25개 이상의 토픽을 선택하실 수 없습니다. Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

450 lines
13 KiB

  1. /* Originally written by Bodo Moeller for the OpenSSL project.
  2. * ====================================================================
  3. * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. *
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions and the following disclaimer.
  11. *
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in
  14. * the documentation and/or other materials provided with the
  15. * distribution.
  16. *
  17. * 3. All advertising materials mentioning features or use of this
  18. * software must display the following acknowledgment:
  19. * "This product includes software developed by the OpenSSL Project
  20. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  21. *
  22. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  23. * endorse or promote products derived from this software without
  24. * prior written permission. For written permission, please contact
  25. * openssl-core@openssl.org.
  26. *
  27. * 5. Products derived from this software may not be called "OpenSSL"
  28. * nor may "OpenSSL" appear in their names without prior written
  29. * permission of the OpenSSL Project.
  30. *
  31. * 6. Redistributions of any form whatsoever must retain the following
  32. * acknowledgment:
  33. * "This product includes software developed by the OpenSSL Project
  34. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  35. *
  36. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  37. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  38. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  39. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  40. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  41. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  42. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  43. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  44. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  45. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  46. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  47. * OF THE POSSIBILITY OF SUCH DAMAGE.
  48. * ====================================================================
  49. *
  50. * This product includes cryptographic software written by Eric Young
  51. * (eay@cryptsoft.com). This product includes software written by Tim
  52. * Hudson (tjh@cryptsoft.com).
  53. *
  54. */
  55. /* ====================================================================
  56. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  57. *
  58. * Portions of the attached software ("Contribution") are developed by
  59. * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
  60. *
  61. * The Contribution is licensed pursuant to the OpenSSL open source
  62. * license provided above.
  63. *
  64. * The elliptic curve binary polynomial software is originally written by
  65. * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
  66. * Laboratories. */
  67. #include <openssl/ec.h>
  68. #include <string.h>
  69. #include <openssl/bn.h>
  70. #include <openssl/err.h>
  71. #include <openssl/mem.h>
  72. #include <openssl/thread.h>
  73. #include "internal.h"
  74. #include "../internal.h"
  75. /* This file implements the wNAF-based interleaving multi-exponentation method
  76. * (<URL:http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp>);
  77. * */
  78. /* Determine the modified width-(w+1) Non-Adjacent Form (wNAF) of 'scalar'.
  79. * This is an array r[] of values that are either zero or odd with an
  80. * absolute value less than 2^w satisfying
  81. * scalar = \sum_j r[j]*2^j
  82. * where at most one of any w+1 consecutive digits is non-zero
  83. * with the exception that the most significant digit may be only
  84. * w-1 zeros away from that next non-zero digit.
  85. */
  86. static signed char *compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len) {
  87. int window_val;
  88. int ok = 0;
  89. signed char *r = NULL;
  90. int sign = 1;
  91. int bit, next_bit, mask;
  92. size_t len = 0, j;
  93. if (BN_is_zero(scalar)) {
  94. r = OPENSSL_malloc(1);
  95. if (!r) {
  96. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  97. goto err;
  98. }
  99. r[0] = 0;
  100. *ret_len = 1;
  101. return r;
  102. }
  103. if (w <= 0 || w > 7) /* 'signed char' can represent integers with absolute
  104. values less than 2^7 */
  105. {
  106. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  107. goto err;
  108. }
  109. bit = 1 << w; /* at most 128 */
  110. next_bit = bit << 1; /* at most 256 */
  111. mask = next_bit - 1; /* at most 255 */
  112. if (BN_is_negative(scalar)) {
  113. sign = -1;
  114. }
  115. if (scalar->d == NULL || scalar->top == 0) {
  116. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  117. goto err;
  118. }
  119. len = BN_num_bits(scalar);
  120. r = OPENSSL_malloc(
  121. len +
  122. 1); /* modified wNAF may be one digit longer than binary representation
  123. * (*ret_len will be set to the actual length, i.e. at most
  124. * BN_num_bits(scalar) + 1) */
  125. if (r == NULL) {
  126. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  127. goto err;
  128. }
  129. window_val = scalar->d[0] & mask;
  130. j = 0;
  131. while ((window_val != 0) ||
  132. (j + w + 1 < len)) /* if j+w+1 >= len, window_val will not increase */
  133. {
  134. int digit = 0;
  135. /* 0 <= window_val <= 2^(w+1) */
  136. if (window_val & 1) {
  137. /* 0 < window_val < 2^(w+1) */
  138. if (window_val & bit) {
  139. digit = window_val - next_bit; /* -2^w < digit < 0 */
  140. #if 1 /* modified wNAF */
  141. if (j + w + 1 >= len) {
  142. /* special case for generating modified wNAFs:
  143. * no new bits will be added into window_val,
  144. * so using a positive digit here will decrease
  145. * the total length of the representation */
  146. digit = window_val & (mask >> 1); /* 0 < digit < 2^w */
  147. }
  148. #endif
  149. } else {
  150. digit = window_val; /* 0 < digit < 2^w */
  151. }
  152. if (digit <= -bit || digit >= bit || !(digit & 1)) {
  153. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  154. goto err;
  155. }
  156. window_val -= digit;
  157. /* now window_val is 0 or 2^(w+1) in standard wNAF generation;
  158. * for modified window NAFs, it may also be 2^w
  159. */
  160. if (window_val != 0 && window_val != next_bit && window_val != bit) {
  161. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  162. goto err;
  163. }
  164. }
  165. r[j++] = sign * digit;
  166. window_val >>= 1;
  167. window_val += bit * BN_is_bit_set(scalar, j + w);
  168. if (window_val > next_bit) {
  169. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  170. goto err;
  171. }
  172. }
  173. if (j > len + 1) {
  174. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  175. goto err;
  176. }
  177. len = j;
  178. ok = 1;
  179. err:
  180. if (!ok) {
  181. OPENSSL_free(r);
  182. r = NULL;
  183. }
  184. if (ok) {
  185. *ret_len = len;
  186. }
  187. return r;
  188. }
  189. /* TODO: table should be optimised for the wNAF-based implementation,
  190. * sometimes smaller windows will give better performance
  191. * (thus the boundaries should be increased)
  192. */
  193. #define EC_window_bits_for_scalar_size(b) \
  194. ((size_t)((b) >= 2000 ? 6 : (b) >= 800 ? 5 : (b) >= 300 \
  195. ? 4 \
  196. : (b) >= 70 ? 3 : (b) >= 20 \
  197. ? 2 \
  198. : 1))
  199. int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
  200. const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
  201. BN_CTX *new_ctx = NULL;
  202. const EC_POINT *generator = NULL;
  203. EC_POINT *tmp = NULL;
  204. size_t total_num;
  205. size_t i, j;
  206. int k;
  207. int r_is_inverted = 0;
  208. int r_is_at_infinity = 1;
  209. size_t *wsize = NULL; /* individual window sizes */
  210. signed char **wNAF = NULL; /* individual wNAFs */
  211. size_t *wNAF_len = NULL;
  212. size_t max_len = 0;
  213. size_t num_val;
  214. EC_POINT **val = NULL; /* precomputation */
  215. EC_POINT **v;
  216. EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' */
  217. int ret = 0;
  218. if (ctx == NULL) {
  219. ctx = new_ctx = BN_CTX_new();
  220. if (ctx == NULL) {
  221. goto err;
  222. }
  223. }
  224. /* TODO: This function used to take |points| and |scalars| as arrays of
  225. * |num| elements. The code below should be simplified to work in terms of |p|
  226. * and |p_scalar|. */
  227. size_t num = p != NULL ? 1 : 0;
  228. const EC_POINT **points = p != NULL ? &p : NULL;
  229. const BIGNUM **scalars = p != NULL ? &p_scalar : NULL;
  230. total_num = num;
  231. if (g_scalar != NULL) {
  232. generator = EC_GROUP_get0_generator(group);
  233. if (generator == NULL) {
  234. OPENSSL_PUT_ERROR(EC, EC_R_UNDEFINED_GENERATOR);
  235. goto err;
  236. }
  237. ++total_num; /* treat 'g_scalar' like 'num'-th element of 'scalars' */
  238. }
  239. wsize = OPENSSL_malloc(total_num * sizeof wsize[0]);
  240. wNAF_len = OPENSSL_malloc(total_num * sizeof wNAF_len[0]);
  241. wNAF = OPENSSL_malloc((total_num + 1) *
  242. sizeof wNAF[0]); /* includes space for pivot */
  243. val_sub = OPENSSL_malloc(total_num * sizeof val_sub[0]);
  244. /* Ensure wNAF is initialised in case we end up going to err. */
  245. if (wNAF) {
  246. wNAF[0] = NULL; /* preliminary pivot */
  247. }
  248. if (!wsize || !wNAF_len || !wNAF || !val_sub) {
  249. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  250. goto err;
  251. }
  252. /* num_val will be the total number of temporarily precomputed points */
  253. num_val = 0;
  254. for (i = 0; i < total_num; i++) {
  255. size_t bits;
  256. bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(g_scalar);
  257. wsize[i] = EC_window_bits_for_scalar_size(bits);
  258. num_val += (size_t)1 << (wsize[i] - 1);
  259. wNAF[i + 1] = NULL; /* make sure we always have a pivot */
  260. wNAF[i] =
  261. compute_wNAF((i < num ? scalars[i] : g_scalar), wsize[i], &wNAF_len[i]);
  262. if (wNAF[i] == NULL) {
  263. goto err;
  264. }
  265. if (wNAF_len[i] > max_len) {
  266. max_len = wNAF_len[i];
  267. }
  268. }
  269. /* All points we precompute now go into a single array 'val'. 'val_sub[i]' is
  270. * a pointer to the subarray for the i-th point. */
  271. val = OPENSSL_malloc((num_val + 1) * sizeof val[0]);
  272. if (val == NULL) {
  273. OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
  274. goto err;
  275. }
  276. val[num_val] = NULL; /* pivot element */
  277. /* allocate points for precomputation */
  278. v = val;
  279. for (i = 0; i < total_num; i++) {
  280. val_sub[i] = v;
  281. for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
  282. *v = EC_POINT_new(group);
  283. if (*v == NULL) {
  284. goto err;
  285. }
  286. v++;
  287. }
  288. }
  289. if (!(v == val + num_val)) {
  290. OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
  291. goto err;
  292. }
  293. if (!(tmp = EC_POINT_new(group))) {
  294. goto err;
  295. }
  296. /* prepare precomputed values:
  297. * val_sub[i][0] := points[i]
  298. * val_sub[i][1] := 3 * points[i]
  299. * val_sub[i][2] := 5 * points[i]
  300. * ...
  301. */
  302. for (i = 0; i < total_num; i++) {
  303. if (i < num) {
  304. if (!EC_POINT_copy(val_sub[i][0], points[i])) {
  305. goto err;
  306. }
  307. } else if (!EC_POINT_copy(val_sub[i][0], generator)) {
  308. goto err;
  309. }
  310. if (wsize[i] > 1) {
  311. if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) {
  312. goto err;
  313. }
  314. for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
  315. if (!EC_POINT_add(group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) {
  316. goto err;
  317. }
  318. }
  319. }
  320. }
  321. #if 1 /* optional; EC_window_bits_for_scalar_size assumes we do this step */
  322. if (!EC_POINTs_make_affine(group, num_val, val, ctx)) {
  323. goto err;
  324. }
  325. #endif
  326. r_is_at_infinity = 1;
  327. for (k = max_len - 1; k >= 0; k--) {
  328. if (!r_is_at_infinity && !EC_POINT_dbl(group, r, r, ctx)) {
  329. goto err;
  330. }
  331. for (i = 0; i < total_num; i++) {
  332. if (wNAF_len[i] > (size_t)k) {
  333. int digit = wNAF[i][k];
  334. int is_neg;
  335. if (digit) {
  336. is_neg = digit < 0;
  337. if (is_neg) {
  338. digit = -digit;
  339. }
  340. if (is_neg != r_is_inverted) {
  341. if (!r_is_at_infinity && !EC_POINT_invert(group, r, ctx)) {
  342. goto err;
  343. }
  344. r_is_inverted = !r_is_inverted;
  345. }
  346. /* digit > 0 */
  347. if (r_is_at_infinity) {
  348. if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) {
  349. goto err;
  350. }
  351. r_is_at_infinity = 0;
  352. } else {
  353. if (!EC_POINT_add(group, r, r, val_sub[i][digit >> 1], ctx)) {
  354. goto err;
  355. }
  356. }
  357. }
  358. }
  359. }
  360. }
  361. if (r_is_at_infinity) {
  362. if (!EC_POINT_set_to_infinity(group, r)) {
  363. goto err;
  364. }
  365. } else if (r_is_inverted && !EC_POINT_invert(group, r, ctx)) {
  366. goto err;
  367. }
  368. ret = 1;
  369. err:
  370. BN_CTX_free(new_ctx);
  371. EC_POINT_free(tmp);
  372. OPENSSL_free(wsize);
  373. OPENSSL_free(wNAF_len);
  374. if (wNAF != NULL) {
  375. signed char **w;
  376. for (w = wNAF; *w != NULL; w++) {
  377. OPENSSL_free(*w);
  378. }
  379. OPENSSL_free(wNAF);
  380. }
  381. if (val != NULL) {
  382. for (v = val; *v != NULL; v++) {
  383. EC_POINT_clear_free(*v);
  384. }
  385. OPENSSL_free(val);
  386. }
  387. OPENSSL_free(val_sub);
  388. return ret;
  389. }