXdvcmxkqQUCAwGJwKqBpwSB"
  539. "pBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38"
  540. "VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd"
  541. "3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hg"
  542. "b+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYGBgYGBgYGBgYGBgYGBgYGBgYG"
  543. "BgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
  544. // kBoringSSLSession is a serialized SSL_SESSION generated from bssl client.
  545. static const char kBoringSSLSession[] =
  546. "MIIRwQIBAQICAwMEAsAvBCDdoGxGK26mR+8lM0uq6+k9xYuxPnwAjpcF9n0Yli9R"
  547. "kQQwbyshfWhdi5XQ1++7n2L1qqrcVlmHBPpr6yknT/u4pUrpQB5FZ7vqvNn8MdHf"
  548. "9rWgoQYCBFXgs7uiBAICHCCjggR6MIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJ"
  549. "KoZIhvcNAQELBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
  550. "JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEy"
  551. "MTQ1MzE1WhcNMTUxMTEwMDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
  552. "Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
  553. "Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
  554. "AQUAA4IBDwAwggEKAoIBAQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpo"
  555. "PLuBinvhkXZo3DC133NpCBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU"
  556. "792c7hFyNXSUCG7At8Ifi3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mce"
  557. "Tv9iGKqSkSTlp8puy/9SZ/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/"
  558. "RCh8/UKc8PaL+cxlt531qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eL"
  559. "EucWQ72YZU8mUzXBoXGn0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAd"
  560. "BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
  561. "b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
  562. "Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
  563. "czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjG"
  564. "GjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
  565. "MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
  566. "Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAb"
  567. "qdWPZEHk0X7iKPCTHL6S3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovE"
  568. "kQZSHwT+pyOPWQhsSjO+1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXd"
  569. "X+s0WdbOpn6MStKAiBVloPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+"
  570. "n0OTucD9sHV7EVj9XUxi51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779a"
  571. "f07vR03r349Iz/KTzk95rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1y"
  572. "TTlM80jBMOwyjZXmjRAhpAIEAKUDAgEUqQUCAwGJwKqBpwSBpOgebbmn9NRUtMWH"
  573. "+eJpqA5JLMFSMCChOsvKey3toBaCNGU7HfAEiiXNuuAdCBoK262BjQc2YYfqFzqH"
  574. "zuppopXCvhohx7j/tnCNZIMgLYt/O9SXK2RYI5z8FhCCHvB4CbD5G0LGl5EFP27s"
  575. "Jb6S3aTTYPkQe8yZSlxevg6NDwmTogLO9F7UUkaYmVcMQhzssEE2ZRYNwSOU6KjE"
  576. "0Yj+8fAiBtbQriIEIN2L8ZlpaVrdN5KFNdvcmOxJu81P8q53X55xQyGTnGWwsgMC"
  577. "ARezggvvMIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJKoZIhvcNAQELBQAwSTEL"
  578. "MAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2ds"
  579. "ZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEyMTQ1MzE1WhcNMTUxMTEw"
  580. "MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG"
  581. "A1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UE"
  582. "AwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB"
  583. "AQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpoPLuBinvhkXZo3DC133Np"
  584. "CBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU792c7hFyNXSUCG7At8If"
  585. "i3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mceTv9iGKqSkSTlp8puy/9S"
  586. "Z/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/RCh8/UKc8PaL+cxlt531"
  587. "qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eLEucWQ72YZU8mUzXBoXGn"
  588. "0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEF"
  589. "BQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYB"
  590. "BQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB"
  591. "RzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9v"
  592. "Y3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjGGjAMBgNVHRMBAf8EAjAA"
  593. "MB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYK"
  594. "KwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5j"
  595. "b20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAbqdWPZEHk0X7iKPCTHL6S"
  596. "3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovEkQZSHwT+pyOPWQhsSjO+"
  597. "1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXdX+s0WdbOpn6MStKAiBVl"
  598. "oPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+n0OTucD9sHV7EVj9XUxi"
  599. "51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779af07vR03r349Iz/KTzk95"
  600. "rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1yTTlM80jBMOwyjZXmjRAh"
  601. "MIID8DCCAtigAwIBAgIDAjqDMA0GCSqGSIb3DQEBCwUAMEIxCzAJBgNVBAYTAlVT"
  602. "MRYwFAYDVQQKEw1HZW9UcnVzdCBJbmMuMRswGQYDVQQDExJHZW9UcnVzdCBHbG9i"
  603. "YWwgQ0EwHhcNMTMwNDA1MTUxNTU2WhcNMTYxMjMxMjM1OTU5WjBJMQswCQYDVQQG"
  604. "EwJVUzETMBEGA1UEChMKR29vZ2xlIEluYzElMCMGA1UEAxMcR29vZ2xlIEludGVy"
  605. "bmV0IEF1dGhvcml0eSBHMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB"
  606. "AJwqBHdc2FCROgajguDYUEi8iT/xGXAaiEZ+4I/F8YnOIe5a/mENtzJEiaB0C1NP"
  607. "VaTOgmKV7utZX8bhBYASxF6UP7xbSDj0U/ck5vuR6RXEz/RTDfRK/J9U3n2+oGtv"
  608. "h8DQUB8oMANA2ghzUWx//zo8pzcGjr1LEQTrfSTe5vn8MXH7lNVg8y5Kr0LSy+rE"
  609. "ahqyzFPdFUuLH8gZYR/Nnag+YyuENWllhMgZxUYi+FOVvuOAShDGKuy6lyARxzmZ"
  610. "EASg8GF6lSWMTlJ14rbtCMoU/M4iarNOz0YDl5cDfsCx3nuvRTPPuj5xt970JSXC"
  611. "DTWJnZ37DhF5iR43xa+OcmkCAwEAAaOB5zCB5DAfBgNVHSMEGDAWgBTAephojYn7"
  612. "qwVkDBF9qn1luMrMTjAdBgNVHQ4EFgQUSt0GFhu89mi1dvWBtrtiGrpagS8wDgYD"
  613. "VR0PAQH/BAQDAgEGMC4GCCsGAQUFBwEBBCIwIDAeBggrBgEFBQcwAYYSaHR0cDov"
  614. "L2cuc3ltY2QuY29tMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCig"
  615. "JoYkaHR0cDovL2cuc3ltY2IuY29tL2NybHMvZ3RnbG9iYWwuY3JsMBcGA1UdIAQQ"
  616. "MA4wDAYKKwYBBAHWeQIFATANBgkqhkiG9w0BAQsFAAOCAQEAqvqpIM1qZ4PtXtR+"
  617. "3h3Ef+AlBgDFJPupyC1tft6dgmUsgWM0Zj7pUsIItMsv91+ZOmqcUHqFBYx90SpI"
  618. "hNMJbHzCzTWf84LuUt5oX+QAihcglvcpjZpNy6jehsgNb1aHA30DP9z6eX0hGfnI"
  619. "Oi9RdozHQZJxjyXON/hKTAAj78Q1EK7gI4BzfE00LshukNYQHpmEcxpw8u1VDu4X"
  620. "Bupn7jLrLN1nBz/2i8Jw3lsA5rsb0zYaImxssDVCbJAJPZPpZAkiDoUGn8JzIdPm"
  621. "X4DkjYUiOnMDsWCOrmji9D6X52ASCWg23jrW4kOVWzeBkoEfu43XrVJkFleW2V40"
  622. "fsg12DCCA30wggLmoAMCAQICAxK75jANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQG"
  623. "EwJVUzEQMA4GA1UEChMHRXF1aWZheDEtMCsGA1UECxMkRXF1aWZheCBTZWN1cmUg"
  624. "Q2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTAyMDUyMTA0MDAwMFoXDTE4MDgyMTA0"
  625. "MDAwMFowQjELMAkGA1UEBhMCVVMxFjAUBgNVBAoTDUdlb1RydXN0IEluYy4xGzAZ"
  626. "BgNVBAMTEkdlb1RydXN0IEdsb2JhbCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEP"
  627. "ADCCAQoCggEBANrMGGMw/fQXIxpWflvfPGw45HG3eJHUvKHYTPioQ7YD6U0hBwiI"
  628. "2lgvZjkpvQV4i5046AW3an5xpObEYKaw74DkiSgPniXW7YPzraaRx5jJQhg1FJ2t"
  629. "mEaSLk/K8YdDwRaVVy1Q74ktgHpXrfLuX2vSAI25FPgUFTXZwEaje3LIkb/JVSvN"
  630. "0Jc+nCZkzN/Ogxlxyk7m1NV7qRnNVd7I7NJeOFPlXE+MLf5QIzb8ZubLjqQ5GQC3"
  631. "lQI5kQsO/jgu0R0FmvZNPm8PBx2vLB6PYDni+jZTEznUXiYr2z2oFL0y6xgDKFIE"
  632. "ceWrMz3hOLsHNoRinHnqFjD0X8Ar6HFr5PkCAwEAAaOB8DCB7TAfBgNVHSMEGDAW"
  633. "gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHQ4EFgQUwHqYaI2J+6sFZAwRfap9"
  634. "ZbjKzE4wDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwOgYDVR0fBDMw"
  635. "MTAvoC2gK4YpaHR0cDovL2NybC5nZW90cnVzdC5jb20vY3Jscy9zZWN1cmVjYS5j"
  636. "cmwwTgYDVR0gBEcwRTBDBgRVHSAAMDswOQYIKwYBBQUHAgEWLWh0dHBzOi8vd3d3"
  637. "Lmdlb3RydXN0LmNvbS9yZXNvdXJjZXMvcmVwb3NpdG9yeTANBgkqhkiG9w0BAQUF"
  638. "AAOBgQB24RJuTksWEoYwBrKBCM/wCMfHcX5m7sLt1Dsf//DwyE7WQziwuTB9GNBV"
  639. "g6JqyzYRnOhIZqNtf7gT1Ef+i1pcc/yu2RsyGTirlzQUqpbS66McFAhJtrvlke+D"
  640. "NusdVm/K2rxzY5Dkf3s+Iss9B+1fOHSc4wNQTqGvmO5h8oQ/Eg==";
  641. // kBadSessionExtraField is a custom serialized SSL_SESSION generated by replacing
  642. // the final (optional) element of |kCustomSession| with tag number 30.
  643. static const char kBadSessionExtraField[] =
  644. "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  645. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  646. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  647. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  648. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  649. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  650. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  651. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBL4DBAEF";
  652. // kBadSessionVersion is a custom serialized SSL_SESSION generated by replacing
  653. // the version of |kCustomSession| with 2.
  654. static const char kBadSessionVersion[] =
  655. "MIIBdgIBAgICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  656. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  657. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  658. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  659. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  660. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  661. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  662. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
  663. // kBadSessionTrailingData is a custom serialized SSL_SESSION with trailing data
  664. // appended.
  665. static const char kBadSessionTrailingData[] =
  666. "MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
  667. "kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
  668. "IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
  669. "BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
  670. "LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
  671. "CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
  672. "q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
  673. "BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEFAAAA";
  674. static bool DecodeBase64(std::vector<uint8_t> *out, const char *in) {
  675. size_t len;
  676. if (!EVP_DecodedLength(&len, strlen(in))) {
  677. fprintf(stderr, "EVP_DecodedLength failed\n");
  678. return false;
  679. }
  680. out->resize(len);
  681. if (!EVP_DecodeBase64(out->data(), &len, len, (const uint8_t *)in,
  682. strlen(in))) {
  683. fprintf(stderr, "EVP_DecodeBase64 failed\n");
  684. return false;
  685. }
  686. out->resize(len);
  687. return true;
  688. }
  689. static bool TestSSL_SESSIONEncoding(const char *input_b64) {
  690. const uint8_t *cptr;
  691. uint8_t *ptr;
  692. // Decode the input.
  693. std::vector<uint8_t> input;
  694. if (!DecodeBase64(&input, input_b64)) {
  695. return false;
  696. }
  697. // Verify the SSL_SESSION decodes.
  698. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  699. if (!ssl_ctx) {
  700. return false;
  701. }
  702. bssl::UniquePtr<SSL_SESSION> session(
  703. SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
  704. if (!session) {
  705. fprintf(stderr, "SSL_SESSION_from_bytes failed\n");
  706. return false;
  707. }
  708. // Verify the SSL_SESSION encoding round-trips.
  709. size_t encoded_len;
  710. bssl::UniquePtr<uint8_t> encoded;
  711. uint8_t *encoded_raw;
  712. if (!SSL_SESSION_to_bytes(session.get(), &encoded_raw, &encoded_len)) {
  713. fprintf(stderr, "SSL_SESSION_to_bytes failed\n");
  714. return false;
  715. }
  716. encoded.reset(encoded_raw);
  717. if (encoded_len != input.size() ||
  718. OPENSSL_memcmp(input.data(), encoded.get(), input.size()) != 0) {
  719. fprintf(stderr, "SSL_SESSION_to_bytes did not round-trip\n");
  720. hexdump(stderr, "Before: ", input.data(), input.size());
  721. hexdump(stderr, "After: ", encoded_raw, encoded_len);
  722. return false;
  723. }
  724. // Verify the SSL_SESSION also decodes with the legacy API.
  725. cptr = input.data();
  726. session.reset(d2i_SSL_SESSION(NULL, &cptr, input.size()));
  727. if (!session || cptr != input.data() + input.size()) {
  728. fprintf(stderr, "d2i_SSL_SESSION failed\n");
  729. return false;
  730. }
  731. // Verify the SSL_SESSION encoding round-trips via the legacy API.
  732. int len = i2d_SSL_SESSION(session.get(), NULL);
  733. if (len < 0 || (size_t)len != input.size()) {
  734. fprintf(stderr, "i2d_SSL_SESSION(NULL) returned invalid length\n");
  735. return false;
  736. }
  737. encoded.reset((uint8_t *)OPENSSL_malloc(input.size()));
  738. if (!encoded) {
  739. fprintf(stderr, "malloc failed\n");
  740. return false;
  741. }
  742. ptr = encoded.get();
  743. len = i2d_SSL_SESSION(session.get(), &ptr);
  744. if (len < 0 || (size_t)len != input.size()) {
  745. fprintf(stderr, "i2d_SSL_SESSION returned invalid length\n");
  746. return false;
  747. }
  748. if (ptr != encoded.get() + input.size()) {
  749. fprintf(stderr, "i2d_SSL_SESSION did not advance ptr correctly\n");
  750. return false;
  751. }
  752. if (OPENSSL_memcmp(input.data(), encoded.get(), input.size()) != 0) {
  753. fprintf(stderr, "i2d_SSL_SESSION did not round-trip\n");
  754. return false;
  755. }
  756. return true;
  757. }
  758. static bool TestBadSSL_SESSIONEncoding(const char *input_b64) {
  759. std::vector<uint8_t> input;
  760. if (!DecodeBase64(&input, input_b64)) {
  761. return false;
  762. }
  763. // Verify that the SSL_SESSION fails to decode.
  764. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  765. if (!ssl_ctx) {
  766. return false;
  767. }
  768. bssl::UniquePtr<SSL_SESSION> session(
  769. SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
  770. if (session) {
  771. fprintf(stderr, "SSL_SESSION_from_bytes unexpectedly succeeded\n");
  772. return false;
  773. }
  774. ERR_clear_error();
  775. return true;
  776. }
  777. static void ExpectDefaultVersion(uint16_t min_version, uint16_t max_version,
  778. const SSL_METHOD *(*method)(void)) {
  779. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method()));
  780. ASSERT_TRUE(ctx);
  781. EXPECT_EQ(min_version, ctx->conf_min_version);
  782. EXPECT_EQ(max_version, ctx->conf_max_version);
  783. }
  784. TEST(SSLTest, DefaultVersion) {
  785. // TODO(svaldez): Update this when TLS 1.3 is enabled by default.
  786. ExpectDefaultVersion(TLS1_VERSION, TLS1_2_VERSION, &TLS_method);
  787. ExpectDefaultVersion(TLS1_VERSION, TLS1_VERSION, &TLSv1_method);
  788. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &TLSv1_1_method);
  789. ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &TLSv1_2_method);
  790. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_2_VERSION, &DTLS_method);
  791. ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &DTLSv1_method);
  792. ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &DTLSv1_2_method);
  793. }
  794. TEST(SSLTest, CipherProperties) {
  795. static const struct {
  796. int id;
  797. const char *standard_name;
  798. int cipher_nid;
  799. int digest_nid;
  800. int kx_nid;
  801. int auth_nid;
  802. int prf_nid;
  803. } kTests[] = {
  804. {
  805. SSL3_CK_RSA_DES_192_CBC3_SHA,
  806. "TLS_RSA_WITH_3DES_EDE_CBC_SHA",
  807. NID_des_ede3_cbc,
  808. NID_sha1,
  809. NID_kx_rsa,
  810. NID_auth_rsa,
  811. NID_md5_sha1,
  812. },
  813. {
  814. TLS1_CK_RSA_WITH_AES_128_SHA,
  815. "TLS_RSA_WITH_AES_128_CBC_SHA",
  816. NID_aes_128_cbc,
  817. NID_sha1,
  818. NID_kx_rsa,
  819. NID_auth_rsa,
  820. NID_md5_sha1,
  821. },
  822. {
  823. TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
  824. "TLS_PSK_WITH_AES_256_CBC_SHA",
  825. NID_aes_256_cbc,
  826. NID_sha1,
  827. NID_kx_psk,
  828. NID_auth_psk,
  829. NID_md5_sha1,
  830. },
  831. {
  832. TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
  833. "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
  834. NID_aes_128_cbc,
  835. NID_sha1,
  836. NID_kx_ecdhe,
  837. NID_auth_rsa,
  838. NID_md5_sha1,
  839. },
  840. {
  841. TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
  842. "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
  843. NID_aes_256_cbc,
  844. NID_sha1,
  845. NID_kx_ecdhe,
  846. NID_auth_rsa,
  847. NID_md5_sha1,
  848. },
  849. {
  850. TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
  851. "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
  852. NID_aes_128_gcm,
  853. NID_undef,
  854. NID_kx_ecdhe,
  855. NID_auth_rsa,
  856. NID_sha256,
  857. },
  858. {
  859. TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
  860. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
  861. NID_aes_128_gcm,
  862. NID_undef,
  863. NID_kx_ecdhe,
  864. NID_auth_ecdsa,
  865. NID_sha256,
  866. },
  867. {
  868. TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
  869. "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
  870. NID_aes_256_gcm,
  871. NID_undef,
  872. NID_kx_ecdhe,
  873. NID_auth_ecdsa,
  874. NID_sha384,
  875. },
  876. {
  877. TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
  878. "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA",
  879. NID_aes_128_cbc,
  880. NID_sha1,
  881. NID_kx_ecdhe,
  882. NID_auth_psk,
  883. NID_md5_sha1,
  884. },
  885. {
  886. TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
  887. "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
  888. NID_chacha20_poly1305,
  889. NID_undef,
  890. NID_kx_ecdhe,
  891. NID_auth_rsa,
  892. NID_sha256,
  893. },
  894. {
  895. TLS1_CK_AES_256_GCM_SHA384,
  896. "TLS_AES_256_GCM_SHA384",
  897. NID_aes_256_gcm,
  898. NID_undef,
  899. NID_kx_any,
  900. NID_auth_any,
  901. NID_sha384,
  902. },
  903. {
  904. TLS1_CK_AES_128_GCM_SHA256,
  905. "TLS_AES_128_GCM_SHA256",
  906. NID_aes_128_gcm,
  907. NID_undef,
  908. NID_kx_any,
  909. NID_auth_any,
  910. NID_sha256,
  911. },
  912. {
  913. TLS1_CK_CHACHA20_POLY1305_SHA256,
  914. "TLS_CHACHA20_POLY1305_SHA256",
  915. NID_chacha20_poly1305,
  916. NID_undef,
  917. NID_kx_any,
  918. NID_auth_any,
  919. NID_sha256,
  920. },
  921. };
  922. for (const auto &t : kTests) {
  923. SCOPED_TRACE(t.standard_name);
  924. const SSL_CIPHER *cipher = SSL_get_cipher_by_value(t.id & 0xffff);
  925. ASSERT_TRUE(cipher);
  926. EXPECT_STREQ(t.standard_name, SSL_CIPHER_standard_name(cipher));
  927. bssl::UniquePtr<char> rfc_name(SSL_CIPHER_get_rfc_name(cipher));
  928. ASSERT_TRUE(rfc_name);
  929. EXPECT_STREQ(t.standard_name, rfc_name.get());
  930. EXPECT_EQ(t.cipher_nid, SSL_CIPHER_get_cipher_nid(cipher));
  931. EXPECT_EQ(t.digest_nid, SSL_CIPHER_get_digest_nid(cipher));
  932. EXPECT_EQ(t.kx_nid, SSL_CIPHER_get_kx_nid(cipher));
  933. EXPECT_EQ(t.auth_nid, SSL_CIPHER_get_auth_nid(cipher));
  934. EXPECT_EQ(t.prf_nid, SSL_CIPHER_get_prf_nid(cipher));
  935. }
  936. }
  937. // CreateSessionWithTicket returns a sample |SSL_SESSION| with the specified
  938. // version and ticket length or nullptr on failure.
  939. static bssl::UniquePtr<SSL_SESSION> CreateSessionWithTicket(uint16_t version,
  940. size_t ticket_len) {
  941. std::vector<uint8_t> der;
  942. if (!DecodeBase64(&der, kOpenSSLSession)) {
  943. return nullptr;
  944. }
  945. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  946. if (!ssl_ctx) {
  947. return nullptr;
  948. }
  949. // Use a garbage ticket.
  950. std::vector<uint8_t> ticket(ticket_len, 'a');
  951. bssl::UniquePtr<SSL_SESSION> session(
  952. SSL_SESSION_from_bytes(der.data(), der.size(), ssl_ctx.get()));
  953. if (!session ||
  954. !SSL_SESSION_set_protocol_version(session.get(), version) ||
  955. !SSL_SESSION_set_ticket(session.get(), ticket.data(), ticket.size())) {
  956. return nullptr;
  957. }
  958. // Fix up the timeout.
  959. #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
  960. SSL_SESSION_set_time(session.get(), 1234);
  961. #else
  962. SSL_SESSION_set_time(session.get(), time(nullptr));
  963. #endif
  964. return session;
  965. }
  966. static bool GetClientHello(SSL *ssl, std::vector<uint8_t> *out) {
  967. bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
  968. if (!bio) {
  969. return false;
  970. }
  971. // Do not configure a reading BIO, but record what's written to a memory BIO.
  972. BIO_up_ref(bio.get());
  973. SSL_set_bio(ssl, nullptr /* rbio */, bio.get());
  974. int ret = SSL_connect(ssl);
  975. if (ret > 0) {
  976. // SSL_connect should fail without a BIO to write to.
  977. return false;
  978. }
  979. ERR_clear_error();
  980. const uint8_t *client_hello;
  981. size_t client_hello_len;
  982. if (!BIO_mem_contents(bio.get(), &client_hello, &client_hello_len)) {
  983. return false;
  984. }
  985. *out = std::vector<uint8_t>(client_hello, client_hello + client_hello_len);
  986. return true;
  987. }
  988. // GetClientHelloLen creates a client SSL connection with the specified version
  989. // and ticket length. It returns the length of the ClientHello, not including
  990. // the record header, on success and zero on error.
  991. static size_t GetClientHelloLen(uint16_t max_version, uint16_t session_version,
  992. size_t ticket_len) {
  993. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  994. bssl::UniquePtr<SSL_SESSION> session =
  995. CreateSessionWithTicket(session_version, ticket_len);
  996. if (!ctx || !session) {
  997. return 0;
  998. }
  999. // Set a one-element cipher list so the baseline ClientHello is unpadded.
  1000. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1001. if (!ssl || !SSL_set_session(ssl.get(), session.get()) ||
  1002. !SSL_set_strict_cipher_list(ssl.get(), "ECDHE-RSA-AES128-GCM-SHA256") ||
  1003. !SSL_set_max_proto_version(ssl.get(), max_version)) {
  1004. return 0;
  1005. }
  1006. std::vector<uint8_t> client_hello;
  1007. if (!GetClientHello(ssl.get(), &client_hello) ||
  1008. client_hello.size() <= SSL3_RT_HEADER_LENGTH) {
  1009. return 0;
  1010. }
  1011. return client_hello.size() - SSL3_RT_HEADER_LENGTH;
  1012. }
  1013. struct PaddingTest {
  1014. size_t input_len, padded_len;
  1015. };
  1016. static const PaddingTest kPaddingTests[] = {
  1017. // ClientHellos of length below 0x100 do not require padding.
  1018. {0xfe, 0xfe},
  1019. {0xff, 0xff},
  1020. // ClientHellos of length 0x100 through 0x1fb are padded up to 0x200.
  1021. {0x100, 0x200},
  1022. {0x123, 0x200},
  1023. {0x1fb, 0x200},
  1024. // ClientHellos of length 0x1fc through 0x1ff get padded beyond 0x200. The
  1025. // padding extension takes a minimum of four bytes plus one required content
  1026. // byte. (To work around yet more server bugs, we avoid empty final
  1027. // extensions.)
  1028. {0x1fc, 0x201},
  1029. {0x1fd, 0x202},
  1030. {0x1fe, 0x203},
  1031. {0x1ff, 0x204},
  1032. // Finally, larger ClientHellos need no padding.
  1033. {0x200, 0x200},
  1034. {0x201, 0x201},
  1035. };
  1036. static bool TestPaddingExtension(uint16_t max_version,
  1037. uint16_t session_version) {
  1038. // Sample a baseline length.
  1039. size_t base_len = GetClientHelloLen(max_version, session_version, 1);
  1040. if (base_len == 0) {
  1041. return false;
  1042. }
  1043. for (const PaddingTest &test : kPaddingTests) {
  1044. if (base_len > test.input_len) {
  1045. fprintf(stderr,
  1046. "Baseline ClientHello too long (max_version = %04x, "
  1047. "session_version = %04x).\n",
  1048. max_version, session_version);
  1049. return false;
  1050. }
  1051. size_t padded_len = GetClientHelloLen(max_version, session_version,
  1052. 1 + test.input_len - base_len);
  1053. if (padded_len != test.padded_len) {
  1054. fprintf(stderr,
  1055. "%u-byte ClientHello padded to %u bytes, not %u (max_version = "
  1056. "%04x, session_version = %04x).\n",
  1057. static_cast<unsigned>(test.input_len),
  1058. static_cast<unsigned>(padded_len),
  1059. static_cast<unsigned>(test.padded_len), max_version,
  1060. session_version);
  1061. return false;
  1062. }
  1063. }
  1064. return true;
  1065. }
  1066. static bssl::UniquePtr<X509> GetTestCertificate() {
  1067. static const char kCertPEM[] =
  1068. "-----BEGIN CERTIFICATE-----\n"
  1069. "MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n"
  1070. "BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n"
  1071. "aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n"
  1072. "MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n"
  1073. "ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n"
  1074. "gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n"
  1075. "HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n"
  1076. "W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n"
  1077. "HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n"
  1078. "Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n"
  1079. "ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n"
  1080. "T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n"
  1081. "j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n"
  1082. "-----END CERTIFICATE-----\n";
  1083. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
  1084. return bssl::UniquePtr<X509>(
  1085. PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
  1086. }
  1087. static bssl::UniquePtr<EVP_PKEY> GetTestKey() {
  1088. static const char kKeyPEM[] =
  1089. "-----BEGIN RSA PRIVATE KEY-----\n"
  1090. "MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92\n"
  1091. "kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF\n"
  1092. "KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB\n"
  1093. "AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe\n"
  1094. "i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+\n"
  1095. "WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ\n"
  1096. "m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj\n"
  1097. "QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk\n"
  1098. "aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj\n"
  1099. "LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk\n"
  1100. "104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/\n"
  1101. "tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd\n"
  1102. "moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==\n"
  1103. "-----END RSA PRIVATE KEY-----\n";
  1104. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1105. return bssl::UniquePtr<EVP_PKEY>(
  1106. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1107. }
  1108. static bssl::UniquePtr<X509> GetECDSATestCertificate() {
  1109. static const char kCertPEM[] =
  1110. "-----BEGIN CERTIFICATE-----\n"
  1111. "MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n"
  1112. "QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp\n"
  1113. "dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ\n"
  1114. "BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l\n"
  1115. "dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni\n"
  1116. "v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa\n"
  1117. "HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw\n"
  1118. "HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ\n"
  1119. "BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E\n"
  1120. "BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=\n"
  1121. "-----END CERTIFICATE-----\n";
  1122. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
  1123. return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
  1124. }
  1125. static bssl::UniquePtr<EVP_PKEY> GetECDSATestKey() {
  1126. static const char kKeyPEM[] =
  1127. "-----BEGIN PRIVATE KEY-----\n"
  1128. "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ\n"
  1129. "TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N\n"
  1130. "Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB\n"
  1131. "-----END PRIVATE KEY-----\n";
  1132. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1133. return bssl::UniquePtr<EVP_PKEY>(
  1134. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1135. }
  1136. static bssl::UniquePtr<CRYPTO_BUFFER> BufferFromPEM(const char *pem) {
  1137. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem)));
  1138. char *name, *header;
  1139. uint8_t *data;
  1140. long data_len;
  1141. if (!PEM_read_bio(bio.get(), &name, &header, &data,
  1142. &data_len)) {
  1143. return nullptr;
  1144. }
  1145. OPENSSL_free(name);
  1146. OPENSSL_free(header);
  1147. auto ret = bssl::UniquePtr<CRYPTO_BUFFER>(
  1148. CRYPTO_BUFFER_new(data, data_len, nullptr));
  1149. OPENSSL_free(data);
  1150. return ret;
  1151. }
  1152. static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestCertificateBuffer() {
  1153. static const char kCertPEM[] =
  1154. "-----BEGIN CERTIFICATE-----\n"
  1155. "MIIC0jCCAbqgAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwDzENMAsGA1UEAwwEQiBD\n"
  1156. "QTAeFw0xNjAyMjgyMDI3MDNaFw0yNjAyMjUyMDI3MDNaMBgxFjAUBgNVBAMMDUNs\n"
  1157. "aWVudCBDZXJ0IEEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDRvaz8\n"
  1158. "CC/cshpCafJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/\n"
  1159. "kLRcH89M/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3\n"
  1160. "tHb+xs2PSs8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+c\n"
  1161. "IDs2rQ+lP7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1\n"
  1162. "z7C8jU50Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9V\n"
  1163. "iLeXANgZi+Xx9KgfAgMBAAGjLzAtMAwGA1UdEwEB/wQCMAAwHQYDVR0lBBYwFAYI\n"
  1164. "KwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQBFEVbmYl+2RtNw\n"
  1165. "rDftRDF1v2QUbcN2ouSnQDHxeDQdSgasLzT3ui8iYu0Rw2WWcZ0DV5e0ztGPhWq7\n"
  1166. "AO0B120aFRMOY+4+bzu9Q2FFkQqc7/fKTvTDzIJI5wrMnFvUfzzvxh3OHWMYSs/w\n"
  1167. "giq33hTKeHEq6Jyk3btCny0Ycecyc3yGXH10sizUfiHlhviCkDuESk8mFDwDDzqW\n"
  1168. "ZF0IipzFbEDHoIxLlm3GQxpiLoEV4k8KYJp3R5KBLFyxM6UGPz8h72mIPCJp2RuK\n"
  1169. "MYgF91UDvVzvnYm6TfseM2+ewKirC00GOrZ7rEcFvtxnKSqYf4ckqfNdSU1Y+RRC\n"
  1170. "1ngWZ7Ih\n"
  1171. "-----END CERTIFICATE-----\n";
  1172. return BufferFromPEM(kCertPEM);
  1173. }
  1174. static bssl::UniquePtr<X509> X509FromBuffer(
  1175. bssl::UniquePtr<CRYPTO_BUFFER> buffer) {
  1176. if (!buffer) {
  1177. return nullptr;
  1178. }
  1179. const uint8_t *derp = CRYPTO_BUFFER_data(buffer.get());
  1180. return bssl::UniquePtr<X509>(
  1181. d2i_X509(NULL, &derp, CRYPTO_BUFFER_len(buffer.get())));
  1182. }
  1183. static bssl::UniquePtr<X509> GetChainTestCertificate() {
  1184. return X509FromBuffer(GetChainTestCertificateBuffer());
  1185. }
  1186. static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestIntermediateBuffer() {
  1187. static const char kCertPEM[] =
  1188. "-----BEGIN CERTIFICATE-----\n"
  1189. "MIICwjCCAaqgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwFDESMBAGA1UEAwwJQyBS\n"
  1190. "b290IENBMB4XDTE2MDIyODIwMjcwM1oXDTI2MDIyNTIwMjcwM1owDzENMAsGA1UE\n"
  1191. "AwwEQiBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALsSCYmDip2D\n"
  1192. "GkjFxw7ykz26JSjELkl6ArlYjFJ3aT/SCh8qbS4gln7RH8CPBd78oFdfhIKQrwtZ\n"
  1193. "3/q21ykD9BAS3qHe2YdcJfm8/kWAy5DvXk6NXU4qX334KofBAEpgdA/igEFq1P1l\n"
  1194. "HAuIfZCpMRfT+i5WohVsGi8f/NgpRvVaMONLNfgw57mz1lbtFeBEISmX0kbsuJxF\n"
  1195. "Qj/Bwhi5/0HAEXG8e7zN4cEx0yPRvmOATRdVb/8dW2pwOHRJq9R5M0NUkIsTSnL7\n"
  1196. "6N/z8hRAHMsV3IudC5Yd7GXW1AGu9a+iKU+Q4xcZCoj0DC99tL4VKujrV1kAeqsM\n"
  1197. "cz5/dKzi6+cCAwEAAaMjMCEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n"
  1198. "AQYwDQYJKoZIhvcNAQELBQADggEBAIIeZiEeNhWWQ8Y4D+AGDwqUUeG8NjCbKrXQ\n"
  1199. "BlHg5wZ8xftFaiP1Dp/UAezmx2LNazdmuwrYB8lm3FVTyaPDTKEGIPS4wJKHgqH1\n"
  1200. "QPDhqNm85ey7TEtI9oYjsNim/Rb+iGkIAMXaxt58SzxbjvP0kMr1JfJIZbic9vye\n"
  1201. "NwIspMFIpP3FB8ywyu0T0hWtCQgL4J47nigCHpOu58deP88fS/Nyz/fyGVWOZ76b\n"
  1202. "WhWwgM3P3X95fQ3d7oFPR/bVh0YV+Cf861INwplokXgXQ3/TCQ+HNXeAMWn3JLWv\n"
  1203. "XFwk8owk9dq/kQGdndGgy3KTEW4ctPX5GNhf3LJ9Q7dLji4ReQ4=\n"
  1204. "-----END CERTIFICATE-----\n";
  1205. return BufferFromPEM(kCertPEM);
  1206. }
  1207. static bssl::UniquePtr<X509> GetChainTestIntermediate() {
  1208. return X509FromBuffer(GetChainTestIntermediateBuffer());
  1209. }
  1210. static bssl::UniquePtr<EVP_PKEY> GetChainTestKey() {
  1211. static const char kKeyPEM[] =
  1212. "-----BEGIN PRIVATE KEY-----\n"
  1213. "MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDRvaz8CC/cshpC\n"
  1214. "afJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/kLRcH89M\n"
  1215. "/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3tHb+xs2P\n"
  1216. "Ss8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+cIDs2rQ+l\n"
  1217. "P7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1z7C8jU50\n"
  1218. "Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9ViLeXANgZ\n"
  1219. "i+Xx9KgfAgMBAAECggEBAK0VjSJzkyPaamcyTVSWjo7GdaBGcK60lk657RjR+lK0\n"
  1220. "YJ7pkej4oM2hdsVZFsP8Cs4E33nXLa/0pDsRov/qrp0WQm2skwqGMC1I/bZ0WRPk\n"
  1221. "wHaDrBBfESWnJDX/AGpVtlyOjPmgmK6J2usMPihQUDkKdAYrVWJePrMIxt1q6BMe\n"
  1222. "iczs3qriMmtY3bUc4UyUwJ5fhDLjshHvfuIpYQyI6EXZM6dZksn9LylXJnigY6QJ\n"
  1223. "HxOYO0BDwOsZ8yQ8J8afLk88i0GizEkgE1z3REtQUwgWfxr1WV/ud+T6/ZhSAgH9\n"
  1224. "042mQvSFZnIUSEsmCvjhWuAunfxHKCTcAoYISWfzWpkCgYEA7gpf3HHU5Tn+CgUn\n"
  1225. "1X5uGpG3DmcMgfeGgs2r2f/IIg/5Ac1dfYILiybL1tN9zbyLCJfcbFpWBc9hJL6f\n"
  1226. "CPc5hUiwWFJqBJewxQkC1Ae/HakHbip+IZ+Jr0842O4BAArvixk4Lb7/N2Ct9sTE\n"
  1227. "NJO6RtK9lbEZ5uK61DglHy8CS2UCgYEA4ZC1o36kPAMQBggajgnucb2yuUEelk0f\n"
  1228. "AEr+GI32MGE+93xMr7rAhBoqLg4AITyIfEnOSQ5HwagnIHonBbv1LV/Gf9ursx8Z\n"
  1229. "YOGbvT8zzzC+SU1bkDzdjAYnFQVGIjMtKOBJ3K07++ypwX1fr4QsQ8uKL8WSOWwt\n"
  1230. "Z3Bym6XiZzMCgYADnhy+2OwHX85AkLt+PyGlPbmuelpyTzS4IDAQbBa6jcuW/2wA\n"
  1231. "UE2km75VUXmD+u2R/9zVuLm99NzhFhSMqlUxdV1YukfqMfP5yp1EY6m/5aW7QuIP\n"
  1232. "2MDa7TVL9rIFMiVZ09RKvbBbQxjhuzPQKL6X/PPspnhiTefQ+dl2k9xREQKBgHDS\n"
  1233. "fMfGNEeAEKezrfSVqxphE9/tXms3L+ZpnCaT+yu/uEr5dTIAawKoQ6i9f/sf1/Sy\n"
  1234. "xedsqR+IB+oKrzIDDWMgoJybN4pkZ8E5lzhVQIjFjKgFdWLzzqyW9z1gYfABQPlN\n"
  1235. "FiS20WX0vgP1vcKAjdNrHzc9zyHBpgQzDmAj3NZZAoGBAI8vKCKdH7w3aL5CNkZQ\n"
  1236. "2buIeWNA2HZazVwAGG5F2TU/LmXfRKnG6dX5bkU+AkBZh56jNZy//hfFSewJB4Kk\n"
  1237. "buB7ERSdaNbO21zXt9FEA3+z0RfMd/Zv2vlIWOSB5nzl/7UKti3sribK6s9ZVLfi\n"
  1238. "SxpiPQ8d/hmSGwn4ksrWUsJD\n"
  1239. "-----END PRIVATE KEY-----\n";
  1240. bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
  1241. return bssl::UniquePtr<EVP_PKEY>(
  1242. PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
  1243. }
  1244. // Test that |SSL_get_client_CA_list| echoes back the configured parameter even
  1245. // before configuring as a server.
  1246. TEST(SSLTest, ClientCAList) {
  1247. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1248. ASSERT_TRUE(ctx);
  1249. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1250. ASSERT_TRUE(ssl);
  1251. bssl::UniquePtr<X509_NAME> name(X509_NAME_new());
  1252. ASSERT_TRUE(name);
  1253. bssl::UniquePtr<X509_NAME> name_dup(X509_NAME_dup(name.get()));
  1254. ASSERT_TRUE(name_dup);
  1255. bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null());
  1256. ASSERT_TRUE(stack);
  1257. ASSERT_TRUE(PushToStack(stack.get(), std::move(name_dup)));
  1258. // |SSL_set_client_CA_list| takes ownership.
  1259. SSL_set_client_CA_list(ssl.get(), stack.release());
  1260. STACK_OF(X509_NAME) *result = SSL_get_client_CA_list(ssl.get());
  1261. ASSERT_TRUE(result);
  1262. ASSERT_EQ(1u, sk_X509_NAME_num(result));
  1263. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(result, 0), name.get()));
  1264. }
  1265. TEST(SSLTest, AddClientCA) {
  1266. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1267. ASSERT_TRUE(ctx);
  1268. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1269. ASSERT_TRUE(ssl);
  1270. bssl::UniquePtr<X509> cert1 = GetTestCertificate();
  1271. bssl::UniquePtr<X509> cert2 = GetChainTestCertificate();
  1272. ASSERT_TRUE(cert1 && cert2);
  1273. X509_NAME *name1 = X509_get_subject_name(cert1.get());
  1274. X509_NAME *name2 = X509_get_subject_name(cert2.get());
  1275. EXPECT_EQ(0u, sk_X509_NAME_num(SSL_get_client_CA_list(ssl.get())));
  1276. ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get()));
  1277. ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert2.get()));
  1278. STACK_OF(X509_NAME) *list = SSL_get_client_CA_list(ssl.get());
  1279. ASSERT_EQ(2u, sk_X509_NAME_num(list));
  1280. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1));
  1281. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2));
  1282. ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get()));
  1283. list = SSL_get_client_CA_list(ssl.get());
  1284. ASSERT_EQ(3u, sk_X509_NAME_num(list));
  1285. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1));
  1286. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2));
  1287. EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 2), name1));
  1288. }
  1289. static void AppendSession(SSL_SESSION *session, void *arg) {
  1290. std::vector<SSL_SESSION*> *out =
  1291. reinterpret_cast<std::vector<SSL_SESSION*>*>(arg);
  1292. out->push_back(session);
  1293. }
  1294. // CacheEquals returns true if |ctx|'s session cache consists of |expected|, in
  1295. // order.
  1296. static bool CacheEquals(SSL_CTX *ctx,
  1297. const std::vector<SSL_SESSION*> &expected) {
  1298. // Check the linked list.
  1299. SSL_SESSION *ptr = ctx->session_cache_head;
  1300. for (SSL_SESSION *session : expected) {
  1301. if (ptr != session) {
  1302. return false;
  1303. }
  1304. // TODO(davidben): This is an absurd way to denote the end of the list.
  1305. if (ptr->next ==
  1306. reinterpret_cast<SSL_SESSION *>(&ctx->session_cache_tail)) {
  1307. ptr = nullptr;
  1308. } else {
  1309. ptr = ptr->next;
  1310. }
  1311. }
  1312. if (ptr != nullptr) {
  1313. return false;
  1314. }
  1315. // Check the hash table.
  1316. std::vector<SSL_SESSION*> actual, expected_copy;
  1317. lh_SSL_SESSION_doall_arg(ctx->sessions, AppendSession, &actual);
  1318. expected_copy = expected;
  1319. std::sort(actual.begin(), actual.end());
  1320. std::sort(expected_copy.begin(), expected_copy.end());
  1321. return actual == expected_copy;
  1322. }
  1323. static bssl::UniquePtr<SSL_SESSION> CreateTestSession(uint32_t number) {
  1324. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  1325. if (!ssl_ctx) {
  1326. return nullptr;
  1327. }
  1328. bssl::UniquePtr<SSL_SESSION> ret(SSL_SESSION_new(ssl_ctx.get()));
  1329. if (!ret) {
  1330. return nullptr;
  1331. }
  1332. uint8_t id[SSL3_SSL_SESSION_ID_LENGTH] = {0};
  1333. OPENSSL_memcpy(id, &number, sizeof(number));
  1334. if (!SSL_SESSION_set1_id(ret.get(), id, sizeof(id))) {
  1335. return nullptr;
  1336. }
  1337. return ret;
  1338. }
  1339. // Test that the internal session cache behaves as expected.
  1340. TEST(SSLTest, InternalSessionCache) {
  1341. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1342. ASSERT_TRUE(ctx);
  1343. // Prepare 10 test sessions.
  1344. std::vector<bssl::UniquePtr<SSL_SESSION>> sessions;
  1345. for (int i = 0; i < 10; i++) {
  1346. bssl::UniquePtr<SSL_SESSION> session = CreateTestSession(i);
  1347. ASSERT_TRUE(session);
  1348. sessions.push_back(std::move(session));
  1349. }
  1350. SSL_CTX_sess_set_cache_size(ctx.get(), 5);
  1351. // Insert all the test sessions.
  1352. for (const auto &session : sessions) {
  1353. ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), session.get()));
  1354. }
  1355. // Only the last five should be in the list.
  1356. ASSERT_TRUE(CacheEquals(
  1357. ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(),
  1358. sessions[6].get(), sessions[5].get()}));
  1359. // Inserting an element already in the cache should fail and leave the cache
  1360. // unchanged.
  1361. ASSERT_FALSE(SSL_CTX_add_session(ctx.get(), sessions[7].get()));
  1362. ASSERT_TRUE(CacheEquals(
  1363. ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(),
  1364. sessions[6].get(), sessions[5].get()}));
  1365. // Although collisions should be impossible (256-bit session IDs), the cache
  1366. // must handle them gracefully.
  1367. bssl::UniquePtr<SSL_SESSION> collision(CreateTestSession(7));
  1368. ASSERT_TRUE(collision);
  1369. ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), collision.get()));
  1370. ASSERT_TRUE(CacheEquals(
  1371. ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(),
  1372. sessions[6].get(), sessions[5].get()}));
  1373. // Removing sessions behaves correctly.
  1374. ASSERT_TRUE(SSL_CTX_remove_session(ctx.get(), sessions[6].get()));
  1375. ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(),
  1376. sessions[8].get(), sessions[5].get()}));
  1377. // Removing sessions requires an exact match.
  1378. ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[0].get()));
  1379. ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[7].get()));
  1380. // The cache remains unchanged.
  1381. ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(),
  1382. sessions[8].get(), sessions[5].get()}));
  1383. }
  1384. static uint16_t EpochFromSequence(uint64_t seq) {
  1385. return static_cast<uint16_t>(seq >> 48);
  1386. }
  1387. static const uint8_t kTestName[] = {
  1388. 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13,
  1389. 0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08,
  1390. 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65,
  1391. 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49,
  1392. 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67,
  1393. 0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64,
  1394. };
  1395. static bool CompleteHandshakes(SSL *client, SSL *server) {
  1396. // Drive both their handshakes to completion.
  1397. for (;;) {
  1398. int client_ret = SSL_do_handshake(client);
  1399. int client_err = SSL_get_error(client, client_ret);
  1400. if (client_err != SSL_ERROR_NONE &&
  1401. client_err != SSL_ERROR_WANT_READ &&
  1402. client_err != SSL_ERROR_WANT_WRITE &&
  1403. client_err != SSL_ERROR_PENDING_TICKET) {
  1404. fprintf(stderr, "Client error: %d\n", client_err);
  1405. return false;
  1406. }
  1407. int server_ret = SSL_do_handshake(server);
  1408. int server_err = SSL_get_error(server, server_ret);
  1409. if (server_err != SSL_ERROR_NONE &&
  1410. server_err != SSL_ERROR_WANT_READ &&
  1411. server_err != SSL_ERROR_WANT_WRITE &&
  1412. server_err != SSL_ERROR_PENDING_TICKET) {
  1413. fprintf(stderr, "Server error: %d\n", server_err);
  1414. return false;
  1415. }
  1416. if (client_ret == 1 && server_ret == 1) {
  1417. break;
  1418. }
  1419. }
  1420. return true;
  1421. }
  1422. struct ClientConfig {
  1423. SSL_SESSION *session = nullptr;
  1424. std::string servername;
  1425. };
  1426. static bool ConnectClientAndServer(bssl::UniquePtr<SSL> *out_client,
  1427. bssl::UniquePtr<SSL> *out_server,
  1428. SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1429. const ClientConfig &config = ClientConfig(),
  1430. bool do_handshake = true,
  1431. bool shed_handshake_config = true) {
  1432. bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
  1433. if (!client || !server) {
  1434. return false;
  1435. }
  1436. SSL_set_connect_state(client.get());
  1437. SSL_set_accept_state(server.get());
  1438. if (config.session) {
  1439. SSL_set_session(client.get(), config.session);
  1440. }
  1441. if (!config.servername.empty() &&
  1442. !SSL_set_tlsext_host_name(client.get(), config.servername.c_str())) {
  1443. return false;
  1444. }
  1445. BIO *bio1, *bio2;
  1446. if (!BIO_new_bio_pair(&bio1, 0, &bio2, 0)) {
  1447. return false;
  1448. }
  1449. // SSL_set_bio takes ownership.
  1450. SSL_set_bio(client.get(), bio1, bio1);
  1451. SSL_set_bio(server.get(), bio2, bio2);
  1452. SSL_set_shed_handshake_config(client.get(), shed_handshake_config);
  1453. SSL_set_shed_handshake_config(server.get(), shed_handshake_config);
  1454. if (do_handshake && !CompleteHandshakes(client.get(), server.get())) {
  1455. return false;
  1456. }
  1457. *out_client = std::move(client);
  1458. *out_server = std::move(server);
  1459. return true;
  1460. }
  1461. // SSLVersionTest executes its test cases under all available protocol versions.
  1462. // Test cases call |Connect| to create a connection using context objects with
  1463. // the protocol version fixed to the current version under test.
  1464. class SSLVersionTest : public ::testing::TestWithParam<VersionParam> {
  1465. protected:
  1466. SSLVersionTest() : cert_(GetTestCertificate()), key_(GetTestKey()) {}
  1467. void SetUp() { ResetContexts(); }
  1468. bssl::UniquePtr<SSL_CTX> CreateContext() const {
  1469. const SSL_METHOD *method = is_dtls() ? DTLS_method() : TLS_method();
  1470. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
  1471. if (!ctx || !SSL_CTX_set_min_proto_version(ctx.get(), version()) ||
  1472. !SSL_CTX_set_max_proto_version(ctx.get(), version())) {
  1473. return nullptr;
  1474. }
  1475. return ctx;
  1476. }
  1477. void ResetContexts() {
  1478. ASSERT_TRUE(cert_);
  1479. ASSERT_TRUE(key_);
  1480. client_ctx_ = CreateContext();
  1481. ASSERT_TRUE(client_ctx_);
  1482. server_ctx_ = CreateContext();
  1483. ASSERT_TRUE(server_ctx_);
  1484. // Set up a server cert. Client certs can be set up explicitly.
  1485. ASSERT_TRUE(UseCertAndKey(server_ctx_.get()));
  1486. }
  1487. bool UseCertAndKey(SSL_CTX *ctx) const {
  1488. return SSL_CTX_use_certificate(ctx, cert_.get()) &&
  1489. SSL_CTX_use_PrivateKey(ctx, key_.get());
  1490. }
  1491. bool Connect(const ClientConfig &config = ClientConfig()) {
  1492. return ConnectClientAndServer(&client_, &server_, client_ctx_.get(),
  1493. server_ctx_.get(), config, true,
  1494. shed_handshake_config_);
  1495. }
  1496. uint16_t version() const { return GetParam().version; }
  1497. bool is_dtls() const {
  1498. return GetParam().ssl_method == VersionParam::is_dtls;
  1499. }
  1500. bool shed_handshake_config_ = true;
  1501. bssl::UniquePtr<SSL> client_, server_;
  1502. bssl::UniquePtr<SSL_CTX> server_ctx_, client_ctx_;
  1503. bssl::UniquePtr<X509> cert_;
  1504. bssl::UniquePtr<EVP_PKEY> key_;
  1505. };
  1506. INSTANTIATE_TEST_CASE_P(WithVersion, SSLVersionTest,
  1507. testing::ValuesIn(kAllVersions),
  1508. [](const testing::TestParamInfo<VersionParam> &i) {
  1509. return i.param.name;
  1510. });
  1511. TEST_P(SSLVersionTest, SequenceNumber) {
  1512. ASSERT_TRUE(Connect());
  1513. // Drain any post-handshake messages to ensure there are no unread records
  1514. // on either end.
  1515. uint8_t byte = 0;
  1516. ASSERT_LE(SSL_read(client_.get(), &byte, 1), 0);
  1517. ASSERT_LE(SSL_read(server_.get(), &byte, 1), 0);
  1518. uint64_t client_read_seq = SSL_get_read_sequence(client_.get());
  1519. uint64_t client_write_seq = SSL_get_write_sequence(client_.get());
  1520. uint64_t server_read_seq = SSL_get_read_sequence(server_.get());
  1521. uint64_t server_write_seq = SSL_get_write_sequence(server_.get());
  1522. if (is_dtls()) {
  1523. // Both client and server must be at epoch 1.
  1524. EXPECT_EQ(EpochFromSequence(client_read_seq), 1);
  1525. EXPECT_EQ(EpochFromSequence(client_write_seq), 1);
  1526. EXPECT_EQ(EpochFromSequence(server_read_seq), 1);
  1527. EXPECT_EQ(EpochFromSequence(server_write_seq), 1);
  1528. // The next record to be written should exceed the largest received.
  1529. EXPECT_GT(client_write_seq, server_read_seq);
  1530. EXPECT_GT(server_write_seq, client_read_seq);
  1531. } else {
  1532. // The next record to be written should equal the next to be received.
  1533. EXPECT_EQ(client_write_seq, server_read_seq);
  1534. EXPECT_EQ(server_write_seq, client_read_seq);
  1535. }
  1536. // Send a record from client to server.
  1537. EXPECT_EQ(SSL_write(client_.get(), &byte, 1), 1);
  1538. EXPECT_EQ(SSL_read(server_.get(), &byte, 1), 1);
  1539. // The client write and server read sequence numbers should have
  1540. // incremented.
  1541. EXPECT_EQ(client_write_seq + 1, SSL_get_write_sequence(client_.get()));
  1542. EXPECT_EQ(server_read_seq + 1, SSL_get_read_sequence(server_.get()));
  1543. }
  1544. TEST_P(SSLVersionTest, OneSidedShutdown) {
  1545. // SSL_shutdown is a no-op in DTLS.
  1546. if (is_dtls()) {
  1547. return;
  1548. }
  1549. ASSERT_TRUE(Connect());
  1550. // Shut down half the connection. SSL_shutdown will return 0 to signal only
  1551. // one side has shut down.
  1552. ASSERT_EQ(SSL_shutdown(client_.get()), 0);
  1553. // Reading from the server should consume the EOF.
  1554. uint8_t byte;
  1555. ASSERT_EQ(SSL_read(server_.get(), &byte, 1), 0);
  1556. ASSERT_EQ(SSL_get_error(server_.get(), 0), SSL_ERROR_ZERO_RETURN);
  1557. // However, the server may continue to write data and then shut down the
  1558. // connection.
  1559. byte = 42;
  1560. ASSERT_EQ(SSL_write(server_.get(), &byte, 1), 1);
  1561. ASSERT_EQ(SSL_read(client_.get(), &byte, 1), 1);
  1562. ASSERT_EQ(byte, 42);
  1563. // The server may then shutdown the connection.
  1564. EXPECT_EQ(SSL_shutdown(server_.get()), 1);
  1565. EXPECT_EQ(SSL_shutdown(client_.get()), 1);
  1566. }
  1567. TEST(SSLTest, SessionDuplication) {
  1568. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  1569. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  1570. ASSERT_TRUE(client_ctx);
  1571. ASSERT_TRUE(server_ctx);
  1572. bssl::UniquePtr<X509> cert = GetTestCertificate();
  1573. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  1574. ASSERT_TRUE(cert);
  1575. ASSERT_TRUE(key);
  1576. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  1577. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  1578. bssl::UniquePtr<SSL> client, server;
  1579. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  1580. server_ctx.get()));
  1581. SSL_SESSION *session0 = SSL_get_session(client.get());
  1582. bssl::UniquePtr<SSL_SESSION> session1 =
  1583. bssl::SSL_SESSION_dup(session0, SSL_SESSION_DUP_ALL);
  1584. ASSERT_TRUE(session1);
  1585. session1->not_resumable = false;
  1586. uint8_t *s0_bytes, *s1_bytes;
  1587. size_t s0_len, s1_len;
  1588. ASSERT_TRUE(SSL_SESSION_to_bytes(session0, &s0_bytes, &s0_len));
  1589. bssl::UniquePtr<uint8_t> free_s0(s0_bytes);
  1590. ASSERT_TRUE(SSL_SESSION_to_bytes(session1.get(), &s1_bytes, &s1_len));
  1591. bssl::UniquePtr<uint8_t> free_s1(s1_bytes);
  1592. EXPECT_EQ(Bytes(s0_bytes, s0_len), Bytes(s1_bytes, s1_len));
  1593. }
  1594. static void ExpectFDs(const SSL *ssl, int rfd, int wfd) {
  1595. EXPECT_EQ(rfd, SSL_get_fd(ssl));
  1596. EXPECT_EQ(rfd, SSL_get_rfd(ssl));
  1597. EXPECT_EQ(wfd, SSL_get_wfd(ssl));
  1598. // The wrapper BIOs are always equal when fds are equal, even if set
  1599. // individually.
  1600. if (rfd == wfd) {
  1601. EXPECT_EQ(SSL_get_rbio(ssl), SSL_get_wbio(ssl));
  1602. }
  1603. }
  1604. TEST(SSLTest, SetFD) {
  1605. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1606. ASSERT_TRUE(ctx);
  1607. // Test setting different read and write FDs.
  1608. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1609. ASSERT_TRUE(ssl);
  1610. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1611. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
  1612. ExpectFDs(ssl.get(), 1, 2);
  1613. // Test setting the same FD.
  1614. ssl.reset(SSL_new(ctx.get()));
  1615. ASSERT_TRUE(ssl);
  1616. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1617. ExpectFDs(ssl.get(), 1, 1);
  1618. // Test setting the same FD one side at a time.
  1619. ssl.reset(SSL_new(ctx.get()));
  1620. ASSERT_TRUE(ssl);
  1621. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1622. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1623. ExpectFDs(ssl.get(), 1, 1);
  1624. // Test setting the same FD in the other order.
  1625. ssl.reset(SSL_new(ctx.get()));
  1626. ASSERT_TRUE(ssl);
  1627. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1628. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1629. ExpectFDs(ssl.get(), 1, 1);
  1630. // Test changing the read FD partway through.
  1631. ssl.reset(SSL_new(ctx.get()));
  1632. ASSERT_TRUE(ssl);
  1633. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1634. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 2));
  1635. ExpectFDs(ssl.get(), 2, 1);
  1636. // Test changing the write FD partway through.
  1637. ssl.reset(SSL_new(ctx.get()));
  1638. ASSERT_TRUE(ssl);
  1639. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1640. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
  1641. ExpectFDs(ssl.get(), 1, 2);
  1642. // Test a no-op change to the read FD partway through.
  1643. ssl.reset(SSL_new(ctx.get()));
  1644. ASSERT_TRUE(ssl);
  1645. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1646. EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
  1647. ExpectFDs(ssl.get(), 1, 1);
  1648. // Test a no-op change to the write FD partway through.
  1649. ssl.reset(SSL_new(ctx.get()));
  1650. ASSERT_TRUE(ssl);
  1651. EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
  1652. EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
  1653. ExpectFDs(ssl.get(), 1, 1);
  1654. // ASan builds will implicitly test that the internal |BIO| reference-counting
  1655. // is correct.
  1656. }
  1657. TEST(SSLTest, SetBIO) {
  1658. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1659. ASSERT_TRUE(ctx);
  1660. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1661. bssl::UniquePtr<BIO> bio1(BIO_new(BIO_s_mem())), bio2(BIO_new(BIO_s_mem())),
  1662. bio3(BIO_new(BIO_s_mem()));
  1663. ASSERT_TRUE(ssl);
  1664. ASSERT_TRUE(bio1);
  1665. ASSERT_TRUE(bio2);
  1666. ASSERT_TRUE(bio3);
  1667. // SSL_set_bio takes one reference when the parameters are the same.
  1668. BIO_up_ref(bio1.get());
  1669. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1670. // Repeating the call does nothing.
  1671. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1672. // It takes one reference each when the parameters are different.
  1673. BIO_up_ref(bio2.get());
  1674. BIO_up_ref(bio3.get());
  1675. SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
  1676. // Repeating the call does nothing.
  1677. SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
  1678. // It takes one reference when changing only wbio.
  1679. BIO_up_ref(bio1.get());
  1680. SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
  1681. // It takes one reference when changing only rbio and the two are different.
  1682. BIO_up_ref(bio3.get());
  1683. SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
  1684. // If setting wbio to rbio, it takes no additional references.
  1685. SSL_set_bio(ssl.get(), bio3.get(), bio3.get());
  1686. // From there, wbio may be switched to something else.
  1687. BIO_up_ref(bio1.get());
  1688. SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
  1689. // If setting rbio to wbio, it takes no additional references.
  1690. SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
  1691. // From there, rbio may be switched to something else, but, for historical
  1692. // reasons, it takes a reference to both parameters.
  1693. BIO_up_ref(bio1.get());
  1694. BIO_up_ref(bio2.get());
  1695. SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
  1696. // ASAN builds will implicitly test that the internal |BIO| reference-counting
  1697. // is correct.
  1698. }
  1699. static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { return 1; }
  1700. TEST_P(SSLVersionTest, GetPeerCertificate) {
  1701. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  1702. // Configure both client and server to accept any certificate.
  1703. SSL_CTX_set_verify(client_ctx_.get(),
  1704. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1705. nullptr);
  1706. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  1707. SSL_CTX_set_verify(server_ctx_.get(),
  1708. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1709. nullptr);
  1710. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  1711. ASSERT_TRUE(Connect());
  1712. // Client and server should both see the leaf certificate.
  1713. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
  1714. ASSERT_TRUE(peer);
  1715. ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0);
  1716. peer.reset(SSL_get_peer_certificate(client_.get()));
  1717. ASSERT_TRUE(peer);
  1718. ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0);
  1719. // However, for historical reasons, the X509 chain includes the leaf on the
  1720. // client, but does not on the server.
  1721. EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(client_.get())), 1u);
  1722. EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(client_.get())),
  1723. 1u);
  1724. EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(server_.get())), 0u);
  1725. EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(server_.get())),
  1726. 1u);
  1727. }
  1728. TEST_P(SSLVersionTest, NoPeerCertificate) {
  1729. SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER, nullptr);
  1730. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  1731. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  1732. ASSERT_TRUE(Connect());
  1733. // Server should not see a peer certificate.
  1734. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
  1735. ASSERT_FALSE(peer);
  1736. ASSERT_FALSE(SSL_get0_peer_certificates(server_.get()));
  1737. }
  1738. TEST_P(SSLVersionTest, RetainOnlySHA256OfCerts) {
  1739. uint8_t *cert_der = NULL;
  1740. int cert_der_len = i2d_X509(cert_.get(), &cert_der);
  1741. ASSERT_GE(cert_der_len, 0);
  1742. bssl::UniquePtr<uint8_t> free_cert_der(cert_der);
  1743. uint8_t cert_sha256[SHA256_DIGEST_LENGTH];
  1744. SHA256(cert_der, cert_der_len, cert_sha256);
  1745. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  1746. // Configure both client and server to accept any certificate, but the
  1747. // server must retain only the SHA-256 of the peer.
  1748. SSL_CTX_set_verify(client_ctx_.get(),
  1749. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1750. nullptr);
  1751. SSL_CTX_set_verify(server_ctx_.get(),
  1752. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  1753. nullptr);
  1754. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  1755. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  1756. SSL_CTX_set_retain_only_sha256_of_client_certs(server_ctx_.get(), 1);
  1757. ASSERT_TRUE(Connect());
  1758. // The peer certificate has been dropped.
  1759. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
  1760. EXPECT_FALSE(peer);
  1761. SSL_SESSION *session = SSL_get_session(server_.get());
  1762. EXPECT_TRUE(SSL_SESSION_has_peer_sha256(session));
  1763. const uint8_t *peer_sha256;
  1764. size_t peer_sha256_len;
  1765. SSL_SESSION_get0_peer_sha256(session, &peer_sha256, &peer_sha256_len);
  1766. EXPECT_EQ(Bytes(cert_sha256), Bytes(peer_sha256, peer_sha256_len));
  1767. }
  1768. // Tests that our ClientHellos do not change unexpectedly. These are purely
  1769. // change detection tests. If they fail as part of an intentional ClientHello
  1770. // change, update the test vector.
  1771. TEST(SSLTest, ClientHello) {
  1772. struct {
  1773. uint16_t max_version;
  1774. std::vector<uint8_t> expected;
  1775. } kTests[] = {
  1776. {TLS1_VERSION,
  1777. {0x16, 0x03, 0x01, 0x00, 0x5a, 0x01, 0x00, 0x00, 0x56, 0x03, 0x01, 0x00,
  1778. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1779. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1780. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xc0, 0x09,
  1781. 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a,
  1782. 0x01, 0x00, 0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01,
  1783. 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00,
  1784. 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}},
  1785. {TLS1_1_VERSION,
  1786. {0x16, 0x03, 0x01, 0x00, 0x5a, 0x01, 0x00, 0x00, 0x56, 0x03, 0x02, 0x00,
  1787. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1788. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1789. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xc0, 0x09,
  1790. 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a,
  1791. 0x01, 0x00, 0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01,
  1792. 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00,
  1793. 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}},
  1794. {TLS1_2_VERSION,
  1795. {0x16, 0x03, 0x01, 0x00, 0x82, 0x01, 0x00, 0x00, 0x7e, 0x03, 0x03, 0x00,
  1796. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1797. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  1798. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0xcc, 0xa9,
  1799. 0xcc, 0xa8, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, 0xc0, 0x09,
  1800. 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f,
  1801. 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x37, 0x00, 0x17, 0x00, 0x00,
  1802. 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00,
  1803. 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
  1804. 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x14, 0x00, 0x12, 0x04, 0x03, 0x08,
  1805. 0x04, 0x04, 0x01, 0x05, 0x03, 0x08, 0x05, 0x05, 0x01, 0x08, 0x06, 0x06,
  1806. 0x01, 0x02, 0x01}},
  1807. // TODO(davidben): Add a change detector for TLS 1.3 once the spec and our
  1808. // implementation has settled enough that it won't change.
  1809. };
  1810. for (const auto &t : kTests) {
  1811. SCOPED_TRACE(t.max_version);
  1812. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  1813. ASSERT_TRUE(ctx);
  1814. // Our default cipher list varies by CPU capabilities, so manually place the
  1815. // ChaCha20 ciphers in front.
  1816. const char *cipher_list = "CHACHA20:ALL";
  1817. ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), t.max_version));
  1818. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), cipher_list));
  1819. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  1820. ASSERT_TRUE(ssl);
  1821. std::vector<uint8_t> client_hello;
  1822. ASSERT_TRUE(GetClientHello(ssl.get(), &client_hello));
  1823. // Zero the client_random.
  1824. constexpr size_t kRandomOffset = 1 + 2 + 2 + // record header
  1825. 1 + 3 + // handshake message header
  1826. 2; // client_version
  1827. ASSERT_GE(client_hello.size(), kRandomOffset + SSL3_RANDOM_SIZE);
  1828. OPENSSL_memset(client_hello.data() + kRandomOffset, 0, SSL3_RANDOM_SIZE);
  1829. if (client_hello != t.expected) {
  1830. ADD_FAILURE() << "ClientHellos did not match.";
  1831. // Print the value manually so it is easier to update the test vector.
  1832. for (size_t i = 0; i < client_hello.size(); i += 12) {
  1833. printf(" %c", i == 0 ? '{' : ' ');
  1834. for (size_t j = i; j < client_hello.size() && j < i + 12; j++) {
  1835. if (j > i) {
  1836. printf(" ");
  1837. }
  1838. printf("0x%02x", client_hello[j]);
  1839. if (j < client_hello.size() - 1) {
  1840. printf(",");
  1841. }
  1842. }
  1843. if (i + 12 >= client_hello.size()) {
  1844. printf("}},");
  1845. }
  1846. printf("\n");
  1847. }
  1848. }
  1849. }
  1850. }
  1851. static bssl::UniquePtr<SSL_SESSION> g_last_session;
  1852. static int SaveLastSession(SSL *ssl, SSL_SESSION *session) {
  1853. // Save the most recent session.
  1854. g_last_session.reset(session);
  1855. return 1;
  1856. }
  1857. static bssl::UniquePtr<SSL_SESSION> CreateClientSession(
  1858. SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1859. const ClientConfig &config = ClientConfig()) {
  1860. g_last_session = nullptr;
  1861. SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
  1862. // Connect client and server to get a session.
  1863. bssl::UniquePtr<SSL> client, server;
  1864. if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx,
  1865. config)) {
  1866. fprintf(stderr, "Failed to connect client and server.\n");
  1867. return nullptr;
  1868. }
  1869. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  1870. SSL_read(client.get(), nullptr, 0);
  1871. SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
  1872. if (!g_last_session) {
  1873. fprintf(stderr, "Client did not receive a session.\n");
  1874. return nullptr;
  1875. }
  1876. return std::move(g_last_session);
  1877. }
  1878. static void ExpectSessionReused(SSL_CTX *client_ctx, SSL_CTX *server_ctx,
  1879. SSL_SESSION *session, bool want_reused) {
  1880. bssl::UniquePtr<SSL> client, server;
  1881. ClientConfig config;
  1882. config.session = session;
  1883. EXPECT_TRUE(
  1884. ConnectClientAndServer(&client, &server, client_ctx, server_ctx, config));
  1885. EXPECT_EQ(SSL_session_reused(client.get()), SSL_session_reused(server.get()));
  1886. bool was_reused = !!SSL_session_reused(client.get());
  1887. EXPECT_EQ(was_reused, want_reused);
  1888. }
  1889. static bssl::UniquePtr<SSL_SESSION> ExpectSessionRenewed(SSL_CTX *client_ctx,
  1890. SSL_CTX *server_ctx,
  1891. SSL_SESSION *session) {
  1892. g_last_session = nullptr;
  1893. SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
  1894. bssl::UniquePtr<SSL> client, server;
  1895. ClientConfig config;
  1896. config.session = session;
  1897. if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx,
  1898. config)) {
  1899. fprintf(stderr, "Failed to connect client and server.\n");
  1900. return nullptr;
  1901. }
  1902. if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) {
  1903. fprintf(stderr, "Client and server were inconsistent.\n");
  1904. return nullptr;
  1905. }
  1906. if (!SSL_session_reused(client.get())) {
  1907. fprintf(stderr, "Session was not reused.\n");
  1908. return nullptr;
  1909. }
  1910. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  1911. SSL_read(client.get(), nullptr, 0);
  1912. SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
  1913. if (!g_last_session) {
  1914. fprintf(stderr, "Client did not receive a renewed session.\n");
  1915. return nullptr;
  1916. }
  1917. return std::move(g_last_session);
  1918. }
  1919. static void ExpectTicketKeyChanged(SSL_CTX *ctx, uint8_t *inout_key,
  1920. bool changed) {
  1921. uint8_t new_key[kTicketKeyLen];
  1922. // May return 0, 1 or 48.
  1923. ASSERT_EQ(SSL_CTX_get_tlsext_ticket_keys(ctx, new_key, kTicketKeyLen), 1);
  1924. if (changed) {
  1925. ASSERT_NE(Bytes(inout_key, kTicketKeyLen), Bytes(new_key));
  1926. } else {
  1927. ASSERT_EQ(Bytes(inout_key, kTicketKeyLen), Bytes(new_key));
  1928. }
  1929. OPENSSL_memcpy(inout_key, new_key, kTicketKeyLen);
  1930. }
  1931. static int SwitchSessionIDContextSNI(SSL *ssl, int *out_alert, void *arg) {
  1932. static const uint8_t kContext[] = {3};
  1933. if (!SSL_set_session_id_context(ssl, kContext, sizeof(kContext))) {
  1934. return SSL_TLSEXT_ERR_ALERT_FATAL;
  1935. }
  1936. return SSL_TLSEXT_ERR_OK;
  1937. }
  1938. TEST_P(SSLVersionTest, SessionIDContext) {
  1939. static const uint8_t kContext1[] = {1};
  1940. static const uint8_t kContext2[] = {2};
  1941. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1,
  1942. sizeof(kContext1)));
  1943. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  1944. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  1945. bssl::UniquePtr<SSL_SESSION> session =
  1946. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  1947. ASSERT_TRUE(session);
  1948. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1949. session.get(),
  1950. true /* expect session reused */));
  1951. // Change the session ID context.
  1952. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext2,
  1953. sizeof(kContext2)));
  1954. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1955. session.get(),
  1956. false /* expect session not reused */));
  1957. // Change the session ID context back and install an SNI callback to switch
  1958. // it.
  1959. ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1,
  1960. sizeof(kContext1)));
  1961. SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(),
  1962. SwitchSessionIDContextSNI);
  1963. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1964. session.get(),
  1965. false /* expect session not reused */));
  1966. // Switch the session ID context with the early callback instead.
  1967. SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), nullptr);
  1968. SSL_CTX_set_select_certificate_cb(
  1969. server_ctx_.get(),
  1970. [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
  1971. static const uint8_t kContext[] = {3};
  1972. if (!SSL_set_session_id_context(client_hello->ssl, kContext,
  1973. sizeof(kContext))) {
  1974. return ssl_select_cert_error;
  1975. }
  1976. return ssl_select_cert_success;
  1977. });
  1978. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  1979. session.get(),
  1980. false /* expect session not reused */));
  1981. }
  1982. static timeval g_current_time;
  1983. static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
  1984. *out_clock = g_current_time;
  1985. }
  1986. static void FrozenTimeCallback(const SSL *ssl, timeval *out_clock) {
  1987. out_clock->tv_sec = 1000;
  1988. out_clock->tv_usec = 0;
  1989. }
  1990. static int RenewTicketCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
  1991. EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
  1992. int encrypt) {
  1993. static const uint8_t kZeros[16] = {0};
  1994. if (encrypt) {
  1995. OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros));
  1996. RAND_bytes(iv, 16);
  1997. } else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) {
  1998. return 0;
  1999. }
  2000. if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
  2001. !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
  2002. return -1;
  2003. }
  2004. // Returning two from the callback in decrypt mode renews the
  2005. // session in TLS 1.2 and below.
  2006. return encrypt ? 1 : 2;
  2007. }
  2008. static bool GetServerTicketTime(long *out, const SSL_SESSION *session) {
  2009. const uint8_t *ticket;
  2010. size_t ticket_len;
  2011. SSL_SESSION_get0_ticket(session, &ticket, &ticket_len);
  2012. if (ticket_len < 16 + 16 + SHA256_DIGEST_LENGTH) {
  2013. return false;
  2014. }
  2015. const uint8_t *ciphertext = ticket + 16 + 16;
  2016. size_t len = ticket_len - 16 - 16 - SHA256_DIGEST_LENGTH;
  2017. std::unique_ptr<uint8_t[]> plaintext(new uint8_t[len]);
  2018. #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
  2019. // Fuzzer-mode tickets are unencrypted.
  2020. OPENSSL_memcpy(plaintext.get(), ciphertext, len);
  2021. #else
  2022. static const uint8_t kZeros[16] = {0};
  2023. const uint8_t *iv = ticket + 16;
  2024. bssl::ScopedEVP_CIPHER_CTX ctx;
  2025. int len1, len2;
  2026. if (!EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_cbc(), nullptr, kZeros, iv) ||
  2027. !EVP_DecryptUpdate(ctx.get(), plaintext.get(), &len1, ciphertext, len) ||
  2028. !EVP_DecryptFinal_ex(ctx.get(), plaintext.get() + len1, &len2)) {
  2029. return false;
  2030. }
  2031. len = static_cast<size_t>(len1 + len2);
  2032. #endif
  2033. bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
  2034. if (!ssl_ctx) {
  2035. return false;
  2036. }
  2037. bssl::UniquePtr<SSL_SESSION> server_session(
  2038. SSL_SESSION_from_bytes(plaintext.get(), len, ssl_ctx.get()));
  2039. if (!server_session) {
  2040. return false;
  2041. }
  2042. *out = SSL_SESSION_get_time(server_session.get());
  2043. return true;
  2044. }
  2045. TEST_P(SSLVersionTest, SessionTimeout) {
  2046. for (bool server_test : {false, true}) {
  2047. SCOPED_TRACE(server_test);
  2048. ResetContexts();
  2049. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2050. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2051. static const time_t kStartTime = 1000;
  2052. g_current_time.tv_sec = kStartTime;
  2053. // We are willing to use a longer lifetime for TLS 1.3 sessions as
  2054. // resumptions still perform ECDHE.
  2055. const time_t timeout = version() == TLS1_3_VERSION
  2056. ? SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT
  2057. : SSL_DEFAULT_SESSION_TIMEOUT;
  2058. // Both client and server must enforce session timeouts. We configure the
  2059. // other side with a frozen clock so it never expires tickets.
  2060. if (server_test) {
  2061. SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback);
  2062. SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback);
  2063. } else {
  2064. SSL_CTX_set_current_time_cb(client_ctx_.get(), CurrentTimeCallback);
  2065. SSL_CTX_set_current_time_cb(server_ctx_.get(), FrozenTimeCallback);
  2066. }
  2067. // Configure a ticket callback which renews tickets.
  2068. SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback);
  2069. bssl::UniquePtr<SSL_SESSION> session =
  2070. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  2071. ASSERT_TRUE(session);
  2072. // Advance the clock just behind the timeout.
  2073. g_current_time.tv_sec += timeout - 1;
  2074. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2075. session.get(),
  2076. true /* expect session reused */));
  2077. // Advance the clock one more second.
  2078. g_current_time.tv_sec++;
  2079. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2080. session.get(),
  2081. false /* expect session not reused */));
  2082. // Rewind the clock to before the session was minted.
  2083. g_current_time.tv_sec = kStartTime - 1;
  2084. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2085. session.get(),
  2086. false /* expect session not reused */));
  2087. // Renew the session 10 seconds before expiration.
  2088. time_t new_start_time = kStartTime + timeout - 10;
  2089. g_current_time.tv_sec = new_start_time;
  2090. bssl::UniquePtr<SSL_SESSION> new_session = ExpectSessionRenewed(
  2091. client_ctx_.get(), server_ctx_.get(), session.get());
  2092. ASSERT_TRUE(new_session);
  2093. // This new session is not the same object as before.
  2094. EXPECT_NE(session.get(), new_session.get());
  2095. // Check the sessions have timestamps measured from issuance.
  2096. long session_time = 0;
  2097. if (server_test) {
  2098. ASSERT_TRUE(GetServerTicketTime(&session_time, new_session.get()));
  2099. } else {
  2100. session_time = SSL_SESSION_get_time(new_session.get());
  2101. }
  2102. ASSERT_EQ(session_time, g_current_time.tv_sec);
  2103. if (version() == TLS1_3_VERSION) {
  2104. // Renewal incorporates fresh key material in TLS 1.3, so we extend the
  2105. // lifetime TLS 1.3.
  2106. g_current_time.tv_sec = new_start_time + timeout - 1;
  2107. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2108. new_session.get(),
  2109. true /* expect session reused */));
  2110. // The new session expires after the new timeout.
  2111. g_current_time.tv_sec = new_start_time + timeout + 1;
  2112. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2113. new_session.get(),
  2114. false /* expect session ot reused */));
  2115. // Renew the session until it begins just past the auth timeout.
  2116. time_t auth_end_time = kStartTime + SSL_DEFAULT_SESSION_AUTH_TIMEOUT;
  2117. while (new_start_time < auth_end_time - 1000) {
  2118. // Get as close as possible to target start time.
  2119. new_start_time =
  2120. std::min(auth_end_time - 1000, new_start_time + timeout - 1);
  2121. g_current_time.tv_sec = new_start_time;
  2122. new_session = ExpectSessionRenewed(client_ctx_.get(), server_ctx_.get(),
  2123. new_session.get());
  2124. ASSERT_TRUE(new_session);
  2125. }
  2126. // Now the session's lifetime is bound by the auth timeout.
  2127. g_current_time.tv_sec = auth_end_time - 1;
  2128. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2129. new_session.get(),
  2130. true /* expect session reused */));
  2131. g_current_time.tv_sec = auth_end_time + 1;
  2132. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2133. new_session.get(),
  2134. false /* expect session ot reused */));
  2135. } else {
  2136. // The new session is usable just before the old expiration.
  2137. g_current_time.tv_sec = kStartTime + timeout - 1;
  2138. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2139. new_session.get(),
  2140. true /* expect session reused */));
  2141. // Renewal does not extend the lifetime, so it is not usable beyond the
  2142. // old expiration.
  2143. g_current_time.tv_sec = kStartTime + timeout + 1;
  2144. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2145. new_session.get(),
  2146. false /* expect session not reused */));
  2147. }
  2148. }
  2149. }
  2150. TEST_P(SSLVersionTest, DefaultTicketKeyInitialization) {
  2151. static const uint8_t kZeroKey[kTicketKeyLen] = {};
  2152. uint8_t ticket_key[kTicketKeyLen];
  2153. ASSERT_EQ(1, SSL_CTX_get_tlsext_ticket_keys(server_ctx_.get(), ticket_key,
  2154. kTicketKeyLen));
  2155. ASSERT_NE(0, OPENSSL_memcmp(ticket_key, kZeroKey, kTicketKeyLen));
  2156. }
  2157. TEST_P(SSLVersionTest, DefaultTicketKeyRotation) {
  2158. static const time_t kStartTime = 1001;
  2159. g_current_time.tv_sec = kStartTime;
  2160. // We use session reuse as a proxy for ticket decryption success, hence
  2161. // disable session timeouts.
  2162. SSL_CTX_set_timeout(server_ctx_.get(), std::numeric_limits<uint32_t>::max());
  2163. SSL_CTX_set_session_psk_dhe_timeout(server_ctx_.get(),
  2164. std::numeric_limits<uint32_t>::max());
  2165. SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback);
  2166. SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback);
  2167. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2168. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_OFF);
  2169. // Initialize ticket_key with the current key and check that it was
  2170. // initialized to something, not all zeros.
  2171. uint8_t ticket_key[kTicketKeyLen] = {0};
  2172. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2173. true /* changed */));
  2174. // Verify ticket resumption actually works.
  2175. bssl::UniquePtr<SSL> client, server;
  2176. bssl::UniquePtr<SSL_SESSION> session =
  2177. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  2178. ASSERT_TRUE(session);
  2179. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2180. session.get(), true /* reused */));
  2181. // Advance time to just before key rotation.
  2182. g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL - 1;
  2183. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2184. session.get(), true /* reused */));
  2185. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2186. false /* NOT changed */));
  2187. // Force key rotation.
  2188. g_current_time.tv_sec += 1;
  2189. bssl::UniquePtr<SSL_SESSION> new_session =
  2190. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  2191. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2192. true /* changed */));
  2193. // Resumption with both old and new ticket should work.
  2194. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2195. session.get(), true /* reused */));
  2196. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2197. new_session.get(), true /* reused */));
  2198. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2199. false /* NOT changed */));
  2200. // Force key rotation again. Resumption with the old ticket now fails.
  2201. g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL;
  2202. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2203. session.get(), false /* NOT reused */));
  2204. TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
  2205. true /* changed */));
  2206. // But resumption with the newer session still works.
  2207. TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
  2208. new_session.get(), true /* reused */));
  2209. }
  2210. static int SwitchContext(SSL *ssl, int *out_alert, void *arg) {
  2211. SSL_CTX *ctx = reinterpret_cast<SSL_CTX *>(arg);
  2212. SSL_set_SSL_CTX(ssl, ctx);
  2213. return SSL_TLSEXT_ERR_OK;
  2214. }
  2215. TEST_P(SSLVersionTest, SNICallback) {
  2216. bssl::UniquePtr<X509> cert2 = GetECDSATestCertificate();
  2217. ASSERT_TRUE(cert2);
  2218. bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey();
  2219. ASSERT_TRUE(key2);
  2220. // Test that switching the |SSL_CTX| at the SNI callback behaves correctly.
  2221. static const uint16_t kECDSAWithSHA256 = SSL_SIGN_ECDSA_SECP256R1_SHA256;
  2222. static const uint8_t kSCTList[] = {0, 6, 0, 4, 5, 6, 7, 8};
  2223. static const uint8_t kOCSPResponse[] = {1, 2, 3, 4};
  2224. bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext();
  2225. ASSERT_TRUE(server_ctx2);
  2226. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx2.get(), cert2.get()));
  2227. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx2.get(), key2.get()));
  2228. ASSERT_TRUE(SSL_CTX_set_signed_cert_timestamp_list(
  2229. server_ctx2.get(), kSCTList, sizeof(kSCTList)));
  2230. ASSERT_TRUE(SSL_CTX_set_ocsp_response(server_ctx2.get(), kOCSPResponse,
  2231. sizeof(kOCSPResponse)));
  2232. // Historically signing preferences would be lost in some cases with the
  2233. // SNI callback, which triggers the TLS 1.2 SHA-1 default. To ensure
  2234. // this doesn't happen when |version| is TLS 1.2, configure the private
  2235. // key to only sign SHA-256.
  2236. ASSERT_TRUE(SSL_CTX_set_signing_algorithm_prefs(server_ctx2.get(),
  2237. &kECDSAWithSHA256, 1));
  2238. SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), SwitchContext);
  2239. SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), server_ctx2.get());
  2240. SSL_CTX_enable_signed_cert_timestamps(client_ctx_.get());
  2241. SSL_CTX_enable_ocsp_stapling(client_ctx_.get());
  2242. ASSERT_TRUE(Connect());
  2243. // The client should have received |cert2|.
  2244. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client_.get()));
  2245. ASSERT_TRUE(peer);
  2246. EXPECT_EQ(X509_cmp(peer.get(), cert2.get()), 0);
  2247. // The client should have received |server_ctx2|'s SCT list.
  2248. const uint8_t *data;
  2249. size_t len;
  2250. SSL_get0_signed_cert_timestamp_list(client_.get(), &data, &len);
  2251. EXPECT_EQ(Bytes(kSCTList), Bytes(data, len));
  2252. // The client should have received |server_ctx2|'s OCSP response.
  2253. SSL_get0_ocsp_response(client_.get(), &data, &len);
  2254. EXPECT_EQ(Bytes(kOCSPResponse), Bytes(data, len));
  2255. }
  2256. // Test that the early callback can swap the maximum version.
  2257. TEST(SSLTest, EarlyCallbackVersionSwitch) {
  2258. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2259. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2260. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  2261. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  2262. ASSERT_TRUE(cert);
  2263. ASSERT_TRUE(key);
  2264. ASSERT_TRUE(server_ctx);
  2265. ASSERT_TRUE(client_ctx);
  2266. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  2267. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  2268. ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
  2269. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
  2270. SSL_CTX_set_select_certificate_cb(
  2271. server_ctx.get(),
  2272. [](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
  2273. if (!SSL_set_max_proto_version(client_hello->ssl, TLS1_2_VERSION)) {
  2274. return ssl_select_cert_error;
  2275. }
  2276. return ssl_select_cert_success;
  2277. });
  2278. bssl::UniquePtr<SSL> client, server;
  2279. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2280. server_ctx.get()));
  2281. EXPECT_EQ(TLS1_2_VERSION, SSL_version(client.get()));
  2282. }
  2283. TEST(SSLTest, SetVersion) {
  2284. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2285. ASSERT_TRUE(ctx);
  2286. // Set valid TLS versions.
  2287. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
  2288. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION));
  2289. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
  2290. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_1_VERSION));
  2291. // Invalid TLS versions are rejected.
  2292. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
  2293. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x0200));
  2294. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
  2295. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
  2296. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x0200));
  2297. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
  2298. // Zero is the default version.
  2299. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
  2300. EXPECT_EQ(TLS1_2_VERSION, ctx->conf_max_version);
  2301. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
  2302. EXPECT_EQ(TLS1_VERSION, ctx->conf_min_version);
  2303. // TLS 1.3 is available, but not by default.
  2304. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION));
  2305. EXPECT_EQ(TLS1_3_VERSION, ctx->conf_max_version);
  2306. // SSL 3.0 is not available.
  2307. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION));
  2308. ctx.reset(SSL_CTX_new(DTLS_method()));
  2309. ASSERT_TRUE(ctx);
  2310. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
  2311. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_2_VERSION));
  2312. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
  2313. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_2_VERSION));
  2314. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
  2315. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
  2316. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
  2317. EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
  2318. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
  2319. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
  2320. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
  2321. EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
  2322. EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
  2323. EXPECT_EQ(TLS1_2_VERSION, ctx->conf_max_version);
  2324. EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
  2325. EXPECT_EQ(TLS1_1_VERSION, ctx->conf_min_version);
  2326. }
  2327. static const char *GetVersionName(uint16_t version) {
  2328. switch (version) {
  2329. case TLS1_VERSION:
  2330. return "TLSv1";
  2331. case TLS1_1_VERSION:
  2332. return "TLSv1.1";
  2333. case TLS1_2_VERSION:
  2334. return "TLSv1.2";
  2335. case TLS1_3_VERSION:
  2336. return "TLSv1.3";
  2337. case DTLS1_VERSION:
  2338. return "DTLSv1";
  2339. case DTLS1_2_VERSION:
  2340. return "DTLSv1.2";
  2341. default:
  2342. return "???";
  2343. }
  2344. }
  2345. TEST_P(SSLVersionTest, Version) {
  2346. ASSERT_TRUE(Connect());
  2347. EXPECT_EQ(SSL_version(client_.get()), version());
  2348. EXPECT_EQ(SSL_version(server_.get()), version());
  2349. // Test the version name is reported as expected.
  2350. const char *version_name = GetVersionName(version());
  2351. EXPECT_EQ(strcmp(version_name, SSL_get_version(client_.get())), 0);
  2352. EXPECT_EQ(strcmp(version_name, SSL_get_version(server_.get())), 0);
  2353. // Test SSL_SESSION reports the same name.
  2354. const char *client_name =
  2355. SSL_SESSION_get_version(SSL_get_session(client_.get()));
  2356. const char *server_name =
  2357. SSL_SESSION_get_version(SSL_get_session(server_.get()));
  2358. EXPECT_EQ(strcmp(version_name, client_name), 0);
  2359. EXPECT_EQ(strcmp(version_name, server_name), 0);
  2360. }
  2361. // Tests that that |SSL_get_pending_cipher| is available during the ALPN
  2362. // selection callback.
  2363. TEST_P(SSLVersionTest, ALPNCipherAvailable) {
  2364. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  2365. static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'};
  2366. ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos,
  2367. sizeof(kALPNProtos)),
  2368. 0);
  2369. // The ALPN callback does not fail the handshake on error, so have the
  2370. // callback write a boolean.
  2371. std::pair<uint16_t, bool> callback_state(version(), false);
  2372. SSL_CTX_set_alpn_select_cb(
  2373. server_ctx_.get(),
  2374. [](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in,
  2375. unsigned in_len, void *arg) -> int {
  2376. auto state = reinterpret_cast<std::pair<uint16_t, bool> *>(arg);
  2377. if (SSL_get_pending_cipher(ssl) != nullptr &&
  2378. SSL_version(ssl) == state->first) {
  2379. state->second = true;
  2380. }
  2381. return SSL_TLSEXT_ERR_NOACK;
  2382. },
  2383. &callback_state);
  2384. ASSERT_TRUE(Connect());
  2385. ASSERT_TRUE(callback_state.second);
  2386. }
  2387. TEST_P(SSLVersionTest, SSLClearSessionResumption) {
  2388. // Skip this for TLS 1.3. TLS 1.3's ticket mechanism is incompatible with this
  2389. // API pattern.
  2390. if (version() == TLS1_3_VERSION) {
  2391. return;
  2392. }
  2393. shed_handshake_config_ = false;
  2394. ASSERT_TRUE(Connect());
  2395. EXPECT_FALSE(SSL_session_reused(client_.get()));
  2396. EXPECT_FALSE(SSL_session_reused(server_.get()));
  2397. // Reset everything.
  2398. ASSERT_TRUE(SSL_clear(client_.get()));
  2399. ASSERT_TRUE(SSL_clear(server_.get()));
  2400. // Attempt to connect a second time.
  2401. ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
  2402. // |SSL_clear| should implicitly offer the previous session to the server.
  2403. EXPECT_TRUE(SSL_session_reused(client_.get()));
  2404. EXPECT_TRUE(SSL_session_reused(server_.get()));
  2405. }
  2406. TEST_P(SSLVersionTest, SSLClearFailsWithShedding) {
  2407. shed_handshake_config_ = false;
  2408. ASSERT_TRUE(Connect());
  2409. ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
  2410. // Reset everything.
  2411. ASSERT_TRUE(SSL_clear(client_.get()));
  2412. ASSERT_TRUE(SSL_clear(server_.get()));
  2413. // Now enable shedding, and connect a second time.
  2414. shed_handshake_config_ = true;
  2415. ASSERT_TRUE(Connect());
  2416. ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
  2417. // |SSL_clear| should now fail.
  2418. ASSERT_FALSE(SSL_clear(client_.get()));
  2419. ASSERT_FALSE(SSL_clear(server_.get()));
  2420. }
  2421. static bool ChainsEqual(STACK_OF(X509) * chain,
  2422. const std::vector<X509 *> &expected) {
  2423. if (sk_X509_num(chain) != expected.size()) {
  2424. return false;
  2425. }
  2426. for (size_t i = 0; i < expected.size(); i++) {
  2427. if (X509_cmp(sk_X509_value(chain, i), expected[i]) != 0) {
  2428. return false;
  2429. }
  2430. }
  2431. return true;
  2432. }
  2433. TEST_P(SSLVersionTest, AutoChain) {
  2434. cert_ = GetChainTestCertificate();
  2435. ASSERT_TRUE(cert_);
  2436. key_ = GetChainTestKey();
  2437. ASSERT_TRUE(key_);
  2438. bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate();
  2439. ASSERT_TRUE(intermediate);
  2440. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  2441. ASSERT_TRUE(UseCertAndKey(server_ctx_.get()));
  2442. // Configure both client and server to accept any certificate. Add
  2443. // |intermediate| to the cert store.
  2444. ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx_.get()),
  2445. intermediate.get()));
  2446. ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(server_ctx_.get()),
  2447. intermediate.get()));
  2448. SSL_CTX_set_verify(client_ctx_.get(),
  2449. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  2450. nullptr);
  2451. SSL_CTX_set_verify(server_ctx_.get(),
  2452. SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
  2453. nullptr);
  2454. SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
  2455. SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
  2456. // By default, the client and server should each only send the leaf.
  2457. ASSERT_TRUE(Connect());
  2458. EXPECT_TRUE(
  2459. ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), {cert_.get()}));
  2460. EXPECT_TRUE(
  2461. ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), {cert_.get()}));
  2462. // If auto-chaining is enabled, then the intermediate is sent.
  2463. SSL_CTX_clear_mode(client_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN);
  2464. SSL_CTX_clear_mode(server_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN);
  2465. ASSERT_TRUE(Connect());
  2466. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()),
  2467. {cert_.get(), intermediate.get()}));
  2468. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()),
  2469. {cert_.get(), intermediate.get()}));
  2470. // Auto-chaining does not override explicitly-configured intermediates.
  2471. ASSERT_TRUE(SSL_CTX_add1_chain_cert(client_ctx_.get(), cert_.get()));
  2472. ASSERT_TRUE(SSL_CTX_add1_chain_cert(server_ctx_.get(), cert_.get()));
  2473. ASSERT_TRUE(Connect());
  2474. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()),
  2475. {cert_.get(), cert_.get()}));
  2476. EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()),
  2477. {cert_.get(), cert_.get()}));
  2478. }
  2479. static bool ExpectBadWriteRetry() {
  2480. int err = ERR_get_error();
  2481. if (ERR_GET_LIB(err) != ERR_LIB_SSL ||
  2482. ERR_GET_REASON(err) != SSL_R_BAD_WRITE_RETRY) {
  2483. char buf[ERR_ERROR_STRING_BUF_LEN];
  2484. ERR_error_string_n(err, buf, sizeof(buf));
  2485. fprintf(stderr, "Wanted SSL_R_BAD_WRITE_RETRY, got: %s.\n", buf);
  2486. return false;
  2487. }
  2488. if (ERR_peek_error() != 0) {
  2489. fprintf(stderr, "Unexpected error following SSL_R_BAD_WRITE_RETRY.\n");
  2490. return false;
  2491. }
  2492. return true;
  2493. }
  2494. TEST_P(SSLVersionTest, SSLWriteRetry) {
  2495. if (is_dtls()) {
  2496. return;
  2497. }
  2498. for (bool enable_partial_write : {false, true}) {
  2499. SCOPED_TRACE(enable_partial_write);
  2500. // Connect a client and server.
  2501. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  2502. ASSERT_TRUE(Connect());
  2503. if (enable_partial_write) {
  2504. SSL_set_mode(client_.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
  2505. }
  2506. // Write without reading until the buffer is full and we have an unfinished
  2507. // write. Keep a count so we may reread it again later. "hello!" will be
  2508. // written in two chunks, "hello" and "!".
  2509. char data[] = "hello!";
  2510. static const int kChunkLen = 5; // The length of "hello".
  2511. unsigned count = 0;
  2512. for (;;) {
  2513. int ret = SSL_write(client_.get(), data, kChunkLen);
  2514. if (ret <= 0) {
  2515. ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE);
  2516. break;
  2517. }
  2518. ASSERT_EQ(ret, 5);
  2519. count++;
  2520. }
  2521. // Retrying with the same parameters is legal.
  2522. ASSERT_EQ(
  2523. SSL_get_error(client_.get(), SSL_write(client_.get(), data, kChunkLen)),
  2524. SSL_ERROR_WANT_WRITE);
  2525. // Retrying with the same buffer but shorter length is not legal.
  2526. ASSERT_EQ(SSL_get_error(client_.get(),
  2527. SSL_write(client_.get(), data, kChunkLen - 1)),
  2528. SSL_ERROR_SSL);
  2529. ASSERT_TRUE(ExpectBadWriteRetry());
  2530. // Retrying with a different buffer pointer is not legal.
  2531. char data2[] = "hello";
  2532. ASSERT_EQ(SSL_get_error(client_.get(),
  2533. SSL_write(client_.get(), data2, kChunkLen)),
  2534. SSL_ERROR_SSL);
  2535. ASSERT_TRUE(ExpectBadWriteRetry());
  2536. // With |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, the buffer may move.
  2537. SSL_set_mode(client_.get(), SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
  2538. ASSERT_EQ(SSL_get_error(client_.get(),
  2539. SSL_write(client_.get(), data2, kChunkLen)),
  2540. SSL_ERROR_WANT_WRITE);
  2541. // |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| does not disable length checks.
  2542. ASSERT_EQ(SSL_get_error(client_.get(),
  2543. SSL_write(client_.get(), data2, kChunkLen - 1)),
  2544. SSL_ERROR_SSL);
  2545. ASSERT_TRUE(ExpectBadWriteRetry());
  2546. // Retrying with a larger buffer is legal.
  2547. ASSERT_EQ(SSL_get_error(client_.get(),
  2548. SSL_write(client_.get(), data, kChunkLen + 1)),
  2549. SSL_ERROR_WANT_WRITE);
  2550. // Drain the buffer.
  2551. char buf[20];
  2552. for (unsigned i = 0; i < count; i++) {
  2553. ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen);
  2554. ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0);
  2555. }
  2556. // Now that there is space, a retry with a larger buffer should flush the
  2557. // pending record, skip over that many bytes of input (on assumption they
  2558. // are the same), and write the remainder. If SSL_MODE_ENABLE_PARTIAL_WRITE
  2559. // is set, this will complete in two steps.
  2560. char data3[] = "_____!";
  2561. if (enable_partial_write) {
  2562. ASSERT_EQ(SSL_write(client_.get(), data3, kChunkLen + 1), kChunkLen);
  2563. ASSERT_EQ(SSL_write(client_.get(), data3 + kChunkLen, 1), 1);
  2564. } else {
  2565. ASSERT_EQ(SSL_write(client_.get(), data3, kChunkLen + 1), kChunkLen + 1);
  2566. }
  2567. // Check the last write was correct. The data will be spread over two
  2568. // records, so SSL_read returns twice.
  2569. ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen);
  2570. ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0);
  2571. ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), 1);
  2572. ASSERT_EQ(buf[0], '!');
  2573. }
  2574. }
  2575. TEST_P(SSLVersionTest, RecordCallback) {
  2576. for (bool test_server : {true, false}) {
  2577. SCOPED_TRACE(test_server);
  2578. ResetContexts();
  2579. bool read_seen = false;
  2580. bool write_seen = false;
  2581. auto cb = [&](int is_write, int cb_version, int cb_type, const void *buf,
  2582. size_t len, SSL *ssl) {
  2583. if (cb_type != SSL3_RT_HEADER) {
  2584. return;
  2585. }
  2586. // The callback does not report a version for records.
  2587. EXPECT_EQ(0, cb_version);
  2588. if (is_write) {
  2589. write_seen = true;
  2590. } else {
  2591. read_seen = true;
  2592. }
  2593. // Sanity-check that the record header is plausible.
  2594. CBS cbs;
  2595. CBS_init(&cbs, reinterpret_cast<const uint8_t *>(buf), len);
  2596. uint8_t type;
  2597. uint16_t record_version, length;
  2598. ASSERT_TRUE(CBS_get_u8(&cbs, &type));
  2599. ASSERT_TRUE(CBS_get_u16(&cbs, &record_version));
  2600. EXPECT_EQ(record_version & 0xff00, version() & 0xff00);
  2601. if (is_dtls()) {
  2602. uint16_t epoch;
  2603. ASSERT_TRUE(CBS_get_u16(&cbs, &epoch));
  2604. EXPECT_TRUE(epoch == 0 || epoch == 1) << "Invalid epoch: " << epoch;
  2605. ASSERT_TRUE(CBS_skip(&cbs, 6));
  2606. }
  2607. ASSERT_TRUE(CBS_get_u16(&cbs, &length));
  2608. EXPECT_EQ(0u, CBS_len(&cbs));
  2609. };
  2610. using CallbackType = decltype(cb);
  2611. SSL_CTX *ctx = test_server ? server_ctx_.get() : client_ctx_.get();
  2612. SSL_CTX_set_msg_callback(
  2613. ctx, [](int is_write, int cb_version, int cb_type, const void *buf,
  2614. size_t len, SSL *ssl, void *arg) {
  2615. CallbackType *cb_ptr = reinterpret_cast<CallbackType *>(arg);
  2616. (*cb_ptr)(is_write, cb_version, cb_type, buf, len, ssl);
  2617. });
  2618. SSL_CTX_set_msg_callback_arg(ctx, &cb);
  2619. ASSERT_TRUE(Connect());
  2620. EXPECT_TRUE(read_seen);
  2621. EXPECT_TRUE(write_seen);
  2622. }
  2623. }
  2624. TEST_P(SSLVersionTest, GetServerName) {
  2625. ClientConfig config;
  2626. config.servername = "host1";
  2627. SSL_CTX_set_tlsext_servername_callback(
  2628. server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int {
  2629. // During the handshake, |SSL_get_servername| must match |config|.
  2630. ClientConfig *config_p = reinterpret_cast<ClientConfig *>(arg);
  2631. EXPECT_STREQ(config_p->servername.c_str(),
  2632. SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name));
  2633. return SSL_TLSEXT_ERR_OK;
  2634. });
  2635. SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), &config);
  2636. ASSERT_TRUE(Connect(config));
  2637. // After the handshake, it must also be available.
  2638. EXPECT_STREQ(config.servername.c_str(),
  2639. SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name));
  2640. // Establish a session under host1.
  2641. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2642. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  2643. bssl::UniquePtr<SSL_SESSION> session =
  2644. CreateClientSession(client_ctx_.get(), server_ctx_.get(), config);
  2645. // If the client resumes a session with a different name, |SSL_get_servername|
  2646. // must return the new name.
  2647. ASSERT_TRUE(session);
  2648. config.session = session.get();
  2649. config.servername = "host2";
  2650. ASSERT_TRUE(Connect(config));
  2651. EXPECT_STREQ(config.servername.c_str(),
  2652. SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name));
  2653. }
  2654. // Test that session cache mode bits are honored in the client session callback.
  2655. TEST_P(SSLVersionTest, ClientSessionCacheMode) {
  2656. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_OFF);
  2657. EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  2658. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_CLIENT);
  2659. EXPECT_TRUE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  2660. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_SERVER);
  2661. EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  2662. }
  2663. TEST(SSLTest, AddChainCertHack) {
  2664. // Ensure that we don't accidently break the hack that we have in place to
  2665. // keep curl and serf happy when they use an |X509| even after transfering
  2666. // ownership.
  2667. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2668. ASSERT_TRUE(ctx);
  2669. X509 *cert = GetTestCertificate().release();
  2670. ASSERT_TRUE(cert);
  2671. SSL_CTX_add0_chain_cert(ctx.get(), cert);
  2672. // This should not trigger a use-after-free.
  2673. X509_cmp(cert, cert);
  2674. }
  2675. TEST(SSLTest, GetCertificate) {
  2676. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2677. ASSERT_TRUE(ctx);
  2678. bssl::UniquePtr<X509> cert = GetTestCertificate();
  2679. ASSERT_TRUE(cert);
  2680. ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
  2681. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  2682. ASSERT_TRUE(ssl);
  2683. X509 *cert2 = SSL_CTX_get0_certificate(ctx.get());
  2684. ASSERT_TRUE(cert2);
  2685. X509 *cert3 = SSL_get_certificate(ssl.get());
  2686. ASSERT_TRUE(cert3);
  2687. // The old and new certificates must be identical.
  2688. EXPECT_EQ(0, X509_cmp(cert.get(), cert2));
  2689. EXPECT_EQ(0, X509_cmp(cert.get(), cert3));
  2690. uint8_t *der = nullptr;
  2691. long der_len = i2d_X509(cert.get(), &der);
  2692. ASSERT_LT(0, der_len);
  2693. bssl::UniquePtr<uint8_t> free_der(der);
  2694. uint8_t *der2 = nullptr;
  2695. long der2_len = i2d_X509(cert2, &der2);
  2696. ASSERT_LT(0, der2_len);
  2697. bssl::UniquePtr<uint8_t> free_der2(der2);
  2698. uint8_t *der3 = nullptr;
  2699. long der3_len = i2d_X509(cert3, &der3);
  2700. ASSERT_LT(0, der3_len);
  2701. bssl::UniquePtr<uint8_t> free_der3(der3);
  2702. // They must also encode identically.
  2703. EXPECT_EQ(Bytes(der, der_len), Bytes(der2, der2_len));
  2704. EXPECT_EQ(Bytes(der, der_len), Bytes(der3, der3_len));
  2705. }
  2706. TEST(SSLTest, SetChainAndKeyMismatch) {
  2707. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2708. ASSERT_TRUE(ctx);
  2709. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  2710. ASSERT_TRUE(key);
  2711. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2712. ASSERT_TRUE(leaf);
  2713. std::vector<CRYPTO_BUFFER*> chain = {
  2714. leaf.get(),
  2715. };
  2716. // Should fail because |GetTestKey| doesn't match the chain-test certificate.
  2717. ASSERT_FALSE(SSL_CTX_set_chain_and_key(ctx.get(), &chain[0], chain.size(),
  2718. key.get(), nullptr));
  2719. ERR_clear_error();
  2720. }
  2721. TEST(SSLTest, SetChainAndKey) {
  2722. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2723. ASSERT_TRUE(client_ctx);
  2724. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2725. ASSERT_TRUE(server_ctx);
  2726. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2727. ASSERT_TRUE(key);
  2728. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2729. ASSERT_TRUE(leaf);
  2730. bssl::UniquePtr<CRYPTO_BUFFER> intermediate =
  2731. GetChainTestIntermediateBuffer();
  2732. ASSERT_TRUE(intermediate);
  2733. std::vector<CRYPTO_BUFFER*> chain = {
  2734. leaf.get(), intermediate.get(),
  2735. };
  2736. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2737. chain.size(), key.get(), nullptr));
  2738. SSL_CTX_set_custom_verify(
  2739. client_ctx.get(), SSL_VERIFY_PEER,
  2740. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2741. return ssl_verify_ok;
  2742. });
  2743. bssl::UniquePtr<SSL> client, server;
  2744. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2745. server_ctx.get()));
  2746. }
  2747. TEST(SSLTest, BuffersFailWithoutCustomVerify) {
  2748. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2749. ASSERT_TRUE(client_ctx);
  2750. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2751. ASSERT_TRUE(server_ctx);
  2752. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2753. ASSERT_TRUE(key);
  2754. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2755. ASSERT_TRUE(leaf);
  2756. std::vector<CRYPTO_BUFFER*> chain = { leaf.get() };
  2757. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2758. chain.size(), key.get(), nullptr));
  2759. // Without SSL_CTX_set_custom_verify(), i.e. with everything in the default
  2760. // configuration, certificate verification should fail.
  2761. bssl::UniquePtr<SSL> client, server;
  2762. ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2763. server_ctx.get()));
  2764. // Whereas with a verifier, the connection should succeed.
  2765. SSL_CTX_set_custom_verify(
  2766. client_ctx.get(), SSL_VERIFY_PEER,
  2767. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2768. return ssl_verify_ok;
  2769. });
  2770. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2771. server_ctx.get()));
  2772. }
  2773. TEST(SSLTest, CustomVerify) {
  2774. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2775. ASSERT_TRUE(client_ctx);
  2776. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2777. ASSERT_TRUE(server_ctx);
  2778. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2779. ASSERT_TRUE(key);
  2780. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2781. ASSERT_TRUE(leaf);
  2782. std::vector<CRYPTO_BUFFER*> chain = { leaf.get() };
  2783. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2784. chain.size(), key.get(), nullptr));
  2785. SSL_CTX_set_custom_verify(
  2786. client_ctx.get(), SSL_VERIFY_PEER,
  2787. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2788. return ssl_verify_ok;
  2789. });
  2790. bssl::UniquePtr<SSL> client, server;
  2791. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2792. server_ctx.get()));
  2793. // With SSL_VERIFY_PEER, ssl_verify_invalid should result in a dropped
  2794. // connection.
  2795. SSL_CTX_set_custom_verify(
  2796. client_ctx.get(), SSL_VERIFY_PEER,
  2797. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2798. return ssl_verify_invalid;
  2799. });
  2800. ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2801. server_ctx.get()));
  2802. // But with SSL_VERIFY_NONE, ssl_verify_invalid should not cause a dropped
  2803. // connection.
  2804. SSL_CTX_set_custom_verify(
  2805. client_ctx.get(), SSL_VERIFY_NONE,
  2806. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2807. return ssl_verify_invalid;
  2808. });
  2809. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2810. server_ctx.get()));
  2811. }
  2812. TEST(SSLTest, ClientCABuffers) {
  2813. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2814. ASSERT_TRUE(client_ctx);
  2815. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
  2816. ASSERT_TRUE(server_ctx);
  2817. bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
  2818. ASSERT_TRUE(key);
  2819. bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
  2820. ASSERT_TRUE(leaf);
  2821. bssl::UniquePtr<CRYPTO_BUFFER> intermediate =
  2822. GetChainTestIntermediateBuffer();
  2823. ASSERT_TRUE(intermediate);
  2824. std::vector<CRYPTO_BUFFER *> chain = {
  2825. leaf.get(),
  2826. intermediate.get(),
  2827. };
  2828. ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
  2829. chain.size(), key.get(), nullptr));
  2830. bssl::UniquePtr<CRYPTO_BUFFER> ca_name(
  2831. CRYPTO_BUFFER_new(kTestName, sizeof(kTestName), nullptr));
  2832. ASSERT_TRUE(ca_name);
  2833. bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names(
  2834. sk_CRYPTO_BUFFER_new_null());
  2835. ASSERT_TRUE(ca_names);
  2836. ASSERT_TRUE(PushToStack(ca_names.get(), std::move(ca_name)));
  2837. SSL_CTX_set0_client_CAs(server_ctx.get(), ca_names.release());
  2838. // Configure client and server to accept all certificates.
  2839. SSL_CTX_set_custom_verify(
  2840. client_ctx.get(), SSL_VERIFY_PEER,
  2841. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2842. return ssl_verify_ok;
  2843. });
  2844. SSL_CTX_set_custom_verify(
  2845. server_ctx.get(), SSL_VERIFY_PEER,
  2846. [](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
  2847. return ssl_verify_ok;
  2848. });
  2849. bool cert_cb_called = false;
  2850. SSL_CTX_set_cert_cb(
  2851. client_ctx.get(),
  2852. [](SSL *ssl, void *arg) -> int {
  2853. const STACK_OF(CRYPTO_BUFFER) *peer_names =
  2854. SSL_get0_server_requested_CAs(ssl);
  2855. EXPECT_EQ(1u, sk_CRYPTO_BUFFER_num(peer_names));
  2856. CRYPTO_BUFFER *peer_name = sk_CRYPTO_BUFFER_value(peer_names, 0);
  2857. EXPECT_EQ(Bytes(kTestName), Bytes(CRYPTO_BUFFER_data(peer_name),
  2858. CRYPTO_BUFFER_len(peer_name)));
  2859. *reinterpret_cast<bool *>(arg) = true;
  2860. return 1;
  2861. },
  2862. &cert_cb_called);
  2863. bssl::UniquePtr<SSL> client, server;
  2864. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  2865. server_ctx.get()));
  2866. EXPECT_TRUE(cert_cb_called);
  2867. }
  2868. // Configuring the empty cipher list, though an error, should still modify the
  2869. // configuration.
  2870. TEST(SSLTest, EmptyCipherList) {
  2871. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  2872. ASSERT_TRUE(ctx);
  2873. // Initially, the cipher list is not empty.
  2874. EXPECT_NE(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get())));
  2875. // Configuring the empty cipher list fails.
  2876. EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), ""));
  2877. ERR_clear_error();
  2878. // But the cipher list is still updated to empty.
  2879. EXPECT_EQ(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get())));
  2880. }
  2881. // ssl_test_ticket_aead_failure_mode enumerates the possible ways in which the
  2882. // test |SSL_TICKET_AEAD_METHOD| can fail.
  2883. enum ssl_test_ticket_aead_failure_mode {
  2884. ssl_test_ticket_aead_ok = 0,
  2885. ssl_test_ticket_aead_seal_fail,
  2886. ssl_test_ticket_aead_open_soft_fail,
  2887. ssl_test_ticket_aead_open_hard_fail,
  2888. };
  2889. struct ssl_test_ticket_aead_state {
  2890. unsigned retry_count;
  2891. ssl_test_ticket_aead_failure_mode failure_mode;
  2892. };
  2893. static int ssl_test_ticket_aead_ex_index_dup(CRYPTO_EX_DATA *to,
  2894. const CRYPTO_EX_DATA *from,
  2895. void **from_d, int index,
  2896. long argl, void *argp) {
  2897. abort();
  2898. }
  2899. static void ssl_test_ticket_aead_ex_index_free(void *parent, void *ptr,
  2900. CRYPTO_EX_DATA *ad, int index,
  2901. long argl, void *argp) {
  2902. auto state = reinterpret_cast<ssl_test_ticket_aead_state*>(ptr);
  2903. if (state == nullptr) {
  2904. return;
  2905. }
  2906. OPENSSL_free(state);
  2907. }
  2908. static CRYPTO_once_t g_ssl_test_ticket_aead_ex_index_once = CRYPTO_ONCE_INIT;
  2909. static int g_ssl_test_ticket_aead_ex_index;
  2910. static int ssl_test_ticket_aead_get_ex_index() {
  2911. CRYPTO_once(&g_ssl_test_ticket_aead_ex_index_once, [] {
  2912. g_ssl_test_ticket_aead_ex_index = SSL_get_ex_new_index(
  2913. 0, nullptr, nullptr, ssl_test_ticket_aead_ex_index_dup,
  2914. ssl_test_ticket_aead_ex_index_free);
  2915. });
  2916. return g_ssl_test_ticket_aead_ex_index;
  2917. }
  2918. static size_t ssl_test_ticket_aead_max_overhead(SSL *ssl) {
  2919. return 1;
  2920. }
  2921. static int ssl_test_ticket_aead_seal(SSL *ssl, uint8_t *out, size_t *out_len,
  2922. size_t max_out_len, const uint8_t *in,
  2923. size_t in_len) {
  2924. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2925. SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index()));
  2926. if (state->failure_mode == ssl_test_ticket_aead_seal_fail ||
  2927. max_out_len < in_len + 1) {
  2928. return 0;
  2929. }
  2930. OPENSSL_memmove(out, in, in_len);
  2931. out[in_len] = 0xff;
  2932. *out_len = in_len + 1;
  2933. return 1;
  2934. }
  2935. static ssl_ticket_aead_result_t ssl_test_ticket_aead_open(
  2936. SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len,
  2937. const uint8_t *in, size_t in_len) {
  2938. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2939. SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index()));
  2940. if (state->retry_count > 0) {
  2941. state->retry_count--;
  2942. return ssl_ticket_aead_retry;
  2943. }
  2944. switch (state->failure_mode) {
  2945. case ssl_test_ticket_aead_ok:
  2946. break;
  2947. case ssl_test_ticket_aead_seal_fail:
  2948. // If |seal| failed then there shouldn't be any ticket to try and
  2949. // decrypt.
  2950. abort();
  2951. break;
  2952. case ssl_test_ticket_aead_open_soft_fail:
  2953. return ssl_ticket_aead_ignore_ticket;
  2954. case ssl_test_ticket_aead_open_hard_fail:
  2955. return ssl_ticket_aead_error;
  2956. }
  2957. if (in_len == 0 || in[in_len - 1] != 0xff) {
  2958. return ssl_ticket_aead_ignore_ticket;
  2959. }
  2960. if (max_out_len < in_len - 1) {
  2961. return ssl_ticket_aead_error;
  2962. }
  2963. OPENSSL_memmove(out, in, in_len - 1);
  2964. *out_len = in_len - 1;
  2965. return ssl_ticket_aead_success;
  2966. }
  2967. static const SSL_TICKET_AEAD_METHOD kSSLTestTicketMethod = {
  2968. ssl_test_ticket_aead_max_overhead,
  2969. ssl_test_ticket_aead_seal,
  2970. ssl_test_ticket_aead_open,
  2971. };
  2972. static void ConnectClientAndServerWithTicketMethod(
  2973. bssl::UniquePtr<SSL> *out_client, bssl::UniquePtr<SSL> *out_server,
  2974. SSL_CTX *client_ctx, SSL_CTX *server_ctx, unsigned retry_count,
  2975. ssl_test_ticket_aead_failure_mode failure_mode, SSL_SESSION *session) {
  2976. bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
  2977. ASSERT_TRUE(client);
  2978. ASSERT_TRUE(server);
  2979. SSL_set_connect_state(client.get());
  2980. SSL_set_accept_state(server.get());
  2981. auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
  2982. OPENSSL_malloc(sizeof(ssl_test_ticket_aead_state)));
  2983. ASSERT_TRUE(state);
  2984. OPENSSL_memset(state, 0, sizeof(ssl_test_ticket_aead_state));
  2985. state->retry_count = retry_count;
  2986. state->failure_mode = failure_mode;
  2987. ASSERT_TRUE(SSL_set_ex_data(server.get(), ssl_test_ticket_aead_get_ex_index(),
  2988. state));
  2989. SSL_set_session(client.get(), session);
  2990. BIO *bio1, *bio2;
  2991. ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0));
  2992. // SSL_set_bio takes ownership.
  2993. SSL_set_bio(client.get(), bio1, bio1);
  2994. SSL_set_bio(server.get(), bio2, bio2);
  2995. if (CompleteHandshakes(client.get(), server.get())) {
  2996. *out_client = std::move(client);
  2997. *out_server = std::move(server);
  2998. } else {
  2999. out_client->reset();
  3000. out_server->reset();
  3001. }
  3002. }
  3003. using TicketAEADMethodParam =
  3004. testing::tuple<uint16_t, unsigned, ssl_test_ticket_aead_failure_mode>;
  3005. class TicketAEADMethodTest
  3006. : public ::testing::TestWithParam<TicketAEADMethodParam> {};
  3007. TEST_P(TicketAEADMethodTest, Resume) {
  3008. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3009. ASSERT_TRUE(cert);
  3010. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3011. ASSERT_TRUE(key);
  3012. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3013. ASSERT_TRUE(server_ctx);
  3014. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3015. ASSERT_TRUE(client_ctx);
  3016. const uint16_t version = testing::get<0>(GetParam());
  3017. const unsigned retry_count = testing::get<1>(GetParam());
  3018. const ssl_test_ticket_aead_failure_mode failure_mode =
  3019. testing::get<2>(GetParam());
  3020. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3021. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3022. ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), version));
  3023. ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), version));
  3024. ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), version));
  3025. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), version));
  3026. SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH);
  3027. SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH);
  3028. SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback);
  3029. SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback);
  3030. SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession);
  3031. SSL_CTX_set_ticket_aead_method(server_ctx.get(), &kSSLTestTicketMethod);
  3032. bssl::UniquePtr<SSL> client, server;
  3033. ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(),
  3034. server_ctx.get(), retry_count,
  3035. failure_mode, nullptr);
  3036. switch (failure_mode) {
  3037. case ssl_test_ticket_aead_ok:
  3038. case ssl_test_ticket_aead_open_hard_fail:
  3039. case ssl_test_ticket_aead_open_soft_fail:
  3040. ASSERT_TRUE(client);
  3041. break;
  3042. case ssl_test_ticket_aead_seal_fail:
  3043. EXPECT_FALSE(client);
  3044. return;
  3045. }
  3046. EXPECT_FALSE(SSL_session_reused(client.get()));
  3047. EXPECT_FALSE(SSL_session_reused(server.get()));
  3048. // Run the read loop to account for post-handshake tickets in TLS 1.3.
  3049. SSL_read(client.get(), nullptr, 0);
  3050. bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session);
  3051. ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(),
  3052. server_ctx.get(), retry_count,
  3053. failure_mode, session.get());
  3054. switch (failure_mode) {
  3055. case ssl_test_ticket_aead_ok:
  3056. ASSERT_TRUE(client);
  3057. EXPECT_TRUE(SSL_session_reused(client.get()));
  3058. EXPECT_TRUE(SSL_session_reused(server.get()));
  3059. break;
  3060. case ssl_test_ticket_aead_seal_fail:
  3061. abort();
  3062. break;
  3063. case ssl_test_ticket_aead_open_hard_fail:
  3064. EXPECT_FALSE(client);
  3065. break;
  3066. case ssl_test_ticket_aead_open_soft_fail:
  3067. ASSERT_TRUE(client);
  3068. EXPECT_FALSE(SSL_session_reused(client.get()));
  3069. EXPECT_FALSE(SSL_session_reused(server.get()));
  3070. }
  3071. }
  3072. std::string TicketAEADMethodParamToString(
  3073. const testing::TestParamInfo<TicketAEADMethodParam> &params) {
  3074. std::string ret = GetVersionName(std::get<0>(params.param));
  3075. // GTest only allows alphanumeric characters and '_' in the parameter
  3076. // string. Additionally filter out the 'v' to get "TLS13" over "TLSv13".
  3077. for (auto it = ret.begin(); it != ret.end();) {
  3078. if (*it == '.' || *it == 'v') {
  3079. it = ret.erase(it);
  3080. } else {
  3081. ++it;
  3082. }
  3083. }
  3084. char retry_count[256];
  3085. snprintf(retry_count, sizeof(retry_count), "%d", std::get<1>(params.param));
  3086. ret += "_";
  3087. ret += retry_count;
  3088. ret += "Retries_";
  3089. switch (std::get<2>(params.param)) {
  3090. case ssl_test_ticket_aead_ok:
  3091. ret += "OK";
  3092. break;
  3093. case ssl_test_ticket_aead_seal_fail:
  3094. ret += "SealFail";
  3095. break;
  3096. case ssl_test_ticket_aead_open_soft_fail:
  3097. ret += "OpenSoftFail";
  3098. break;
  3099. case ssl_test_ticket_aead_open_hard_fail:
  3100. ret += "OpenHardFail";
  3101. break;
  3102. }
  3103. return ret;
  3104. }
  3105. INSTANTIATE_TEST_CASE_P(
  3106. TicketAEADMethodTests, TicketAEADMethodTest,
  3107. testing::Combine(testing::Values(TLS1_2_VERSION, TLS1_3_VERSION),
  3108. testing::Values(0, 1, 2),
  3109. testing::Values(ssl_test_ticket_aead_ok,
  3110. ssl_test_ticket_aead_seal_fail,
  3111. ssl_test_ticket_aead_open_soft_fail,
  3112. ssl_test_ticket_aead_open_hard_fail)),
  3113. TicketAEADMethodParamToString);
  3114. TEST(SSLTest, SelectNextProto) {
  3115. uint8_t *result;
  3116. uint8_t result_len;
  3117. // If there is an overlap, it should be returned.
  3118. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3119. SSL_select_next_proto(&result, &result_len,
  3120. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3121. (const uint8_t *)"\1x\1y\1a\1z", 8));
  3122. EXPECT_EQ(Bytes("a"), Bytes(result, result_len));
  3123. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3124. SSL_select_next_proto(&result, &result_len,
  3125. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3126. (const uint8_t *)"\1x\1y\2bb\1z", 9));
  3127. EXPECT_EQ(Bytes("bb"), Bytes(result, result_len));
  3128. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3129. SSL_select_next_proto(&result, &result_len,
  3130. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3131. (const uint8_t *)"\1x\1y\3ccc\1z", 10));
  3132. EXPECT_EQ(Bytes("ccc"), Bytes(result, result_len));
  3133. // Peer preference order takes precedence over local.
  3134. EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
  3135. SSL_select_next_proto(&result, &result_len,
  3136. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3137. (const uint8_t *)"\3ccc\2bb\1a", 9));
  3138. EXPECT_EQ(Bytes("a"), Bytes(result, result_len));
  3139. // If there is no overlap, return the first local protocol.
  3140. EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP,
  3141. SSL_select_next_proto(&result, &result_len,
  3142. (const uint8_t *)"\1a\2bb\3ccc", 9,
  3143. (const uint8_t *)"\1x\2yy\3zzz", 9));
  3144. EXPECT_EQ(Bytes("x"), Bytes(result, result_len));
  3145. EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP,
  3146. SSL_select_next_proto(&result, &result_len, nullptr, 0,
  3147. (const uint8_t *)"\1x\2yy\3zzz", 9));
  3148. EXPECT_EQ(Bytes("x"), Bytes(result, result_len));
  3149. }
  3150. TEST(SSLTest, SealRecord) {
  3151. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3152. server_ctx(SSL_CTX_new(TLS_method()));
  3153. ASSERT_TRUE(client_ctx);
  3154. ASSERT_TRUE(server_ctx);
  3155. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3156. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3157. ASSERT_TRUE(cert);
  3158. ASSERT_TRUE(key);
  3159. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3160. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3161. bssl::UniquePtr<SSL> client, server;
  3162. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3163. server_ctx.get()));
  3164. const std::vector<uint8_t> record = {1, 2, 3, 4, 5};
  3165. std::vector<uint8_t> prefix(
  3166. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3167. body(record.size()),
  3168. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3169. ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3170. bssl::MakeSpan(body), bssl::MakeSpan(suffix),
  3171. record));
  3172. std::vector<uint8_t> sealed;
  3173. sealed.insert(sealed.end(), prefix.begin(), prefix.end());
  3174. sealed.insert(sealed.end(), body.begin(), body.end());
  3175. sealed.insert(sealed.end(), suffix.begin(), suffix.end());
  3176. std::vector<uint8_t> sealed_copy = sealed;
  3177. bssl::Span<uint8_t> plaintext;
  3178. size_t record_len;
  3179. uint8_t alert = 255;
  3180. EXPECT_EQ(bssl::OpenRecord(server.get(), &plaintext, &record_len, &alert,
  3181. bssl::MakeSpan(sealed)),
  3182. bssl::OpenRecordResult::kOK);
  3183. EXPECT_EQ(record_len, sealed.size());
  3184. EXPECT_EQ(plaintext, record);
  3185. EXPECT_EQ(255, alert);
  3186. }
  3187. TEST(SSLTest, SealRecordInPlace) {
  3188. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3189. server_ctx(SSL_CTX_new(TLS_method()));
  3190. ASSERT_TRUE(client_ctx);
  3191. ASSERT_TRUE(server_ctx);
  3192. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3193. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3194. ASSERT_TRUE(cert);
  3195. ASSERT_TRUE(key);
  3196. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3197. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3198. bssl::UniquePtr<SSL> client, server;
  3199. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3200. server_ctx.get()));
  3201. const std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5};
  3202. std::vector<uint8_t> record = plaintext;
  3203. std::vector<uint8_t> prefix(
  3204. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3205. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3206. ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3207. bssl::MakeSpan(record), bssl::MakeSpan(suffix),
  3208. record));
  3209. record.insert(record.begin(), prefix.begin(), prefix.end());
  3210. record.insert(record.end(), suffix.begin(), suffix.end());
  3211. bssl::Span<uint8_t> result;
  3212. size_t record_len;
  3213. uint8_t alert;
  3214. EXPECT_EQ(bssl::OpenRecord(server.get(), &result, &record_len, &alert,
  3215. bssl::MakeSpan(record)),
  3216. bssl::OpenRecordResult::kOK);
  3217. EXPECT_EQ(record_len, record.size());
  3218. EXPECT_EQ(plaintext, result);
  3219. }
  3220. TEST(SSLTest, SealRecordTrailingData) {
  3221. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3222. server_ctx(SSL_CTX_new(TLS_method()));
  3223. ASSERT_TRUE(client_ctx);
  3224. ASSERT_TRUE(server_ctx);
  3225. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3226. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3227. ASSERT_TRUE(cert);
  3228. ASSERT_TRUE(key);
  3229. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3230. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3231. bssl::UniquePtr<SSL> client, server;
  3232. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3233. server_ctx.get()));
  3234. const std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5};
  3235. std::vector<uint8_t> record = plaintext;
  3236. std::vector<uint8_t> prefix(
  3237. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3238. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3239. ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3240. bssl::MakeSpan(record), bssl::MakeSpan(suffix),
  3241. record));
  3242. record.insert(record.begin(), prefix.begin(), prefix.end());
  3243. record.insert(record.end(), suffix.begin(), suffix.end());
  3244. record.insert(record.end(), {5, 4, 3, 2, 1});
  3245. bssl::Span<uint8_t> result;
  3246. size_t record_len;
  3247. uint8_t alert;
  3248. EXPECT_EQ(bssl::OpenRecord(server.get(), &result, &record_len, &alert,
  3249. bssl::MakeSpan(record)),
  3250. bssl::OpenRecordResult::kOK);
  3251. EXPECT_EQ(record_len, record.size() - 5);
  3252. EXPECT_EQ(plaintext, result);
  3253. }
  3254. TEST(SSLTest, SealRecordInvalidSpanSize) {
  3255. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method())),
  3256. server_ctx(SSL_CTX_new(TLS_method()));
  3257. ASSERT_TRUE(client_ctx);
  3258. ASSERT_TRUE(server_ctx);
  3259. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3260. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3261. ASSERT_TRUE(cert);
  3262. ASSERT_TRUE(key);
  3263. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3264. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3265. bssl::UniquePtr<SSL> client, server;
  3266. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3267. server_ctx.get()));
  3268. std::vector<uint8_t> record = {1, 2, 3, 4, 5};
  3269. std::vector<uint8_t> prefix(
  3270. bssl::SealRecordPrefixLen(client.get(), record.size())),
  3271. body(record.size()),
  3272. suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
  3273. auto expect_err = []() {
  3274. int err = ERR_get_error();
  3275. EXPECT_EQ(ERR_GET_LIB(err), ERR_LIB_SSL);
  3276. EXPECT_EQ(ERR_GET_REASON(err), SSL_R_BUFFER_TOO_SMALL);
  3277. ERR_clear_error();
  3278. };
  3279. EXPECT_FALSE(bssl::SealRecord(
  3280. client.get(), bssl::MakeSpan(prefix.data(), prefix.size() - 1),
  3281. bssl::MakeSpan(record), bssl::MakeSpan(suffix), record));
  3282. expect_err();
  3283. EXPECT_FALSE(bssl::SealRecord(
  3284. client.get(), bssl::MakeSpan(prefix.data(), prefix.size() + 1),
  3285. bssl::MakeSpan(record), bssl::MakeSpan(suffix), record));
  3286. expect_err();
  3287. EXPECT_FALSE(
  3288. bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3289. bssl::MakeSpan(record.data(), record.size() - 1),
  3290. bssl::MakeSpan(suffix), record));
  3291. expect_err();
  3292. EXPECT_FALSE(
  3293. bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
  3294. bssl::MakeSpan(record.data(), record.size() + 1),
  3295. bssl::MakeSpan(suffix), record));
  3296. expect_err();
  3297. EXPECT_FALSE(bssl::SealRecord(
  3298. client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record),
  3299. bssl::MakeSpan(suffix.data(), suffix.size() - 1), record));
  3300. expect_err();
  3301. EXPECT_FALSE(bssl::SealRecord(
  3302. client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record),
  3303. bssl::MakeSpan(suffix.data(), suffix.size() + 1), record));
  3304. expect_err();
  3305. }
  3306. // The client should gracefully handle no suitable ciphers being enabled.
  3307. TEST(SSLTest, NoCiphersAvailable) {
  3308. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  3309. ASSERT_TRUE(ctx);
  3310. // Configure |client_ctx| with a cipher list that does not intersect with its
  3311. // version configuration.
  3312. ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(
  3313. ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"));
  3314. ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION));
  3315. bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
  3316. ASSERT_TRUE(ssl);
  3317. SSL_set_connect_state(ssl.get());
  3318. UniquePtr<BIO> rbio(BIO_new(BIO_s_mem())), wbio(BIO_new(BIO_s_mem()));
  3319. ASSERT_TRUE(rbio);
  3320. ASSERT_TRUE(wbio);
  3321. SSL_set0_rbio(ssl.get(), rbio.release());
  3322. SSL_set0_wbio(ssl.get(), wbio.release());
  3323. int ret = SSL_do_handshake(ssl.get());
  3324. EXPECT_EQ(-1, ret);
  3325. EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), ret));
  3326. uint32_t err = ERR_get_error();
  3327. EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err));
  3328. EXPECT_EQ(SSL_R_NO_CIPHERS_AVAILABLE, ERR_GET_REASON(err));
  3329. }
  3330. TEST_P(SSLVersionTest, SessionVersion) {
  3331. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3332. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3333. bssl::UniquePtr<SSL_SESSION> session =
  3334. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  3335. ASSERT_TRUE(session);
  3336. EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get()));
  3337. // Sessions in TLS 1.3 and later should be single-use.
  3338. EXPECT_EQ(version() == TLS1_3_VERSION,
  3339. !!SSL_SESSION_should_be_single_use(session.get()));
  3340. // Making fake sessions for testing works.
  3341. session.reset(SSL_SESSION_new(client_ctx_.get()));
  3342. ASSERT_TRUE(session);
  3343. ASSERT_TRUE(SSL_SESSION_set_protocol_version(session.get(), version()));
  3344. EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get()));
  3345. }
  3346. TEST_P(SSLVersionTest, SSLPending) {
  3347. UniquePtr<SSL> ssl(SSL_new(client_ctx_.get()));
  3348. ASSERT_TRUE(ssl);
  3349. EXPECT_EQ(0, SSL_pending(ssl.get()));
  3350. ASSERT_TRUE(Connect());
  3351. EXPECT_EQ(0, SSL_pending(client_.get()));
  3352. ASSERT_EQ(5, SSL_write(server_.get(), "hello", 5));
  3353. ASSERT_EQ(5, SSL_write(server_.get(), "world", 5));
  3354. EXPECT_EQ(0, SSL_pending(client_.get()));
  3355. char buf[10];
  3356. ASSERT_EQ(1, SSL_peek(client_.get(), buf, 1));
  3357. EXPECT_EQ(5, SSL_pending(client_.get()));
  3358. ASSERT_EQ(1, SSL_read(client_.get(), buf, 1));
  3359. EXPECT_EQ(4, SSL_pending(client_.get()));
  3360. ASSERT_EQ(4, SSL_read(client_.get(), buf, 10));
  3361. EXPECT_EQ(0, SSL_pending(client_.get()));
  3362. ASSERT_EQ(2, SSL_read(client_.get(), buf, 2));
  3363. EXPECT_EQ(3, SSL_pending(client_.get()));
  3364. }
  3365. // Test that post-handshake tickets consumed by |SSL_shutdown| are ignored.
  3366. TEST(SSLTest, ShutdownIgnoresTickets) {
  3367. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  3368. ASSERT_TRUE(ctx);
  3369. ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_3_VERSION));
  3370. ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION));
  3371. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3372. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3373. ASSERT_TRUE(cert);
  3374. ASSERT_TRUE(key);
  3375. ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
  3376. ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get()));
  3377. SSL_CTX_set_session_cache_mode(ctx.get(), SSL_SESS_CACHE_BOTH);
  3378. bssl::UniquePtr<SSL> client, server;
  3379. ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get()));
  3380. SSL_CTX_sess_set_new_cb(ctx.get(), [](SSL *ssl, SSL_SESSION *session) -> int {
  3381. ADD_FAILURE() << "New session callback called during SSL_shutdown";
  3382. return 0;
  3383. });
  3384. // Send close_notify.
  3385. EXPECT_EQ(0, SSL_shutdown(server.get()));
  3386. EXPECT_EQ(0, SSL_shutdown(client.get()));
  3387. // Receive close_notify.
  3388. EXPECT_EQ(1, SSL_shutdown(server.get()));
  3389. EXPECT_EQ(1, SSL_shutdown(client.get()));
  3390. }
  3391. TEST(SSLTest, SignatureAlgorithmProperties) {
  3392. EXPECT_EQ(EVP_PKEY_NONE, SSL_get_signature_algorithm_key_type(0x1234));
  3393. EXPECT_EQ(nullptr, SSL_get_signature_algorithm_digest(0x1234));
  3394. EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(0x1234));
  3395. EXPECT_EQ(EVP_PKEY_RSA,
  3396. SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
  3397. EXPECT_EQ(EVP_md5_sha1(),
  3398. SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
  3399. EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
  3400. EXPECT_EQ(EVP_PKEY_EC, SSL_get_signature_algorithm_key_type(
  3401. SSL_SIGN_ECDSA_SECP256R1_SHA256));
  3402. EXPECT_EQ(EVP_sha256(), SSL_get_signature_algorithm_digest(
  3403. SSL_SIGN_ECDSA_SECP256R1_SHA256));
  3404. EXPECT_FALSE(
  3405. SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_ECDSA_SECP256R1_SHA256));
  3406. EXPECT_EQ(EVP_PKEY_RSA,
  3407. SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PSS_RSAE_SHA384));
  3408. EXPECT_EQ(EVP_sha384(),
  3409. SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PSS_RSAE_SHA384));
  3410. EXPECT_TRUE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PSS_RSAE_SHA384));
  3411. }
  3412. static int XORCompressFunc(SSL *ssl, CBB *out, const uint8_t *in,
  3413. size_t in_len) {
  3414. for (size_t i = 0; i < in_len; i++) {
  3415. if (!CBB_add_u8(out, in[i] ^ 0x55)) {
  3416. return 0;
  3417. }
  3418. }
  3419. SSL_set_app_data(ssl, XORCompressFunc);
  3420. return 1;
  3421. }
  3422. static int XORDecompressFunc(SSL *ssl, CRYPTO_BUFFER **out,
  3423. size_t uncompressed_len, const uint8_t *in,
  3424. size_t in_len) {
  3425. if (in_len != uncompressed_len) {
  3426. return 0;
  3427. }
  3428. uint8_t *data;
  3429. *out = CRYPTO_BUFFER_alloc(&data, uncompressed_len);
  3430. if (*out == nullptr) {
  3431. return 0;
  3432. }
  3433. for (size_t i = 0; i < in_len; i++) {
  3434. data[i] = in[i] ^ 0x55;
  3435. }
  3436. SSL_set_app_data(ssl, XORDecompressFunc);
  3437. return 1;
  3438. }
  3439. TEST(SSLTest, CertCompression) {
  3440. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3441. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3442. ASSERT_TRUE(client_ctx);
  3443. ASSERT_TRUE(server_ctx);
  3444. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3445. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3446. ASSERT_TRUE(cert);
  3447. ASSERT_TRUE(key);
  3448. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3449. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3450. ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
  3451. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
  3452. ASSERT_TRUE(SSL_CTX_add_cert_compression_alg(
  3453. client_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc));
  3454. ASSERT_TRUE(SSL_CTX_add_cert_compression_alg(
  3455. server_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc));
  3456. bssl::UniquePtr<SSL> client, server;
  3457. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3458. server_ctx.get()));
  3459. EXPECT_TRUE(SSL_get_app_data(client.get()) == XORDecompressFunc);
  3460. EXPECT_TRUE(SSL_get_app_data(server.get()) == XORCompressFunc);
  3461. }
  3462. void MoveBIOs(SSL *dest, SSL *src) {
  3463. BIO *rbio = SSL_get_rbio(src);
  3464. BIO_up_ref(rbio);
  3465. SSL_set0_rbio(dest, rbio);
  3466. BIO *wbio = SSL_get_wbio(src);
  3467. BIO_up_ref(wbio);
  3468. SSL_set0_wbio(dest, wbio);
  3469. SSL_set0_rbio(src, nullptr);
  3470. SSL_set0_wbio(src, nullptr);
  3471. }
  3472. TEST(SSLTest, Handoff) {
  3473. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3474. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3475. bssl::UniquePtr<SSL_CTX> handshaker_ctx(SSL_CTX_new(TLS_method()));
  3476. ASSERT_TRUE(client_ctx);
  3477. ASSERT_TRUE(server_ctx);
  3478. ASSERT_TRUE(handshaker_ctx);
  3479. SSL_CTX_set_handoff_mode(server_ctx.get(), 1);
  3480. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION));
  3481. ASSERT_TRUE(
  3482. SSL_CTX_set_max_proto_version(handshaker_ctx.get(), TLS1_2_VERSION));
  3483. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3484. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3485. ASSERT_TRUE(cert);
  3486. ASSERT_TRUE(key);
  3487. ASSERT_TRUE(SSL_CTX_use_certificate(handshaker_ctx.get(), cert.get()));
  3488. ASSERT_TRUE(SSL_CTX_use_PrivateKey(handshaker_ctx.get(), key.get()));
  3489. bssl::UniquePtr<SSL> client, server;
  3490. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3491. server_ctx.get(), ClientConfig(),
  3492. false /* don't handshake */));
  3493. int client_ret = SSL_do_handshake(client.get());
  3494. int client_err = SSL_get_error(client.get(), client_ret);
  3495. ASSERT_EQ(client_err, SSL_ERROR_WANT_READ);
  3496. int server_ret = SSL_do_handshake(server.get());
  3497. int server_err = SSL_get_error(server.get(), server_ret);
  3498. ASSERT_EQ(server_err, SSL_ERROR_HANDOFF);
  3499. ScopedCBB cbb;
  3500. Array<uint8_t> handoff;
  3501. ASSERT_TRUE(CBB_init(cbb.get(), 256));
  3502. ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get()));
  3503. ASSERT_TRUE(CBBFinishArray(cbb.get(), &handoff));
  3504. bssl::UniquePtr<SSL> handshaker(SSL_new(handshaker_ctx.get()));
  3505. ASSERT_TRUE(SSL_apply_handoff(handshaker.get(), handoff));
  3506. MoveBIOs(handshaker.get(), server.get());
  3507. int handshake_ret = SSL_do_handshake(handshaker.get());
  3508. int handshake_err = SSL_get_error(handshaker.get(), handshake_ret);
  3509. ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK);
  3510. // Double-check that additional calls to |SSL_do_handshake| continue
  3511. // to get |SSL_ERRROR_HANDBACK|.
  3512. handshake_ret = SSL_do_handshake(handshaker.get());
  3513. handshake_err = SSL_get_error(handshaker.get(), handshake_ret);
  3514. ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK);
  3515. ScopedCBB cbb_handback;
  3516. Array<uint8_t> handback;
  3517. ASSERT_TRUE(CBB_init(cbb_handback.get(), 1024));
  3518. ASSERT_TRUE(SSL_serialize_handback(handshaker.get(), cbb_handback.get()));
  3519. ASSERT_TRUE(CBBFinishArray(cbb_handback.get(), &handback));
  3520. bssl::UniquePtr<SSL> server2(SSL_new(server_ctx.get()));
  3521. ASSERT_TRUE(SSL_apply_handback(server2.get(), handback));
  3522. MoveBIOs(server2.get(), handshaker.get());
  3523. ASSERT_TRUE(CompleteHandshakes(client.get(), server2.get()));
  3524. uint8_t byte = 42;
  3525. EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1);
  3526. EXPECT_EQ(SSL_read(server2.get(), &byte, 1), 1);
  3527. EXPECT_EQ(42, byte);
  3528. byte = 43;
  3529. EXPECT_EQ(SSL_write(server2.get(), &byte, 1), 1);
  3530. EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1);
  3531. EXPECT_EQ(43, byte);
  3532. }
  3533. TEST(SSLTest, HandoffDeclined) {
  3534. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3535. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3536. ASSERT_TRUE(client_ctx);
  3537. ASSERT_TRUE(server_ctx);
  3538. SSL_CTX_set_handoff_mode(server_ctx.get(), 1);
  3539. ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION));
  3540. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3541. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3542. ASSERT_TRUE(cert);
  3543. ASSERT_TRUE(key);
  3544. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3545. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3546. bssl::UniquePtr<SSL> client, server;
  3547. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3548. server_ctx.get(), ClientConfig(),
  3549. false /* don't handshake */));
  3550. int client_ret = SSL_do_handshake(client.get());
  3551. int client_err = SSL_get_error(client.get(), client_ret);
  3552. ASSERT_EQ(client_err, SSL_ERROR_WANT_READ);
  3553. int server_ret = SSL_do_handshake(server.get());
  3554. int server_err = SSL_get_error(server.get(), server_ret);
  3555. ASSERT_EQ(server_err, SSL_ERROR_HANDOFF);
  3556. ScopedCBB cbb;
  3557. ASSERT_TRUE(CBB_init(cbb.get(), 256));
  3558. ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get()));
  3559. ASSERT_TRUE(SSL_decline_handoff(server.get()));
  3560. ASSERT_TRUE(CompleteHandshakes(client.get(), server.get()));
  3561. uint8_t byte = 42;
  3562. EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1);
  3563. EXPECT_EQ(SSL_read(server.get(), &byte, 1), 1);
  3564. EXPECT_EQ(42, byte);
  3565. byte = 43;
  3566. EXPECT_EQ(SSL_write(server.get(), &byte, 1), 1);
  3567. EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1);
  3568. EXPECT_EQ(43, byte);
  3569. }
  3570. static std::string SigAlgsToString(Span<const uint16_t> sigalgs) {
  3571. std::string ret = "{";
  3572. for (uint16_t v : sigalgs) {
  3573. if (ret.size() > 1) {
  3574. ret += ", ";
  3575. }
  3576. char buf[8];
  3577. snprintf(buf, sizeof(buf) - 1, "0x%02x", v);
  3578. buf[sizeof(buf)-1] = 0;
  3579. ret += std::string(buf);
  3580. }
  3581. ret += "}";
  3582. return ret;
  3583. }
  3584. void ExpectSigAlgsEqual(Span<const uint16_t> expected,
  3585. Span<const uint16_t> actual) {
  3586. bool matches = false;
  3587. if (expected.size() == actual.size()) {
  3588. matches = true;
  3589. for (size_t i = 0; i < expected.size(); i++) {
  3590. if (expected[i] != actual[i]) {
  3591. matches = false;
  3592. break;
  3593. }
  3594. }
  3595. }
  3596. if (!matches) {
  3597. ADD_FAILURE() << "expected: " << SigAlgsToString(expected)
  3598. << " got: " << SigAlgsToString(actual);
  3599. }
  3600. }
  3601. TEST(SSLTest, SigAlgs) {
  3602. static const struct {
  3603. std::vector<int> input;
  3604. bool ok;
  3605. std::vector<uint16_t> expected;
  3606. } kTests[] = {
  3607. {{}, true, {}},
  3608. {{1}, false, {}},
  3609. {{1, 2, 3}, false, {}},
  3610. {{NID_sha256, EVP_PKEY_ED25519}, false, {}},
  3611. {{NID_sha256, EVP_PKEY_RSA, NID_sha256, EVP_PKEY_RSA}, false, {}},
  3612. {{NID_sha256, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA256}},
  3613. {{NID_sha512, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA512}},
  3614. {{NID_sha256, EVP_PKEY_RSA_PSS}, true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}},
  3615. {{NID_undef, EVP_PKEY_ED25519}, true, {SSL_SIGN_ED25519}},
  3616. {{NID_undef, EVP_PKEY_ED25519, NID_sha384, EVP_PKEY_EC},
  3617. true,
  3618. {SSL_SIGN_ED25519, SSL_SIGN_ECDSA_SECP384R1_SHA384}},
  3619. };
  3620. UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  3621. unsigned n = 1;
  3622. for (const auto &test : kTests) {
  3623. SCOPED_TRACE(n++);
  3624. const bool ok =
  3625. SSL_CTX_set1_sigalgs(ctx.get(), test.input.data(), test.input.size());
  3626. EXPECT_EQ(ok, test.ok);
  3627. if (!ok) {
  3628. ERR_clear_error();
  3629. }
  3630. if (!test.ok) {
  3631. continue;
  3632. }
  3633. ExpectSigAlgsEqual(test.expected, ctx->cert->sigalgs);
  3634. }
  3635. }
  3636. TEST(SSLTest, SigAlgsList) {
  3637. static const struct {
  3638. const char *input;
  3639. bool ok;
  3640. std::vector<uint16_t> expected;
  3641. } kTests[] = {
  3642. {"", false, {}},
  3643. {":", false, {}},
  3644. {"+", false, {}},
  3645. {"RSA", false, {}},
  3646. {"RSA+", false, {}},
  3647. {"RSA+SHA256:", false, {}},
  3648. {":RSA+SHA256:", false, {}},
  3649. {":RSA+SHA256+:", false, {}},
  3650. {"!", false, {}},
  3651. {"\x01", false, {}},
  3652. {"RSA+SHA256:RSA+SHA384:RSA+SHA256", false, {}},
  3653. {"RSA-PSS+SHA256:rsa_pss_rsae_sha256", false, {}},
  3654. {"RSA+SHA256", true, {SSL_SIGN_RSA_PKCS1_SHA256}},
  3655. {"RSA+SHA256:ed25519",
  3656. true,
  3657. {SSL_SIGN_RSA_PKCS1_SHA256, SSL_SIGN_ED25519}},
  3658. {"ECDSA+SHA256:RSA+SHA512",
  3659. true,
  3660. {SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PKCS1_SHA512}},
  3661. {"ecdsa_secp256r1_sha256:rsa_pss_rsae_sha256",
  3662. true,
  3663. {SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PSS_RSAE_SHA256}},
  3664. {"RSA-PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}},
  3665. {"PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}},
  3666. };
  3667. UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  3668. unsigned n = 1;
  3669. for (const auto &test : kTests) {
  3670. SCOPED_TRACE(n++);
  3671. const bool ok = SSL_CTX_set1_sigalgs_list(ctx.get(), test.input);
  3672. EXPECT_EQ(ok, test.ok);
  3673. if (!ok) {
  3674. if (test.ok) {
  3675. ERR_print_errors_fp(stderr);
  3676. }
  3677. ERR_clear_error();
  3678. }
  3679. if (!test.ok) {
  3680. continue;
  3681. }
  3682. ExpectSigAlgsEqual(test.expected, ctx->cert->sigalgs);
  3683. }
  3684. }
  3685. TEST(SSLTest, ApplyHandoffRemovesUnsupportedCiphers) {
  3686. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3687. bssl::UniquePtr<SSL> server(SSL_new(server_ctx.get()));
  3688. // handoff is a handoff message that has been artificially modified to pretend
  3689. // that only cipher 0x0A is supported. When it is applied to |server|, all
  3690. // ciphers but that one should be removed.
  3691. //
  3692. // To make a new one of these, try sticking this in the |Handoff| test above:
  3693. //
  3694. // hexdump(stderr, "", handoff.data(), handoff.size());
  3695. // sed -e 's/\(..\)/0x\1, /g'
  3696. //
  3697. // and modify serialize_features() to emit only cipher 0x0A.
  3698. uint8_t handoff[] = {
  3699. 0x30, 0x81, 0x9a, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01,
  3700. 0x00, 0x00, 0x7e, 0x03, 0x03, 0x30, 0x8e, 0x8f, 0x79, 0xd2, 0x87, 0x39,
  3701. 0xc2, 0x23, 0x23, 0x13, 0xca, 0x3c, 0x80, 0x44, 0xfd, 0x80, 0x83, 0x62,
  3702. 0x3c, 0xcc, 0xf8, 0x76, 0xd3, 0x62, 0xbb, 0x54, 0xe3, 0xc4, 0x39, 0x24,
  3703. 0xa5, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30,
  3704. 0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14,
  3705. 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00,
  3706. 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00,
  3707. 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00,
  3708. 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00,
  3709. 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08,
  3710. 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x02, 0x00,
  3711. 0x0a, 0x04, 0x0a, 0x00, 0x15, 0x00, 0x17, 0x00, 0x18, 0x00, 0x19, 0x00,
  3712. 0x1d,
  3713. };
  3714. EXPECT_EQ(20u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get())));
  3715. ASSERT_TRUE(
  3716. SSL_apply_handoff(server.get(), {handoff, OPENSSL_ARRAY_SIZE(handoff)}));
  3717. EXPECT_EQ(1u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get())));
  3718. }
  3719. TEST(SSLTest, ApplyHandoffRemovesUnsupportedCurves) {
  3720. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3721. bssl::UniquePtr<SSL> server(SSL_new(server_ctx.get()));
  3722. // handoff is a handoff message that has been artificially modified to pretend
  3723. // that only one curve is supported. When it is applied to |server|, all
  3724. // curves but that one should be removed.
  3725. //
  3726. // See |ApplyHandoffRemovesUnsupportedCiphers| for how to make a new one of
  3727. // these.
  3728. uint8_t handoff[] = {
  3729. 0x30, 0x81, 0xc0, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01,
  3730. 0x00, 0x00, 0x7e, 0x03, 0x03, 0x98, 0x30, 0xce, 0xd9, 0xb0, 0xdf, 0x5f,
  3731. 0x82, 0x05, 0x4a, 0x43, 0x67, 0x7e, 0xdb, 0x6a, 0x4f, 0x21, 0x18, 0x4e,
  3732. 0x0d, 0x94, 0x63, 0x18, 0x8b, 0x54, 0x89, 0xdb, 0x8b, 0x1d, 0x84, 0xbc,
  3733. 0x09, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30,
  3734. 0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14,
  3735. 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00,
  3736. 0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00,
  3737. 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00,
  3738. 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00,
  3739. 0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08,
  3740. 0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x30, 0x00,
  3741. 0x02, 0x00, 0x0a, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x8c, 0x00, 0x8d, 0x00,
  3742. 0x9c, 0x00, 0x9d, 0x13, 0x01, 0x13, 0x02, 0x13, 0x03, 0xc0, 0x09, 0xc0,
  3743. 0x0a, 0xc0, 0x13, 0xc0, 0x14, 0xc0, 0x2b, 0xc0, 0x2c, 0xc0, 0x2f, 0xc0,
  3744. 0x30, 0xc0, 0x35, 0xc0, 0x36, 0xcc, 0xa8, 0xcc, 0xa9, 0xcc, 0xac, 0x04,
  3745. 0x02, 0x00, 0x17,
  3746. };
  3747. // The zero length means that the default list of groups is used.
  3748. EXPECT_EQ(0u, server->config->supported_group_list.size());
  3749. ASSERT_TRUE(
  3750. SSL_apply_handoff(server.get(), {handoff, OPENSSL_ARRAY_SIZE(handoff)}));
  3751. EXPECT_EQ(1u, server->config->supported_group_list.size());
  3752. }
  3753. TEST(SSLTest, ZeroSizedWiteFlushesHandshakeMessages) {
  3754. // If there are pending handshake mesages, an |SSL_write| of zero bytes should
  3755. // flush them.
  3756. bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
  3757. EXPECT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
  3758. EXPECT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), TLS1_3_VERSION));
  3759. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3760. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  3761. ASSERT_TRUE(cert);
  3762. ASSERT_TRUE(key);
  3763. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
  3764. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
  3765. bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
  3766. EXPECT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
  3767. EXPECT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION));
  3768. bssl::UniquePtr<SSL> client, server;
  3769. ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
  3770. server_ctx.get()));
  3771. BIO *client_wbio = SSL_get_wbio(client.get());
  3772. EXPECT_EQ(0u, BIO_wpending(client_wbio));
  3773. EXPECT_TRUE(SSL_key_update(client.get(), SSL_KEY_UPDATE_NOT_REQUESTED));
  3774. EXPECT_EQ(0u, BIO_wpending(client_wbio));
  3775. EXPECT_EQ(0, SSL_write(client.get(), nullptr, 0));
  3776. EXPECT_NE(0u, BIO_wpending(client_wbio));
  3777. }
  3778. TEST_P(SSLVersionTest, VerifyBeforeCertRequest) {
  3779. // Configure the server to request client certificates.
  3780. SSL_CTX_set_custom_verify(
  3781. server_ctx_.get(), SSL_VERIFY_PEER,
  3782. [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; });
  3783. // Configure the client to reject the server certificate.
  3784. SSL_CTX_set_custom_verify(
  3785. client_ctx_.get(), SSL_VERIFY_PEER,
  3786. [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_invalid; });
  3787. // cert_cb should not be called. Verification should fail first.
  3788. SSL_CTX_set_cert_cb(client_ctx_.get(),
  3789. [](SSL *ssl, void *arg) {
  3790. ADD_FAILURE() << "cert_cb unexpectedly called";
  3791. return 0;
  3792. },
  3793. nullptr);
  3794. bssl::UniquePtr<SSL> client, server;
  3795. EXPECT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
  3796. server_ctx_.get()));
  3797. }
  3798. // Test that ticket-based sessions on the client get fake session IDs.
  3799. TEST_P(SSLVersionTest, FakeIDsForTickets) {
  3800. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3801. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3802. bssl::UniquePtr<SSL_SESSION> session =
  3803. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  3804. ASSERT_TRUE(session);
  3805. EXPECT_TRUE(SSL_SESSION_has_ticket(session.get()));
  3806. unsigned session_id_length;
  3807. SSL_SESSION_get_id(session.get(), &session_id_length);
  3808. EXPECT_NE(session_id_length, 0u);
  3809. }
  3810. // These tests test multi-threaded behavior. They are intended to run with
  3811. // ThreadSanitizer.
  3812. #if defined(OPENSSL_THREADS)
  3813. TEST_P(SSLVersionTest, SessionCacheThreads) {
  3814. SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET);
  3815. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3816. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3817. if (version() == TLS1_3_VERSION) {
  3818. // Our TLS 1.3 implementation does not support stateful resumption.
  3819. ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  3820. return;
  3821. }
  3822. // Establish two client sessions to test with.
  3823. bssl::UniquePtr<SSL_SESSION> session1 =
  3824. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  3825. ASSERT_TRUE(session1);
  3826. bssl::UniquePtr<SSL_SESSION> session2 =
  3827. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  3828. ASSERT_TRUE(session2);
  3829. auto connect_with_session = [&](SSL_SESSION *session) {
  3830. ClientConfig config;
  3831. config.session = session;
  3832. UniquePtr<SSL> client, server;
  3833. EXPECT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
  3834. server_ctx_.get(), config));
  3835. };
  3836. // Resume sessions in parallel with establishing new ones.
  3837. {
  3838. std::vector<std::thread> threads;
  3839. threads.emplace_back([&] { connect_with_session(nullptr); });
  3840. threads.emplace_back([&] { connect_with_session(nullptr); });
  3841. threads.emplace_back([&] { connect_with_session(session1.get()); });
  3842. threads.emplace_back([&] { connect_with_session(session1.get()); });
  3843. threads.emplace_back([&] { connect_with_session(session2.get()); });
  3844. threads.emplace_back([&] { connect_with_session(session2.get()); });
  3845. for (auto &thread : threads) {
  3846. thread.join();
  3847. }
  3848. }
  3849. // Hit the maximum session cache size across multiple threads
  3850. size_t limit = SSL_CTX_sess_number(server_ctx_.get()) + 2;
  3851. SSL_CTX_sess_set_cache_size(server_ctx_.get(), limit);
  3852. {
  3853. std::vector<std::thread> threads;
  3854. for (int i = 0; i < 4; i++) {
  3855. threads.emplace_back([&]() {
  3856. connect_with_session(nullptr);
  3857. EXPECT_LE(SSL_CTX_sess_number(server_ctx_.get()), limit);
  3858. });
  3859. }
  3860. for (auto &thread : threads) {
  3861. thread.join();
  3862. }
  3863. EXPECT_EQ(SSL_CTX_sess_number(server_ctx_.get()), limit);
  3864. }
  3865. }
  3866. TEST_P(SSLVersionTest, SessionTicketThreads) {
  3867. for (bool renew_ticket : {false, true}) {
  3868. SCOPED_TRACE(renew_ticket);
  3869. ResetContexts();
  3870. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3871. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3872. if (renew_ticket) {
  3873. SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback);
  3874. }
  3875. // Establish two client sessions to test with.
  3876. bssl::UniquePtr<SSL_SESSION> session1 =
  3877. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  3878. ASSERT_TRUE(session1);
  3879. bssl::UniquePtr<SSL_SESSION> session2 =
  3880. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  3881. ASSERT_TRUE(session2);
  3882. auto connect_with_session = [&](SSL_SESSION *session) {
  3883. ClientConfig config;
  3884. config.session = session;
  3885. UniquePtr<SSL> client, server;
  3886. EXPECT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
  3887. server_ctx_.get(), config));
  3888. };
  3889. // Resume sessions in parallel with establishing new ones.
  3890. {
  3891. std::vector<std::thread> threads;
  3892. threads.emplace_back([&] { connect_with_session(nullptr); });
  3893. threads.emplace_back([&] { connect_with_session(nullptr); });
  3894. threads.emplace_back([&] { connect_with_session(session1.get()); });
  3895. threads.emplace_back([&] { connect_with_session(session1.get()); });
  3896. threads.emplace_back([&] { connect_with_session(session2.get()); });
  3897. threads.emplace_back([&] { connect_with_session(session2.get()); });
  3898. for (auto &thread : threads) {
  3899. thread.join();
  3900. }
  3901. }
  3902. }
  3903. }
  3904. // SSL_CTX_get0_certificate needs to lock internally. Test this works.
  3905. TEST(SSLTest, GetCertificateThreads) {
  3906. bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
  3907. ASSERT_TRUE(ctx);
  3908. bssl::UniquePtr<X509> cert = GetTestCertificate();
  3909. ASSERT_TRUE(cert);
  3910. ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
  3911. // Existing code expects |SSL_CTX_get0_certificate| to be callable from two
  3912. // threads concurrently. It originally was an immutable operation. Now we
  3913. // implement it with a thread-safe cache, so it is worth testing.
  3914. X509 *cert2_thread;
  3915. std::thread thread(
  3916. [&] { cert2_thread = SSL_CTX_get0_certificate(ctx.get()); });
  3917. X509 *cert2 = SSL_CTX_get0_certificate(ctx.get());
  3918. thread.join();
  3919. EXPECT_EQ(cert2, cert2_thread);
  3920. EXPECT_EQ(0, X509_cmp(cert.get(), cert2));
  3921. }
  3922. // Functions which access properties on the negotiated session are thread-safe
  3923. // where needed. Prior to TLS 1.3, clients resuming sessions and servers
  3924. // performing stateful resumption will share an underlying SSL_SESSION object,
  3925. // potentially across threads.
  3926. TEST_P(SSLVersionTest, SessionPropertiesThreads) {
  3927. if (version() == TLS1_3_VERSION) {
  3928. // Our TLS 1.3 implementation does not support stateful resumption.
  3929. ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
  3930. return;
  3931. }
  3932. SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET);
  3933. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3934. SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
  3935. ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
  3936. ASSERT_TRUE(UseCertAndKey(server_ctx_.get()));
  3937. // Configure mutual authentication, so we have more session state.
  3938. SSL_CTX_set_custom_verify(
  3939. client_ctx_.get(), SSL_VERIFY_PEER,
  3940. [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; });
  3941. SSL_CTX_set_custom_verify(
  3942. server_ctx_.get(), SSL_VERIFY_PEER,
  3943. [](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; });
  3944. // Establish a client session to test with.
  3945. bssl::UniquePtr<SSL_SESSION> session =
  3946. CreateClientSession(client_ctx_.get(), server_ctx_.get());
  3947. ASSERT_TRUE(session);
  3948. // Resume with it twice.
  3949. UniquePtr<SSL> ssls[4];
  3950. ClientConfig config;
  3951. config.session = session.get();
  3952. ASSERT_TRUE(ConnectClientAndServer(&ssls[0], &ssls[1], client_ctx_.get(),
  3953. server_ctx_.get(), config));
  3954. ASSERT_TRUE(ConnectClientAndServer(&ssls[2], &ssls[3], client_ctx_.get(),
  3955. server_ctx_.get(), config));
  3956. // Read properties in parallel.
  3957. auto read_properties = [](const SSL *ssl) {
  3958. EXPECT_TRUE(SSL_get_peer_cert_chain(ssl));
  3959. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(ssl));
  3960. EXPECT_TRUE(peer);
  3961. EXPECT_TRUE(SSL_get_current_cipher(ssl));
  3962. EXPECT_TRUE(SSL_get_curve_id(ssl));
  3963. };
  3964. std::vector<std::thread> threads;
  3965. for (const auto &ssl_ptr : ssls) {
  3966. const SSL *ssl = ssl_ptr.get();
  3967. threads.emplace_back([=] { read_properties(ssl); });
  3968. }
  3969. for (auto &thread : threads) {
  3970. thread.join();
  3971. }
  3972. }
  3973. #endif
  3974. constexpr size_t kNumQUICLevels = 4;
  3975. static_assert(ssl_encryption_initial < kNumQUICLevels,
  3976. "kNumQUICLevels is wrong");
  3977. static_assert(ssl_encryption_early_data < kNumQUICLevels,
  3978. "kNumQUICLevels is wrong");
  3979. static_assert(ssl_encryption_handshake < kNumQUICLevels,
  3980. "kNumQUICLevels is wrong");
  3981. static_assert(ssl_encryption_application < kNumQUICLevels,
  3982. "kNumQUICLevels is wrong");
  3983. class MockQUICTransport {
  3984. public:
  3985. MockQUICTransport() {
  3986. // The caller is expected to configure initial secrets.
  3987. levels_[ssl_encryption_initial].write_secret = {1};
  3988. levels_[ssl_encryption_initial].read_secret = {1};
  3989. }
  3990. void set_peer(MockQUICTransport *peer) { peer_ = peer; }
  3991. bool has_alert() const { return has_alert_; }
  3992. ssl_encryption_level_t alert_level() const { return alert_level_; }
  3993. uint8_t alert() const { return alert_; }
  3994. bool PeerSecretsMatch(ssl_encryption_level_t level) const {
  3995. return levels_[level].write_secret == peer_->levels_[level].read_secret &&
  3996. levels_[level].read_secret == peer_->levels_[level].write_secret &&
  3997. levels_[level].cipher == peer_->levels_[level].cipher;
  3998. }
  3999. bool HasSecrets(ssl_encryption_level_t level) const {
  4000. return !levels_[level].write_secret.empty() ||
  4001. !levels_[level].read_secret.empty();
  4002. }
  4003. bool SetEncryptionSecrets(ssl_encryption_level_t level,
  4004. const uint8_t *read_secret,
  4005. const uint8_t *write_secret, size_t secret_len,
  4006. const SSL_CIPHER *cipher) {
  4007. if (HasSecrets(level)) {
  4008. ADD_FAILURE() << "duplicate keys configured";
  4009. return false;
  4010. }
  4011. if (cipher == nullptr) {
  4012. ADD_FAILURE() << "current cipher unavailable";
  4013. return false;
  4014. }
  4015. if (level != ssl_encryption_early_data &&
  4016. (read_secret == nullptr || write_secret == nullptr)) {
  4017. ADD_FAILURE() << "key was unexpectedly null";
  4018. return false;
  4019. }
  4020. if (read_secret != nullptr) {
  4021. levels_[level].read_secret.assign(read_secret, read_secret + secret_len);
  4022. }
  4023. if (write_secret != nullptr) {
  4024. levels_[level].write_secret.assign(write_secret,
  4025. write_secret + secret_len);
  4026. }
  4027. levels_[level].cipher = SSL_CIPHER_get_id(cipher);
  4028. return true;
  4029. }
  4030. bool WriteHandshakeData(ssl_encryption_level_t level,
  4031. Span<const uint8_t> data) {
  4032. if (levels_[level].write_secret.empty()) {
  4033. ADD_FAILURE() << "data written before keys configured";
  4034. return false;
  4035. }
  4036. levels_[level].write_data.insert(levels_[level].write_data.end(),
  4037. data.begin(), data.end());
  4038. return true;
  4039. }
  4040. bool SendAlert(ssl_encryption_level_t level, uint8_t alert_value) {
  4041. if (has_alert_) {
  4042. ADD_FAILURE() << "duplicate alert sent";
  4043. return false;
  4044. }
  4045. if (levels_[level].write_secret.empty()) {
  4046. ADD_FAILURE() << "alert sent before keys configured";
  4047. return false;
  4048. }
  4049. has_alert_ = true;
  4050. alert_level_ = level;
  4051. alert_ = alert_value;
  4052. return true;
  4053. }
  4054. bool ReadHandshakeData(std::vector<uint8_t> *out,
  4055. ssl_encryption_level_t level,
  4056. size_t num = std::numeric_limits<size_t>::max()) {
  4057. if (levels_[level].read_secret.empty()) {
  4058. ADD_FAILURE() << "data read before keys configured";
  4059. return false;
  4060. }
  4061. // The peer may not have configured any keys yet.
  4062. if (peer_->levels_[level].write_secret.empty()) {
  4063. return true;
  4064. }
  4065. // Check the peer computed the same key.
  4066. if (peer_->levels_[level].write_secret != levels_[level].read_secret) {
  4067. ADD_FAILURE() << "peer write key does not match read key";
  4068. return false;
  4069. }
  4070. if (peer_->levels_[level].cipher != levels_[level].cipher) {
  4071. ADD_FAILURE() << "peer cipher does not match";
  4072. return false;
  4073. }
  4074. std::vector<uint8_t> *peer_data = &peer_->levels_[level].write_data;
  4075. num = std::min(num, peer_data->size());
  4076. out->assign(peer_data->begin(), peer_data->begin() + num);
  4077. peer_data->erase(peer_data->begin(), peer_data->begin() + num);
  4078. return true;
  4079. }
  4080. private:
  4081. MockQUICTransport *peer_ = nullptr;
  4082. bool has_alert_ = false;
  4083. ssl_encryption_level_t alert_level_ = ssl_encryption_initial;
  4084. uint8_t alert_ = 0;
  4085. struct Level {
  4086. std::vector<uint8_t> write_data;
  4087. std::vector<uint8_t> write_secret;
  4088. std::vector<uint8_t> read_secret;
  4089. uint32_t cipher = 0;
  4090. };
  4091. Level levels_[kNumQUICLevels];
  4092. };
  4093. class MockQUICTransportPair {
  4094. public:
  4095. MockQUICTransportPair() {
  4096. server_.set_peer(&client_);
  4097. client_.set_peer(&server_);
  4098. }
  4099. ~MockQUICTransportPair() {
  4100. server_.set_peer(nullptr);
  4101. client_.set_peer(nullptr);
  4102. }
  4103. MockQUICTransport *client() { return &client_; }
  4104. MockQUICTransport *server() { return &server_; }
  4105. bool SecretsMatch(ssl_encryption_level_t level) const {
  4106. return client_.PeerSecretsMatch(level);
  4107. }
  4108. private:
  4109. MockQUICTransport client_;
  4110. MockQUICTransport server_;
  4111. };
  4112. class QUICMethodTest : public testing::Test {
  4113. protected:
  4114. void SetUp() override {
  4115. client_ctx_.reset(SSL_CTX_new(TLS_method()));
  4116. server_ctx_.reset(SSL_CTX_new(TLS_method()));
  4117. ASSERT_TRUE(client_ctx_);
  4118. ASSERT_TRUE(server_ctx_);
  4119. bssl::UniquePtr<X509> cert = GetTestCertificate();
  4120. bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
  4121. ASSERT_TRUE(cert);
  4122. ASSERT_TRUE(key);
  4123. ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx_.get(), cert.get()));
  4124. ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx_.get(), key.get()));
  4125. SSL_CTX_set_min_proto_version(server_ctx_.get(), TLS1_3_VERSION);
  4126. SSL_CTX_set_max_proto_version(server_ctx_.get(), TLS1_3_VERSION);
  4127. SSL_CTX_set_min_proto_version(client_ctx_.get(), TLS1_3_VERSION);
  4128. SSL_CTX_set_max_proto_version(client_ctx_.get(), TLS1_3_VERSION);
  4129. }
  4130. static MockQUICTransport *TransportFromSSL(const SSL *ssl) {
  4131. return ex_data_.Get(ssl);
  4132. }
  4133. static bool ProvideHandshakeData(
  4134. SSL *ssl, size_t num = std::numeric_limits<size_t>::max()) {
  4135. MockQUICTransport *transport = TransportFromSSL(ssl);
  4136. ssl_encryption_level_t level = SSL_quic_read_level(ssl);
  4137. std::vector<uint8_t> data;
  4138. return transport->ReadHandshakeData(&data, level, num) &&
  4139. SSL_provide_quic_data(ssl, level, data.data(), data.size());
  4140. }
  4141. bool CreateClientAndServer() {
  4142. client_.reset(SSL_new(client_ctx_.get()));
  4143. server_.reset(SSL_new(server_ctx_.get()));
  4144. if (!client_ || !server_) {
  4145. return false;
  4146. }
  4147. SSL_set_connect_state(client_.get());
  4148. SSL_set_accept_state(server_.get());
  4149. ex_data_.Set(client_.get(), transport_.client());
  4150. ex_data_.Set(server_.get(), transport_.server());
  4151. return true;
  4152. }
  4153. bool CreateSecondClientAndServer() {
  4154. client_.reset(SSL_new(client_ctx_.get()));
  4155. server_.reset(SSL_new(server_ctx_.get()));
  4156. if (!client_ || !server_) {
  4157. return false;
  4158. }
  4159. SSL_set_connect_state(client_.get());
  4160. SSL_set_accept_state(server_.get());
  4161. ex_data_.Set(client_.get(), second_transport_.client());
  4162. ex_data_.Set(server_.get(), second_transport_.server());
  4163. return true;
  4164. }
  4165. // The following functions may be configured on an |SSL_QUIC_METHOD| as
  4166. // default implementations.
  4167. static int SetEncryptionSecretsCallback(SSL *ssl,
  4168. ssl_encryption_level_t level,
  4169. const uint8_t *read_key,
  4170. const uint8_t *write_key,
  4171. size_t key_len) {
  4172. return TransportFromSSL(ssl)->SetEncryptionSecrets(
  4173. level, read_key, write_key, key_len, SSL_get_current_cipher(ssl));
  4174. }
  4175. static int AddHandshakeDataCallback(SSL *ssl,
  4176. enum ssl_encryption_level_t level,
  4177. const uint8_t *data, size_t len) {
  4178. EXPECT_EQ(level, SSL_quic_write_level(ssl));
  4179. return TransportFromSSL(ssl)->WriteHandshakeData(level,
  4180. MakeConstSpan(data, len));
  4181. }
  4182. static int FlushFlightCallback(SSL *ssl) { return 1; }
  4183. static int SendAlertCallback(SSL *ssl, ssl_encryption_level_t level,
  4184. uint8_t alert) {
  4185. EXPECT_EQ(level, SSL_quic_write_level(ssl));
  4186. return TransportFromSSL(ssl)->SendAlert(level, alert);
  4187. }
  4188. bssl::UniquePtr<SSL_CTX> client_ctx_;
  4189. bssl::UniquePtr<SSL_CTX> server_ctx_;
  4190. static UnownedSSLExData<MockQUICTransport> ex_data_;
  4191. MockQUICTransportPair transport_;
  4192. MockQUICTransportPair second_transport_;
  4193. bssl::UniquePtr<SSL> client_;
  4194. bssl::UniquePtr<SSL> server_;
  4195. };
  4196. UnownedSSLExData<MockQUICTransport> QUICMethodTest::ex_data_;
  4197. // Test a full handshake works.
  4198. TEST_F(QUICMethodTest, Basic) {
  4199. const SSL_QUIC_METHOD quic_method = {
  4200. SetEncryptionSecretsCallback,
  4201. AddHandshakeDataCallback,
  4202. FlushFlightCallback,
  4203. SendAlertCallback,
  4204. };
  4205. g_last_session = nullptr;
  4206. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  4207. SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession);
  4208. ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
  4209. ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
  4210. ASSERT_TRUE(CreateClientAndServer());
  4211. for (;;) {
  4212. ASSERT_TRUE(ProvideHandshakeData(client_.get()));
  4213. int client_ret = SSL_do_handshake(client_.get());
  4214. if (client_ret != 1) {
  4215. ASSERT_EQ(client_ret, -1);
  4216. ASSERT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ);
  4217. }
  4218. ASSERT_TRUE(ProvideHandshakeData(server_.get()));
  4219. int server_ret = SSL_do_handshake(server_.get());
  4220. if (server_ret != 1) {
  4221. ASSERT_EQ(server_ret, -1);
  4222. ASSERT_EQ(SSL_get_error(server_.get(), server_ret), SSL_ERROR_WANT_READ);
  4223. }
  4224. if (client_ret == 1 && server_ret == 1) {
  4225. break;
  4226. }
  4227. }
  4228. EXPECT_EQ(SSL_do_handshake(client_.get()), 1);
  4229. EXPECT_EQ(SSL_do_handshake(server_.get()), 1);
  4230. EXPECT_TRUE(transport_.SecretsMatch(ssl_encryption_application));
  4231. EXPECT_FALSE(transport_.client()->has_alert());
  4232. EXPECT_FALSE(transport_.server()->has_alert());
  4233. // The server sent NewSessionTicket messages in the handshake.
  4234. EXPECT_FALSE(g_last_session);
  4235. ASSERT_TRUE(ProvideHandshakeData(client_.get()));
  4236. EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1);
  4237. EXPECT_TRUE(g_last_session);
  4238. // Create a second connection to verify resumption works.
  4239. ASSERT_TRUE(CreateSecondClientAndServer());
  4240. bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session);
  4241. SSL_set_session(client_.get(), session.get());
  4242. for (;;) {
  4243. ASSERT_TRUE(ProvideHandshakeData(client_.get()));
  4244. int client_ret = SSL_do_handshake(client_.get());
  4245. if (client_ret != 1) {
  4246. ASSERT_EQ(client_ret, -1);
  4247. ASSERT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ);
  4248. }
  4249. ASSERT_TRUE(ProvideHandshakeData(server_.get()));
  4250. int server_ret = SSL_do_handshake(server_.get());
  4251. if (server_ret != 1) {
  4252. ASSERT_EQ(server_ret, -1);
  4253. ASSERT_EQ(SSL_get_error(server_.get(), server_ret), SSL_ERROR_WANT_READ);
  4254. }
  4255. if (client_ret == 1 && server_ret == 1) {
  4256. break;
  4257. }
  4258. }
  4259. EXPECT_EQ(SSL_do_handshake(client_.get()), 1);
  4260. EXPECT_EQ(SSL_do_handshake(server_.get()), 1);
  4261. EXPECT_TRUE(transport_.SecretsMatch(ssl_encryption_application));
  4262. EXPECT_FALSE(transport_.client()->has_alert());
  4263. EXPECT_FALSE(transport_.server()->has_alert());
  4264. EXPECT_TRUE(SSL_session_reused(client_.get()));
  4265. EXPECT_TRUE(SSL_session_reused(server_.get()));
  4266. }
  4267. // Test only releasing data to QUIC one byte at a time on request, to maximize
  4268. // state machine pauses. Additionally, test that existing asynchronous callbacks
  4269. // still work.
  4270. TEST_F(QUICMethodTest, Async) {
  4271. const SSL_QUIC_METHOD quic_method = {
  4272. SetEncryptionSecretsCallback,
  4273. AddHandshakeDataCallback,
  4274. FlushFlightCallback,
  4275. SendAlertCallback,
  4276. };
  4277. ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
  4278. ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
  4279. ASSERT_TRUE(CreateClientAndServer());
  4280. // Install an asynchronous certificate callback.
  4281. bool cert_cb_ok = false;
  4282. SSL_set_cert_cb(server_.get(),
  4283. [](SSL *, void *arg) -> int {
  4284. return *static_cast<bool *>(arg) ? 1 : -1;
  4285. },
  4286. &cert_cb_ok);
  4287. for (;;) {
  4288. int client_ret = SSL_do_handshake(client_.get());
  4289. if (client_ret != 1) {
  4290. ASSERT_EQ(client_ret, -1);
  4291. ASSERT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ);
  4292. ASSERT_TRUE(ProvideHandshakeData(client_.get(), 1));
  4293. }
  4294. int server_ret = SSL_do_handshake(server_.get());
  4295. if (server_ret != 1) {
  4296. ASSERT_EQ(server_ret, -1);
  4297. int ssl_err = SSL_get_error(server_.get(), server_ret);
  4298. switch (ssl_err) {
  4299. case SSL_ERROR_WANT_READ:
  4300. ASSERT_TRUE(ProvideHandshakeData(server_.get(), 1));
  4301. break;
  4302. case SSL_ERROR_WANT_X509_LOOKUP:
  4303. ASSERT_FALSE(cert_cb_ok);
  4304. cert_cb_ok = true;
  4305. break;
  4306. default:
  4307. FAIL() << "Unexpected SSL_get_error result: " << ssl_err;
  4308. }
  4309. }
  4310. if (client_ret == 1 && server_ret == 1) {
  4311. break;
  4312. }
  4313. }
  4314. EXPECT_EQ(SSL_do_handshake(client_.get()), 1);
  4315. EXPECT_EQ(SSL_do_handshake(server_.get()), 1);
  4316. EXPECT_TRUE(transport_.SecretsMatch(ssl_encryption_application));
  4317. EXPECT_FALSE(transport_.client()->has_alert());
  4318. EXPECT_FALSE(transport_.server()->has_alert());
  4319. }
  4320. // Test buffering write data until explicit flushes.
  4321. TEST_F(QUICMethodTest, Buffered) {
  4322. struct BufferedFlight {
  4323. std::vector<uint8_t> data[kNumQUICLevels];
  4324. };
  4325. static UnownedSSLExData<BufferedFlight> buffered_flights;
  4326. auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level,
  4327. const uint8_t *data, size_t len) -> int {
  4328. BufferedFlight *flight = buffered_flights.Get(ssl);
  4329. flight->data[level].insert(flight->data[level].end(), data, data + len);
  4330. return 1;
  4331. };
  4332. auto flush_flight = [](SSL *ssl) -> int {
  4333. BufferedFlight *flight = buffered_flights.Get(ssl);
  4334. for (size_t level = 0; level < kNumQUICLevels; level++) {
  4335. if (!flight->data[level].empty()) {
  4336. if (!TransportFromSSL(ssl)->WriteHandshakeData(
  4337. static_cast<ssl_encryption_level_t>(level),
  4338. flight->data[level])) {
  4339. return 0;
  4340. }
  4341. flight->data[level].clear();
  4342. }
  4343. }
  4344. return 1;
  4345. };
  4346. const SSL_QUIC_METHOD quic_method = {
  4347. SetEncryptionSecretsCallback,
  4348. add_handshake_data,
  4349. flush_flight,
  4350. SendAlertCallback,
  4351. };
  4352. ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
  4353. ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
  4354. ASSERT_TRUE(CreateClientAndServer());
  4355. BufferedFlight client_flight, server_flight;
  4356. buffered_flights.Set(client_.get(), &client_flight);
  4357. buffered_flights.Set(server_.get(), &server_flight);
  4358. for (;;) {
  4359. ASSERT_TRUE(ProvideHandshakeData(client_.get()));
  4360. int client_ret = SSL_do_handshake(client_.get());
  4361. if (client_ret != 1) {
  4362. ASSERT_EQ(client_ret, -1);
  4363. ASSERT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ);
  4364. }
  4365. ASSERT_TRUE(ProvideHandshakeData(server_.get()));
  4366. int server_ret = SSL_do_handshake(server_.get());
  4367. if (server_ret != 1) {
  4368. ASSERT_EQ(server_ret, -1);
  4369. ASSERT_EQ(SSL_get_error(server_.get(), server_ret), SSL_ERROR_WANT_READ);
  4370. }
  4371. if (client_ret == 1 && server_ret == 1) {
  4372. break;
  4373. }
  4374. }
  4375. EXPECT_EQ(SSL_do_handshake(client_.get()), 1);
  4376. EXPECT_EQ(SSL_do_handshake(server_.get()), 1);
  4377. EXPECT_TRUE(transport_.SecretsMatch(ssl_encryption_application));
  4378. EXPECT_FALSE(transport_.client()->has_alert());
  4379. EXPECT_FALSE(transport_.server()->has_alert());
  4380. }
  4381. // Test that excess data at one level is rejected. That is, if a single
  4382. // |SSL_provide_quic_data| call included both ServerHello and
  4383. // EncryptedExtensions in a single chunk, BoringSSL notices and rejects this on
  4384. // key change.
  4385. TEST_F(QUICMethodTest, ExcessProvidedData) {
  4386. auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level,
  4387. const uint8_t *data, size_t len) -> int {
  4388. // Switch everything to the initial level.
  4389. return TransportFromSSL(ssl)->WriteHandshakeData(ssl_encryption_initial,
  4390. MakeConstSpan(data, len));
  4391. };
  4392. const SSL_QUIC_METHOD quic_method = {
  4393. SetEncryptionSecretsCallback,
  4394. add_handshake_data,
  4395. FlushFlightCallback,
  4396. SendAlertCallback,
  4397. };
  4398. ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
  4399. ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
  4400. ASSERT_TRUE(CreateClientAndServer());
  4401. // Send the ClientHello and ServerHello through Finished.
  4402. ASSERT_EQ(SSL_do_handshake(client_.get()), -1);
  4403. ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ);
  4404. ASSERT_TRUE(ProvideHandshakeData(server_.get()));
  4405. ASSERT_EQ(SSL_do_handshake(server_.get()), -1);
  4406. ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ);
  4407. // The client is still waiting for the ServerHello at initial
  4408. // encryption.
  4409. ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get()));
  4410. // |add_handshake_data| incorrectly wrote everything at the initial level, so
  4411. // this queues up ServerHello through Finished in one chunk.
  4412. ASSERT_TRUE(ProvideHandshakeData(client_.get()));
  4413. // The client reads ServerHello successfully, but then rejects the buffered
  4414. // EncryptedExtensions on key change.
  4415. ASSERT_EQ(SSL_do_handshake(client_.get()), -1);
  4416. ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_SSL);
  4417. uint32_t err = ERR_get_error();
  4418. EXPECT_EQ(ERR_GET_LIB(err), ERR_LIB_SSL);
  4419. EXPECT_EQ(ERR_GET_REASON(err), SSL_R_BUFFERED_MESSAGES_ON_CIPHER_CHANGE);
  4420. // The client sends an alert in response to this.
  4421. ASSERT_TRUE(transport_.client()->has_alert());
  4422. EXPECT_EQ(transport_.client()->alert_level(), ssl_encryption_initial);
  4423. EXPECT_EQ(transport_.client()->alert(), SSL_AD_UNEXPECTED_MESSAGE);
  4424. // Sanity-check client did get far enough to process the ServerHello and
  4425. // install keys.
  4426. EXPECT_TRUE(transport_.client()->HasSecrets(ssl_encryption_handshake));
  4427. }
  4428. // Test that |SSL_provide_quic_data| will reject data at the wrong level.
  4429. TEST_F(QUICMethodTest, ProvideWrongLevel) {
  4430. const SSL_QUIC_METHOD quic_method = {
  4431. SetEncryptionSecretsCallback,
  4432. AddHandshakeDataCallback,
  4433. FlushFlightCallback,
  4434. SendAlertCallback,
  4435. };
  4436. ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
  4437. ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
  4438. ASSERT_TRUE(CreateClientAndServer());
  4439. // Send the ClientHello and ServerHello through Finished.
  4440. ASSERT_EQ(SSL_do_handshake(client_.get()), -1);
  4441. ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ);
  4442. ASSERT_TRUE(ProvideHandshakeData(server_.get()));
  4443. ASSERT_EQ(SSL_do_handshake(server_.get()), -1);
  4444. ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ);
  4445. // The client is still waiting for the ServerHello at initial
  4446. // encryption.
  4447. ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get()));
  4448. // Data cannot be provided at the next level.
  4449. std::vector<uint8_t> data;
  4450. ASSERT_TRUE(
  4451. transport_.client()->ReadHandshakeData(&data, ssl_encryption_initial));
  4452. ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_handshake,
  4453. data.data(), data.size()));
  4454. ERR_clear_error();
  4455. // Progress to EncryptedExtensions.
  4456. ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial,
  4457. data.data(), data.size()));
  4458. ASSERT_EQ(SSL_do_handshake(client_.get()), -1);
  4459. ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ);
  4460. ASSERT_EQ(ssl_encryption_handshake, SSL_quic_read_level(client_.get()));
  4461. // Data cannot be provided at the previous level.
  4462. ASSERT_TRUE(
  4463. transport_.client()->ReadHandshakeData(&data, ssl_encryption_handshake));
  4464. ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial,
  4465. data.data(), data.size()));
  4466. }
  4467. TEST_F(QUICMethodTest, TooMuchData) {
  4468. const SSL_QUIC_METHOD quic_method = {
  4469. SetEncryptionSecretsCallback,
  4470. AddHandshakeDataCallback,
  4471. FlushFlightCallback,
  4472. SendAlertCallback,
  4473. };
  4474. ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
  4475. ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
  4476. ASSERT_TRUE(CreateClientAndServer());
  4477. size_t limit =
  4478. SSL_quic_max_handshake_flight_len(client_.get(), ssl_encryption_initial);
  4479. uint8_t b = 0;
  4480. for (size_t i = 0; i < limit; i++) {
  4481. ASSERT_TRUE(
  4482. SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1));
  4483. }
  4484. EXPECT_FALSE(
  4485. SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1));
  4486. }
  4487. // Provide invalid post-handshake data.
  4488. TEST_F(QUICMethodTest, BadPostHandshake) {
  4489. const SSL_QUIC_METHOD quic_method = {
  4490. SetEncryptionSecretsCallback,
  4491. AddHandshakeDataCallback,
  4492. FlushFlightCallback,
  4493. SendAlertCallback,
  4494. };
  4495. g_last_session = nullptr;
  4496. SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
  4497. SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession);
  4498. ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
  4499. ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
  4500. ASSERT_TRUE(CreateClientAndServer());
  4501. for (;;) {
  4502. ASSERT_TRUE(ProvideHandshakeData(client_.get()));
  4503. int client_ret = SSL_do_handshake(client_.get());
  4504. if (client_ret != 1) {
  4505. ASSERT_EQ(client_ret, -1);
  4506. ASSERT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ);
  4507. }
  4508. ASSERT_TRUE(ProvideHandshakeData(server_.get()));
  4509. int server_ret = SSL_do_handshake(server_.get());
  4510. if (server_ret != 1) {
  4511. ASSERT_EQ(server_ret, -1);
  4512. ASSERT_EQ(SSL_get_error(server_.get(), server_ret), SSL_ERROR_WANT_READ);
  4513. }
  4514. if (client_ret == 1 && server_ret == 1) {
  4515. break;
  4516. }
  4517. }
  4518. EXPECT_EQ(SSL_do_handshake(client_.get()), 1);
  4519. EXPECT_EQ(SSL_do_handshake(server_.get()), 1);
  4520. EXPECT_TRUE(transport_.SecretsMatch(ssl_encryption_application));
  4521. EXPECT_FALSE(transport_.client()->has_alert());
  4522. EXPECT_FALSE(transport_.server()->has_alert());
  4523. // Junk sent as part of post-handshake data should cause an error.
  4524. uint8_t kJunk[] = {0x17, 0x0, 0x0, 0x4, 0xB, 0xE, 0xE, 0xF};
  4525. ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_application,
  4526. kJunk, sizeof(kJunk)));
  4527. EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 0);
  4528. }
  4529. // TODO(davidben): Convert this file to GTest properly.
  4530. TEST(SSLTest, AllTests) {
  4531. if (!TestSSL_SESSIONEncoding(kOpenSSLSession) ||
  4532. !TestSSL_SESSIONEncoding(kCustomSession) ||
  4533. !TestSSL_SESSIONEncoding(kBoringSSLSession) ||
  4534. !TestBadSSL_SESSIONEncoding(kBadSessionExtraField) ||
  4535. !TestBadSSL_SESSIONEncoding(kBadSessionVersion) ||
  4536. !TestBadSSL_SESSIONEncoding(kBadSessionTrailingData) ||
  4537. // Test the padding extension at TLS 1.2.
  4538. !TestPaddingExtension(TLS1_2_VERSION, TLS1_2_VERSION) ||
  4539. // Test the padding extension at TLS 1.3 with a TLS 1.2 session, so there
  4540. // will be no PSK binder after the padding extension.
  4541. !TestPaddingExtension(TLS1_3_VERSION, TLS1_2_VERSION) ||
  4542. // Test the padding extension at TLS 1.3 with a TLS 1.3 session, so there
  4543. // will be a PSK binder after the padding extension.
  4544. !TestPaddingExtension(TLS1_3_VERSION, TLS1_3_VERSION)) {
  4545. ADD_FAILURE() << "Tests failed";
  4546. }
  4547. }
  4548. } // namespace
  4549. BSSL_NAMESPACE_END