You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2998 line
84 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com).
  108. *
  109. */
  110. /* ====================================================================
  111. * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
  112. * ECC cipher suite support in OpenSSL originally developed by
  113. * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
  114. */
  115. /* ====================================================================
  116. * Copyright 2005 Nokia. All rights reserved.
  117. *
  118. * The portions of the attached software ("Contribution") is developed by
  119. * Nokia Corporation and is licensed pursuant to the OpenSSL open source
  120. * license.
  121. *
  122. * The Contribution, originally written by Mika Kousa and Pasi Eronen of
  123. * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
  124. * support (see RFC 4279) to OpenSSL.
  125. *
  126. * No patent licenses or other rights except those expressly stated in
  127. * the OpenSSL open source license shall be deemed granted or received
  128. * expressly, by implication, estoppel, or otherwise.
  129. *
  130. * No assurances are provided by Nokia that the Contribution does not
  131. * infringe the patent or other intellectual property rights of any third
  132. * party or that the license provides you with all the necessary rights
  133. * to make use of the Contribution.
  134. *
  135. * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
  136. * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
  137. * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
  138. * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
  139. * OTHERWISE. */
  140. #include <openssl/ssl.h>
  141. #include <assert.h>
  142. #include <stdlib.h>
  143. #include <string.h>
  144. #include <openssl/bytestring.h>
  145. #include <openssl/crypto.h>
  146. #include <openssl/dh.h>
  147. #include <openssl/err.h>
  148. #include <openssl/lhash.h>
  149. #include <openssl/mem.h>
  150. #include <openssl/rand.h>
  151. #include <openssl/x509v3.h>
  152. #include "internal.h"
  153. #include "../crypto/internal.h"
  154. #if defined(OPENSSL_WINDOWS)
  155. #include <sys/timeb.h>
  156. #else
  157. #include <sys/socket.h>
  158. #include <sys/time.h>
  159. #endif
  160. /* |SSL_R_UNKNOWN_PROTOCOL| is no longer emitted, but continue to define it
  161. * to avoid downstream churn. */
  162. OPENSSL_DECLARE_ERROR_REASON(SSL, UNKNOWN_PROTOCOL)
  163. /* The following errors are no longer emitted, but are used in nginx without
  164. * #ifdefs. */
  165. OPENSSL_DECLARE_ERROR_REASON(SSL, BLOCK_CIPHER_PAD_IS_WRONG)
  166. OPENSSL_DECLARE_ERROR_REASON(SSL, NO_CIPHERS_SPECIFIED)
  167. /* Some error codes are special. Ensure the make_errors.go script never
  168. * regresses this. */
  169. OPENSSL_COMPILE_ASSERT(SSL_R_TLSV1_ALERT_NO_RENEGOTIATION ==
  170. SSL_AD_NO_RENEGOTIATION + SSL_AD_REASON_OFFSET,
  171. ssl_alert_reason_code_mismatch);
  172. /* kMaxHandshakeSize is the maximum size, in bytes, of a handshake message. */
  173. static const size_t kMaxHandshakeSize = (1u << 24) - 1;
  174. static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl =
  175. CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA;
  176. static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl_ctx =
  177. CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA;
  178. int SSL_library_init(void) {
  179. CRYPTO_library_init();
  180. return 1;
  181. }
  182. static uint32_t ssl_session_hash(const SSL_SESSION *sess) {
  183. const uint8_t *session_id = sess->session_id;
  184. uint8_t tmp_storage[sizeof(uint32_t)];
  185. if (sess->session_id_length < sizeof(tmp_storage)) {
  186. memset(tmp_storage, 0, sizeof(tmp_storage));
  187. memcpy(tmp_storage, sess->session_id, sess->session_id_length);
  188. session_id = tmp_storage;
  189. }
  190. uint32_t hash =
  191. ((uint32_t)session_id[0]) |
  192. ((uint32_t)session_id[1] << 8) |
  193. ((uint32_t)session_id[2] << 16) |
  194. ((uint32_t)session_id[3] << 24);
  195. return hash;
  196. }
  197. /* NB: If this function (or indeed the hash function which uses a sort of
  198. * coarser function than this one) is changed, ensure
  199. * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on being
  200. * able to construct an SSL_SESSION that will collide with any existing session
  201. * with a matching session ID. */
  202. static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) {
  203. if (a->ssl_version != b->ssl_version) {
  204. return 1;
  205. }
  206. if (a->session_id_length != b->session_id_length) {
  207. return 1;
  208. }
  209. return memcmp(a->session_id, b->session_id, a->session_id_length);
  210. }
  211. SSL_CTX *SSL_CTX_new(const SSL_METHOD *method) {
  212. SSL_CTX *ret = NULL;
  213. if (method == NULL) {
  214. OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_METHOD_PASSED);
  215. return NULL;
  216. }
  217. if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) {
  218. OPENSSL_PUT_ERROR(SSL, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS);
  219. goto err;
  220. }
  221. ret = OPENSSL_malloc(sizeof(SSL_CTX));
  222. if (ret == NULL) {
  223. goto err;
  224. }
  225. memset(ret, 0, sizeof(SSL_CTX));
  226. ret->method = method->method;
  227. CRYPTO_MUTEX_init(&ret->lock);
  228. ret->session_cache_mode = SSL_SESS_CACHE_SERVER;
  229. ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
  230. /* We take the system default */
  231. ret->session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
  232. ret->references = 1;
  233. ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
  234. ret->verify_mode = SSL_VERIFY_NONE;
  235. ret->cert = ssl_cert_new();
  236. if (ret->cert == NULL) {
  237. goto err;
  238. }
  239. ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp);
  240. if (ret->sessions == NULL) {
  241. goto err;
  242. }
  243. ret->cert_store = X509_STORE_new();
  244. if (ret->cert_store == NULL) {
  245. goto err;
  246. }
  247. ssl_create_cipher_list(ret->method, &ret->cipher_list,
  248. &ret->cipher_list_by_id, SSL_DEFAULT_CIPHER_LIST);
  249. if (ret->cipher_list == NULL ||
  250. sk_SSL_CIPHER_num(ret->cipher_list->ciphers) <= 0) {
  251. OPENSSL_PUT_ERROR(SSL, SSL_R_LIBRARY_HAS_NO_CIPHERS);
  252. goto err2;
  253. }
  254. ret->param = X509_VERIFY_PARAM_new();
  255. if (!ret->param) {
  256. goto err;
  257. }
  258. ret->client_CA = sk_X509_NAME_new_null();
  259. if (ret->client_CA == NULL) {
  260. goto err;
  261. }
  262. CRYPTO_new_ex_data(&ret->ex_data);
  263. ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
  264. /* Setup RFC4507 ticket keys */
  265. if (!RAND_bytes(ret->tlsext_tick_key_name, 16) ||
  266. !RAND_bytes(ret->tlsext_tick_hmac_key, 16) ||
  267. !RAND_bytes(ret->tlsext_tick_aes_key, 16)) {
  268. ret->options |= SSL_OP_NO_TICKET;
  269. }
  270. ret->min_version = ret->method->min_version;
  271. ret->max_version = ret->method->max_version;
  272. /* Lock the SSL_CTX to the specified version, for compatibility with legacy
  273. * uses of SSL_METHOD. */
  274. if (method->version != 0) {
  275. SSL_CTX_set_max_version(ret, method->version);
  276. SSL_CTX_set_min_version(ret, method->version);
  277. } else if (!method->method->is_dtls) {
  278. /* TODO(svaldez): Enable TLS 1.3 by default once fully implemented. */
  279. SSL_CTX_set_max_version(ret, TLS1_2_VERSION);
  280. }
  281. return ret;
  282. err:
  283. OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
  284. err2:
  285. SSL_CTX_free(ret);
  286. return NULL;
  287. }
  288. int SSL_CTX_up_ref(SSL_CTX *ctx) {
  289. CRYPTO_refcount_inc(&ctx->references);
  290. return 1;
  291. }
  292. void SSL_CTX_free(SSL_CTX *ctx) {
  293. if (ctx == NULL ||
  294. !CRYPTO_refcount_dec_and_test_zero(&ctx->references)) {
  295. return;
  296. }
  297. X509_VERIFY_PARAM_free(ctx->param);
  298. /* Free internal session cache. However: the remove_cb() may reference the
  299. * ex_data of SSL_CTX, thus the ex_data store can only be removed after the
  300. * sessions were flushed. As the ex_data handling routines might also touch
  301. * the session cache, the most secure solution seems to be: empty (flush) the
  302. * cache, then free ex_data, then finally free the cache. (See ticket
  303. * [openssl.org #212].) */
  304. SSL_CTX_flush_sessions(ctx, 0);
  305. CRYPTO_free_ex_data(&g_ex_data_class_ssl_ctx, ctx, &ctx->ex_data);
  306. CRYPTO_MUTEX_cleanup(&ctx->lock);
  307. lh_SSL_SESSION_free(ctx->sessions);
  308. X509_STORE_free(ctx->cert_store);
  309. ssl_cipher_preference_list_free(ctx->cipher_list);
  310. sk_SSL_CIPHER_free(ctx->cipher_list_by_id);
  311. ssl_cipher_preference_list_free(ctx->cipher_list_tls10);
  312. ssl_cipher_preference_list_free(ctx->cipher_list_tls11);
  313. ssl_cert_free(ctx->cert);
  314. sk_SSL_CUSTOM_EXTENSION_pop_free(ctx->client_custom_extensions,
  315. SSL_CUSTOM_EXTENSION_free);
  316. sk_SSL_CUSTOM_EXTENSION_pop_free(ctx->server_custom_extensions,
  317. SSL_CUSTOM_EXTENSION_free);
  318. sk_X509_NAME_pop_free(ctx->client_CA, X509_NAME_free);
  319. sk_SRTP_PROTECTION_PROFILE_free(ctx->srtp_profiles);
  320. OPENSSL_free(ctx->psk_identity_hint);
  321. OPENSSL_free(ctx->supported_group_list);
  322. OPENSSL_free(ctx->alpn_client_proto_list);
  323. OPENSSL_free(ctx->ocsp_response);
  324. OPENSSL_free(ctx->signed_cert_timestamp_list);
  325. EVP_PKEY_free(ctx->tlsext_channel_id_private);
  326. OPENSSL_free(ctx);
  327. }
  328. SSL *SSL_new(SSL_CTX *ctx) {
  329. if (ctx == NULL) {
  330. OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_CTX);
  331. return NULL;
  332. }
  333. if (ctx->method == NULL) {
  334. OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION);
  335. return NULL;
  336. }
  337. SSL *ssl = OPENSSL_malloc(sizeof(SSL));
  338. if (ssl == NULL) {
  339. goto err;
  340. }
  341. memset(ssl, 0, sizeof(SSL));
  342. ssl->min_version = ctx->min_version;
  343. ssl->max_version = ctx->max_version;
  344. ssl->state = SSL_ST_INIT;
  345. /* RFC 6347 states that implementations SHOULD use an initial timer value of
  346. * 1 second. */
  347. ssl->initial_timeout_duration_ms = 1000;
  348. ssl->options = ctx->options;
  349. ssl->mode = ctx->mode;
  350. ssl->max_cert_list = ctx->max_cert_list;
  351. ssl->cert = ssl_cert_dup(ctx->cert);
  352. if (ssl->cert == NULL) {
  353. goto err;
  354. }
  355. ssl->msg_callback = ctx->msg_callback;
  356. ssl->msg_callback_arg = ctx->msg_callback_arg;
  357. ssl->verify_mode = ctx->verify_mode;
  358. ssl->sid_ctx_length = ctx->sid_ctx_length;
  359. assert(ssl->sid_ctx_length <= sizeof ssl->sid_ctx);
  360. memcpy(&ssl->sid_ctx, &ctx->sid_ctx, sizeof(ssl->sid_ctx));
  361. ssl->verify_callback = ctx->default_verify_callback;
  362. ssl->param = X509_VERIFY_PARAM_new();
  363. if (!ssl->param) {
  364. goto err;
  365. }
  366. X509_VERIFY_PARAM_inherit(ssl->param, ctx->param);
  367. ssl->quiet_shutdown = ctx->quiet_shutdown;
  368. ssl->max_send_fragment = ctx->max_send_fragment;
  369. CRYPTO_refcount_inc(&ctx->references);
  370. ssl->ctx = ctx;
  371. CRYPTO_refcount_inc(&ctx->references);
  372. ssl->initial_ctx = ctx;
  373. if (ctx->supported_group_list) {
  374. ssl->supported_group_list =
  375. BUF_memdup(ctx->supported_group_list,
  376. ctx->supported_group_list_len * 2);
  377. if (!ssl->supported_group_list) {
  378. goto err;
  379. }
  380. ssl->supported_group_list_len = ctx->supported_group_list_len;
  381. }
  382. if (ssl->ctx->alpn_client_proto_list) {
  383. ssl->alpn_client_proto_list = BUF_memdup(
  384. ssl->ctx->alpn_client_proto_list, ssl->ctx->alpn_client_proto_list_len);
  385. if (ssl->alpn_client_proto_list == NULL) {
  386. goto err;
  387. }
  388. ssl->alpn_client_proto_list_len = ssl->ctx->alpn_client_proto_list_len;
  389. }
  390. ssl->method = ctx->method;
  391. if (!ssl->method->ssl_new(ssl)) {
  392. goto err;
  393. }
  394. ssl->rwstate = SSL_NOTHING;
  395. CRYPTO_new_ex_data(&ssl->ex_data);
  396. ssl->psk_identity_hint = NULL;
  397. if (ctx->psk_identity_hint) {
  398. ssl->psk_identity_hint = BUF_strdup(ctx->psk_identity_hint);
  399. if (ssl->psk_identity_hint == NULL) {
  400. goto err;
  401. }
  402. }
  403. ssl->psk_client_callback = ctx->psk_client_callback;
  404. ssl->psk_server_callback = ctx->psk_server_callback;
  405. ssl->tlsext_channel_id_enabled = ctx->tlsext_channel_id_enabled;
  406. if (ctx->tlsext_channel_id_private) {
  407. EVP_PKEY_up_ref(ctx->tlsext_channel_id_private);
  408. ssl->tlsext_channel_id_private = ctx->tlsext_channel_id_private;
  409. }
  410. ssl->signed_cert_timestamps_enabled =
  411. ssl->ctx->signed_cert_timestamps_enabled;
  412. ssl->ocsp_stapling_enabled = ssl->ctx->ocsp_stapling_enabled;
  413. return ssl;
  414. err:
  415. SSL_free(ssl);
  416. OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
  417. return NULL;
  418. }
  419. void SSL_free(SSL *ssl) {
  420. if (ssl == NULL) {
  421. return;
  422. }
  423. X509_VERIFY_PARAM_free(ssl->param);
  424. CRYPTO_free_ex_data(&g_ex_data_class_ssl, ssl, &ssl->ex_data);
  425. ssl_free_wbio_buffer(ssl);
  426. assert(ssl->bbio == NULL);
  427. BIO_free_all(ssl->rbio);
  428. BIO_free_all(ssl->wbio);
  429. BUF_MEM_free(ssl->init_buf);
  430. /* add extra stuff */
  431. ssl_cipher_preference_list_free(ssl->cipher_list);
  432. sk_SSL_CIPHER_free(ssl->cipher_list_by_id);
  433. SSL_SESSION_free(ssl->session);
  434. ssl_cert_free(ssl->cert);
  435. OPENSSL_free(ssl->tlsext_hostname);
  436. SSL_CTX_free(ssl->initial_ctx);
  437. OPENSSL_free(ssl->supported_group_list);
  438. OPENSSL_free(ssl->alpn_client_proto_list);
  439. EVP_PKEY_free(ssl->tlsext_channel_id_private);
  440. OPENSSL_free(ssl->psk_identity_hint);
  441. sk_X509_NAME_pop_free(ssl->client_CA, X509_NAME_free);
  442. sk_SRTP_PROTECTION_PROFILE_free(ssl->srtp_profiles);
  443. if (ssl->method != NULL) {
  444. ssl->method->ssl_free(ssl);
  445. }
  446. SSL_CTX_free(ssl->ctx);
  447. OPENSSL_free(ssl);
  448. }
  449. void SSL_set_connect_state(SSL *ssl) {
  450. ssl->server = 0;
  451. ssl->handshake_func = ssl3_connect;
  452. }
  453. void SSL_set_accept_state(SSL *ssl) {
  454. ssl->server = 1;
  455. ssl->handshake_func = ssl3_accept;
  456. }
  457. void SSL_set0_rbio(SSL *ssl, BIO *rbio) {
  458. BIO_free_all(ssl->rbio);
  459. ssl->rbio = rbio;
  460. }
  461. void SSL_set0_wbio(SSL *ssl, BIO *wbio) {
  462. /* If the output buffering BIO is still in place, remove it. */
  463. if (ssl->bbio != NULL) {
  464. ssl->wbio = BIO_pop(ssl->wbio);
  465. }
  466. BIO_free_all(ssl->wbio);
  467. ssl->wbio = wbio;
  468. /* Re-attach |bbio| to the new |wbio|. */
  469. if (ssl->bbio != NULL) {
  470. ssl->wbio = BIO_push(ssl->bbio, ssl->wbio);
  471. }
  472. }
  473. void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio) {
  474. /* For historical reasons, this function has many different cases in ownership
  475. * handling. */
  476. /* If nothing has changed, do nothing */
  477. if (rbio == SSL_get_rbio(ssl) && wbio == SSL_get_wbio(ssl)) {
  478. return;
  479. }
  480. /* If the two arguments are equal, one fewer reference is granted than
  481. * taken. */
  482. if (rbio != NULL && rbio == wbio) {
  483. BIO_up_ref(rbio);
  484. }
  485. /* If only the wbio is changed, adopt only one reference. */
  486. if (rbio == SSL_get_rbio(ssl)) {
  487. SSL_set0_wbio(ssl, wbio);
  488. return;
  489. }
  490. /* There is an asymmetry here for historical reasons. If only the rbio is
  491. * changed AND the rbio and wbio were originally different, then we only adopt
  492. * one reference. */
  493. if (wbio == SSL_get_wbio(ssl) && SSL_get_rbio(ssl) != SSL_get_wbio(ssl)) {
  494. SSL_set0_rbio(ssl, rbio);
  495. return;
  496. }
  497. /* Otherwise, adopt both references. */
  498. SSL_set0_rbio(ssl, rbio);
  499. SSL_set0_wbio(ssl, wbio);
  500. }
  501. BIO *SSL_get_rbio(const SSL *ssl) { return ssl->rbio; }
  502. BIO *SSL_get_wbio(const SSL *ssl) {
  503. if (ssl->bbio != NULL) {
  504. /* If |bbio| is active, the true caller-configured BIO is its |next_bio|. */
  505. assert(ssl->bbio == ssl->wbio);
  506. return ssl->bbio->next_bio;
  507. }
  508. return ssl->wbio;
  509. }
  510. int SSL_do_handshake(SSL *ssl) {
  511. ssl->rwstate = SSL_NOTHING;
  512. /* Functions which use SSL_get_error must clear the error queue on entry. */
  513. ERR_clear_error();
  514. ERR_clear_system_error();
  515. if (ssl->handshake_func == NULL) {
  516. OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_TYPE_NOT_SET);
  517. return -1;
  518. }
  519. if (!SSL_in_init(ssl)) {
  520. return 1;
  521. }
  522. return ssl->handshake_func(ssl);
  523. }
  524. int SSL_connect(SSL *ssl) {
  525. if (ssl->handshake_func == NULL) {
  526. /* Not properly initialized yet */
  527. SSL_set_connect_state(ssl);
  528. }
  529. return SSL_do_handshake(ssl);
  530. }
  531. int SSL_accept(SSL *ssl) {
  532. if (ssl->handshake_func == NULL) {
  533. /* Not properly initialized yet */
  534. SSL_set_accept_state(ssl);
  535. }
  536. return SSL_do_handshake(ssl);
  537. }
  538. static int ssl_do_renegotiate(SSL *ssl) {
  539. /* We do not accept renegotiations as a server. */
  540. if (ssl->server) {
  541. goto no_renegotiation;
  542. }
  543. if (ssl->s3->tmp.message_type != SSL3_MT_HELLO_REQUEST ||
  544. ssl->init_num != 0) {
  545. ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
  546. OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HELLO_REQUEST);
  547. return 0;
  548. }
  549. switch (ssl->renegotiate_mode) {
  550. case ssl_renegotiate_ignore:
  551. /* Ignore the HelloRequest. */
  552. return 1;
  553. case ssl_renegotiate_once:
  554. if (ssl->s3->total_renegotiations != 0) {
  555. goto no_renegotiation;
  556. }
  557. break;
  558. case ssl_renegotiate_never:
  559. goto no_renegotiation;
  560. case ssl_renegotiate_freely:
  561. break;
  562. }
  563. /* Renegotiation is only supported at quiescent points in the application
  564. * protocol, namely in HTTPS, just before reading the HTTP response. Require
  565. * the record-layer be idle and avoid complexities of sending a handshake
  566. * record while an application_data record is being written. */
  567. if (ssl_write_buffer_is_pending(ssl)) {
  568. goto no_renegotiation;
  569. }
  570. /* Begin a new handshake. */
  571. ssl->s3->total_renegotiations++;
  572. ssl->state = SSL_ST_INIT;
  573. return 1;
  574. no_renegotiation:
  575. ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION);
  576. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION);
  577. return 0;
  578. }
  579. static int ssl_do_post_handshake(SSL *ssl) {
  580. if (ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
  581. return ssl_do_renegotiate(ssl);
  582. }
  583. return tls13_post_handshake(ssl);
  584. }
  585. static int ssl_read_impl(SSL *ssl, void *buf, int num, int peek) {
  586. ssl->rwstate = SSL_NOTHING;
  587. /* Functions which use SSL_get_error must clear the error queue on entry. */
  588. ERR_clear_error();
  589. ERR_clear_system_error();
  590. if (ssl->handshake_func == NULL) {
  591. OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
  592. return -1;
  593. }
  594. for (;;) {
  595. /* Complete the current handshake, if any. False Start will cause
  596. * |SSL_do_handshake| to return mid-handshake, so this may require multiple
  597. * iterations. */
  598. while (SSL_in_init(ssl)) {
  599. int ret = SSL_do_handshake(ssl);
  600. if (ret < 0) {
  601. return ret;
  602. }
  603. if (ret == 0) {
  604. OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE);
  605. return -1;
  606. }
  607. }
  608. int got_handshake;
  609. int ret = ssl->method->read_app_data(ssl, &got_handshake, buf, num, peek);
  610. if (ret > 0 || !got_handshake) {
  611. ssl->s3->key_update_count = 0;
  612. return ret;
  613. }
  614. /* Handle the post-handshake message and try again. */
  615. if (!ssl_do_post_handshake(ssl)) {
  616. return -1;
  617. }
  618. ssl->method->release_current_message(ssl, 1 /* free buffer */);
  619. }
  620. }
  621. int SSL_read(SSL *ssl, void *buf, int num) {
  622. return ssl_read_impl(ssl, buf, num, 0 /* consume bytes */);
  623. }
  624. int SSL_peek(SSL *ssl, void *buf, int num) {
  625. return ssl_read_impl(ssl, buf, num, 1 /* peek */);
  626. }
  627. int SSL_write(SSL *ssl, const void *buf, int num) {
  628. ssl->rwstate = SSL_NOTHING;
  629. /* Functions which use SSL_get_error must clear the error queue on entry. */
  630. ERR_clear_error();
  631. ERR_clear_system_error();
  632. if (ssl->handshake_func == NULL) {
  633. OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
  634. return -1;
  635. }
  636. if (ssl->s3->send_shutdown != ssl_shutdown_none) {
  637. OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
  638. return -1;
  639. }
  640. /* If necessary, complete the handshake implicitly. */
  641. if (SSL_in_init(ssl) && !SSL_in_false_start(ssl)) {
  642. int ret = SSL_do_handshake(ssl);
  643. if (ret < 0) {
  644. return ret;
  645. }
  646. if (ret == 0) {
  647. OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE);
  648. return -1;
  649. }
  650. }
  651. return ssl->method->write_app_data(ssl, buf, num);
  652. }
  653. int SSL_shutdown(SSL *ssl) {
  654. ssl->rwstate = SSL_NOTHING;
  655. /* Functions which use SSL_get_error must clear the error queue on entry. */
  656. ERR_clear_error();
  657. ERR_clear_system_error();
  658. if (ssl->handshake_func == NULL) {
  659. OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED);
  660. return -1;
  661. }
  662. /* We can't shutdown properly if we are in the middle of a handshake. */
  663. if (SSL_in_init(ssl)) {
  664. OPENSSL_PUT_ERROR(SSL, SSL_R_SHUTDOWN_WHILE_IN_INIT);
  665. return -1;
  666. }
  667. if (ssl->quiet_shutdown) {
  668. /* Do nothing if configured not to send a close_notify. */
  669. ssl->s3->send_shutdown = ssl_shutdown_close_notify;
  670. ssl->s3->recv_shutdown = ssl_shutdown_close_notify;
  671. return 1;
  672. }
  673. /* This function completes in two stages. It sends a close_notify and then it
  674. * waits for a close_notify to come in. Perform exactly one action and return
  675. * whether or not it succeeds. */
  676. if (ssl->s3->send_shutdown != ssl_shutdown_close_notify) {
  677. /* Send a close_notify. */
  678. if (ssl3_send_alert(ssl, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY) <= 0) {
  679. return -1;
  680. }
  681. } else if (ssl->s3->alert_dispatch) {
  682. /* Finish sending the close_notify. */
  683. if (ssl->method->dispatch_alert(ssl) <= 0) {
  684. return -1;
  685. }
  686. } else if (ssl->s3->recv_shutdown != ssl_shutdown_close_notify) {
  687. /* Wait for the peer's close_notify. */
  688. ssl->method->read_close_notify(ssl);
  689. if (ssl->s3->recv_shutdown != ssl_shutdown_close_notify) {
  690. return -1;
  691. }
  692. }
  693. /* Return 0 for unidirectional shutdown and 1 for bidirectional shutdown. */
  694. return ssl->s3->recv_shutdown == ssl_shutdown_close_notify;
  695. }
  696. int SSL_send_fatal_alert(SSL *ssl, uint8_t alert) {
  697. if (ssl->s3->alert_dispatch) {
  698. if (ssl->s3->send_alert[0] != SSL3_AL_FATAL ||
  699. ssl->s3->send_alert[1] != alert) {
  700. /* We are already attempting to write a different alert. */
  701. OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN);
  702. return -1;
  703. }
  704. return ssl->method->dispatch_alert(ssl);
  705. }
  706. return ssl3_send_alert(ssl, SSL3_AL_FATAL, alert);
  707. }
  708. int SSL_get_error(const SSL *ssl, int ret_code) {
  709. int reason;
  710. uint32_t err;
  711. BIO *bio;
  712. if (ret_code > 0) {
  713. return SSL_ERROR_NONE;
  714. }
  715. /* Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc,
  716. * where we do encode the error */
  717. err = ERR_peek_error();
  718. if (err != 0) {
  719. if (ERR_GET_LIB(err) == ERR_LIB_SYS) {
  720. return SSL_ERROR_SYSCALL;
  721. }
  722. return SSL_ERROR_SSL;
  723. }
  724. if (ret_code == 0) {
  725. if (ssl->s3->recv_shutdown == ssl_shutdown_close_notify) {
  726. return SSL_ERROR_ZERO_RETURN;
  727. }
  728. /* An EOF was observed which violates the protocol, and the underlying
  729. * transport does not participate in the error queue. Bubble up to the
  730. * caller. */
  731. return SSL_ERROR_SYSCALL;
  732. }
  733. if (SSL_want_session(ssl)) {
  734. return SSL_ERROR_PENDING_SESSION;
  735. }
  736. if (SSL_want_certificate(ssl)) {
  737. return SSL_ERROR_PENDING_CERTIFICATE;
  738. }
  739. if (SSL_want_read(ssl)) {
  740. bio = SSL_get_rbio(ssl);
  741. if (BIO_should_read(bio)) {
  742. return SSL_ERROR_WANT_READ;
  743. }
  744. if (BIO_should_write(bio)) {
  745. /* This one doesn't make too much sense ... We never try to write to the
  746. * rbio, and an application program where rbio and wbio are separate
  747. * couldn't even know what it should wait for. However if we ever set
  748. * ssl->rwstate incorrectly (so that we have SSL_want_read(ssl) instead of
  749. * SSL_want_write(ssl)) and rbio and wbio *are* the same, this test works
  750. * around that bug; so it might be safer to keep it. */
  751. return SSL_ERROR_WANT_WRITE;
  752. }
  753. if (BIO_should_io_special(bio)) {
  754. reason = BIO_get_retry_reason(bio);
  755. if (reason == BIO_RR_CONNECT) {
  756. return SSL_ERROR_WANT_CONNECT;
  757. }
  758. if (reason == BIO_RR_ACCEPT) {
  759. return SSL_ERROR_WANT_ACCEPT;
  760. }
  761. return SSL_ERROR_SYSCALL; /* unknown */
  762. }
  763. }
  764. if (SSL_want_write(ssl)) {
  765. bio = SSL_get_wbio(ssl);
  766. if (BIO_should_write(bio)) {
  767. return SSL_ERROR_WANT_WRITE;
  768. }
  769. if (BIO_should_read(bio)) {
  770. /* See above (SSL_want_read(ssl) with BIO_should_write(bio)) */
  771. return SSL_ERROR_WANT_READ;
  772. }
  773. if (BIO_should_io_special(bio)) {
  774. reason = BIO_get_retry_reason(bio);
  775. if (reason == BIO_RR_CONNECT) {
  776. return SSL_ERROR_WANT_CONNECT;
  777. }
  778. if (reason == BIO_RR_ACCEPT) {
  779. return SSL_ERROR_WANT_ACCEPT;
  780. }
  781. return SSL_ERROR_SYSCALL;
  782. }
  783. }
  784. if (SSL_want_x509_lookup(ssl)) {
  785. return SSL_ERROR_WANT_X509_LOOKUP;
  786. }
  787. if (SSL_want_channel_id_lookup(ssl)) {
  788. return SSL_ERROR_WANT_CHANNEL_ID_LOOKUP;
  789. }
  790. if (SSL_want_private_key_operation(ssl)) {
  791. return SSL_ERROR_WANT_PRIVATE_KEY_OPERATION;
  792. }
  793. return SSL_ERROR_SYSCALL;
  794. }
  795. void SSL_CTX_set_min_version(SSL_CTX *ctx, uint16_t version) {
  796. ctx->min_version = ctx->method->version_from_wire(version);
  797. }
  798. void SSL_CTX_set_max_version(SSL_CTX *ctx, uint16_t version) {
  799. ctx->max_version = ctx->method->version_from_wire(version);
  800. }
  801. void SSL_set_min_version(SSL *ssl, uint16_t version) {
  802. ssl->min_version = ssl->method->version_from_wire(version);
  803. }
  804. void SSL_set_max_version(SSL *ssl, uint16_t version) {
  805. ssl->max_version = ssl->method->version_from_wire(version);
  806. }
  807. void SSL_set_fallback_version(SSL *ssl, uint16_t version) {
  808. ssl->fallback_version = ssl->method->version_from_wire(version);
  809. }
  810. uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options) {
  811. ctx->options |= options;
  812. return ctx->options;
  813. }
  814. uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options) {
  815. ctx->options &= ~options;
  816. return ctx->options;
  817. }
  818. uint32_t SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; }
  819. uint32_t SSL_set_options(SSL *ssl, uint32_t options) {
  820. ssl->options |= options;
  821. return ssl->options;
  822. }
  823. uint32_t SSL_clear_options(SSL *ssl, uint32_t options) {
  824. ssl->options &= ~options;
  825. return ssl->options;
  826. }
  827. uint32_t SSL_get_options(const SSL *ssl) { return ssl->options; }
  828. uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode) {
  829. ctx->mode |= mode;
  830. return ctx->mode;
  831. }
  832. uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode) {
  833. ctx->mode &= ~mode;
  834. return ctx->mode;
  835. }
  836. uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx) { return ctx->mode; }
  837. uint32_t SSL_set_mode(SSL *ssl, uint32_t mode) {
  838. ssl->mode |= mode;
  839. return ssl->mode;
  840. }
  841. uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode) {
  842. ssl->mode &= ~mode;
  843. return ssl->mode;
  844. }
  845. uint32_t SSL_get_mode(const SSL *ssl) { return ssl->mode; }
  846. X509 *SSL_get_peer_certificate(const SSL *ssl) {
  847. if (ssl == NULL) {
  848. return NULL;
  849. }
  850. SSL_SESSION *session = SSL_get_session(ssl);
  851. if (session == NULL || session->peer == NULL) {
  852. return NULL;
  853. }
  854. X509_up_ref(session->peer);
  855. return session->peer;
  856. }
  857. STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *ssl) {
  858. if (ssl == NULL) {
  859. return NULL;
  860. }
  861. SSL_SESSION *session = SSL_get_session(ssl);
  862. if (session == NULL) {
  863. return NULL;
  864. }
  865. return session->cert_chain;
  866. }
  867. int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, size_t *out_len,
  868. size_t max_out) {
  869. /* The tls-unique value is the first Finished message in the handshake, which
  870. * is the client's in a full handshake and the server's for a resumption. See
  871. * https://tools.ietf.org/html/rfc5929#section-3.1. */
  872. const uint8_t *finished = ssl->s3->previous_client_finished;
  873. size_t finished_len = ssl->s3->previous_client_finished_len;
  874. if (ssl->session != NULL) {
  875. /* tls-unique is broken for resumed sessions unless EMS is used. */
  876. if (!ssl->session->extended_master_secret) {
  877. goto err;
  878. }
  879. finished = ssl->s3->previous_server_finished;
  880. finished_len = ssl->s3->previous_server_finished_len;
  881. }
  882. if (!ssl->s3->initial_handshake_complete ||
  883. ssl->version < TLS1_VERSION) {
  884. goto err;
  885. }
  886. *out_len = finished_len;
  887. if (finished_len > max_out) {
  888. *out_len = max_out;
  889. }
  890. memcpy(out, finished, *out_len);
  891. return 1;
  892. err:
  893. *out_len = 0;
  894. memset(out, 0, max_out);
  895. return 0;
  896. }
  897. int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const uint8_t *sid_ctx,
  898. unsigned sid_ctx_len) {
  899. if (sid_ctx_len > sizeof(ctx->sid_ctx)) {
  900. OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
  901. return 0;
  902. }
  903. ctx->sid_ctx_length = sid_ctx_len;
  904. memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len);
  905. return 1;
  906. }
  907. int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx,
  908. unsigned sid_ctx_len) {
  909. if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) {
  910. OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG);
  911. return 0;
  912. }
  913. ssl->sid_ctx_length = sid_ctx_len;
  914. memcpy(ssl->sid_ctx, sid_ctx, sid_ctx_len);
  915. return 1;
  916. }
  917. int SSL_CTX_set_purpose(SSL_CTX *ctx, int purpose) {
  918. return X509_VERIFY_PARAM_set_purpose(ctx->param, purpose);
  919. }
  920. int SSL_set_purpose(SSL *ssl, int purpose) {
  921. return X509_VERIFY_PARAM_set_purpose(ssl->param, purpose);
  922. }
  923. int SSL_CTX_set_trust(SSL_CTX *ctx, int trust) {
  924. return X509_VERIFY_PARAM_set_trust(ctx->param, trust);
  925. }
  926. int SSL_set_trust(SSL *ssl, int trust) {
  927. return X509_VERIFY_PARAM_set_trust(ssl->param, trust);
  928. }
  929. int SSL_CTX_set1_param(SSL_CTX *ctx, const X509_VERIFY_PARAM *param) {
  930. return X509_VERIFY_PARAM_set1(ctx->param, param);
  931. }
  932. int SSL_set1_param(SSL *ssl, const X509_VERIFY_PARAM *param) {
  933. return X509_VERIFY_PARAM_set1(ssl->param, param);
  934. }
  935. void ssl_cipher_preference_list_free(
  936. struct ssl_cipher_preference_list_st *cipher_list) {
  937. if (cipher_list == NULL) {
  938. return;
  939. }
  940. sk_SSL_CIPHER_free(cipher_list->ciphers);
  941. OPENSSL_free(cipher_list->in_group_flags);
  942. OPENSSL_free(cipher_list);
  943. }
  944. X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) { return ctx->param; }
  945. X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) { return ssl->param; }
  946. void SSL_certs_clear(SSL *ssl) { ssl_cert_clear_certs(ssl->cert); }
  947. int SSL_get_fd(const SSL *ssl) { return SSL_get_rfd(ssl); }
  948. int SSL_get_rfd(const SSL *ssl) {
  949. int ret = -1;
  950. BIO *b = BIO_find_type(SSL_get_rbio(ssl), BIO_TYPE_DESCRIPTOR);
  951. if (b != NULL) {
  952. BIO_get_fd(b, &ret);
  953. }
  954. return ret;
  955. }
  956. int SSL_get_wfd(const SSL *ssl) {
  957. int ret = -1;
  958. BIO *b = BIO_find_type(SSL_get_wbio(ssl), BIO_TYPE_DESCRIPTOR);
  959. if (b != NULL) {
  960. BIO_get_fd(b, &ret);
  961. }
  962. return ret;
  963. }
  964. int SSL_set_fd(SSL *ssl, int fd) {
  965. BIO *bio = BIO_new(BIO_s_socket());
  966. if (bio == NULL) {
  967. OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
  968. return 0;
  969. }
  970. BIO_set_fd(bio, fd, BIO_NOCLOSE);
  971. SSL_set_bio(ssl, bio, bio);
  972. return 1;
  973. }
  974. int SSL_set_wfd(SSL *ssl, int fd) {
  975. BIO *rbio = SSL_get_rbio(ssl);
  976. if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET ||
  977. BIO_get_fd(rbio, NULL) != fd) {
  978. BIO *bio = BIO_new(BIO_s_socket());
  979. if (bio == NULL) {
  980. OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
  981. return 0;
  982. }
  983. BIO_set_fd(bio, fd, BIO_NOCLOSE);
  984. SSL_set0_wbio(ssl, bio);
  985. } else {
  986. /* Copy the rbio over to the wbio. */
  987. BIO_up_ref(rbio);
  988. SSL_set0_wbio(ssl, rbio);
  989. }
  990. return 1;
  991. }
  992. int SSL_set_rfd(SSL *ssl, int fd) {
  993. BIO *wbio = SSL_get_wbio(ssl);
  994. if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET ||
  995. BIO_get_fd(wbio, NULL) != fd) {
  996. BIO *bio = BIO_new(BIO_s_socket());
  997. if (bio == NULL) {
  998. OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB);
  999. return 0;
  1000. }
  1001. BIO_set_fd(bio, fd, BIO_NOCLOSE);
  1002. SSL_set0_rbio(ssl, bio);
  1003. } else {
  1004. /* Copy the wbio over to the rbio. */
  1005. BIO_up_ref(wbio);
  1006. SSL_set0_rbio(ssl, wbio);
  1007. }
  1008. return 1;
  1009. }
  1010. size_t SSL_get_finished(const SSL *ssl, void *buf, size_t count) {
  1011. size_t ret = 0;
  1012. if (ssl->s3 != NULL) {
  1013. ret = ssl->s3->tmp.finish_md_len;
  1014. if (count > ret) {
  1015. count = ret;
  1016. }
  1017. memcpy(buf, ssl->s3->tmp.finish_md, count);
  1018. }
  1019. return ret;
  1020. }
  1021. size_t SSL_get_peer_finished(const SSL *ssl, void *buf, size_t count) {
  1022. size_t ret = 0;
  1023. if (ssl->s3 != NULL) {
  1024. ret = ssl->s3->tmp.peer_finish_md_len;
  1025. if (count > ret) {
  1026. count = ret;
  1027. }
  1028. memcpy(buf, ssl->s3->tmp.peer_finish_md, count);
  1029. }
  1030. return ret;
  1031. }
  1032. int SSL_get_verify_mode(const SSL *ssl) { return ssl->verify_mode; }
  1033. int SSL_get_verify_depth(const SSL *ssl) {
  1034. return X509_VERIFY_PARAM_get_depth(ssl->param);
  1035. }
  1036. int SSL_get_extms_support(const SSL *ssl) {
  1037. if (!ssl->s3->have_version) {
  1038. return 0;
  1039. }
  1040. return ssl3_protocol_version(ssl) >= TLS1_3_VERSION ||
  1041. ssl->s3->tmp.extended_master_secret == 1;
  1042. }
  1043. int (*SSL_get_verify_callback(const SSL *ssl))(int, X509_STORE_CTX *) {
  1044. return ssl->verify_callback;
  1045. }
  1046. int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) { return ctx->verify_mode; }
  1047. int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) {
  1048. return X509_VERIFY_PARAM_get_depth(ctx->param);
  1049. }
  1050. int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))(
  1051. int ok, X509_STORE_CTX *store_ctx) {
  1052. return ctx->default_verify_callback;
  1053. }
  1054. void SSL_set_verify(SSL *ssl, int mode,
  1055. int (*callback)(int ok, X509_STORE_CTX *store_ctx)) {
  1056. ssl->verify_mode = mode;
  1057. if (callback != NULL) {
  1058. ssl->verify_callback = callback;
  1059. }
  1060. }
  1061. void SSL_set_verify_depth(SSL *ssl, int depth) {
  1062. X509_VERIFY_PARAM_set_depth(ssl->param, depth);
  1063. }
  1064. int SSL_CTX_get_read_ahead(const SSL_CTX *ctx) { return 0; }
  1065. int SSL_get_read_ahead(const SSL *ssl) { return 0; }
  1066. void SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes) { }
  1067. void SSL_set_read_ahead(SSL *ssl, int yes) { }
  1068. int SSL_pending(const SSL *ssl) {
  1069. if (ssl->s3->rrec.type != SSL3_RT_APPLICATION_DATA) {
  1070. return 0;
  1071. }
  1072. return ssl->s3->rrec.length;
  1073. }
  1074. /* Fix this so it checks all the valid key/cert options */
  1075. int SSL_CTX_check_private_key(const SSL_CTX *ctx) {
  1076. if (ctx->cert->x509 == NULL) {
  1077. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
  1078. return 0;
  1079. }
  1080. if (ctx->cert->privatekey == NULL) {
  1081. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
  1082. return 0;
  1083. }
  1084. return X509_check_private_key(ctx->cert->x509, ctx->cert->privatekey);
  1085. }
  1086. /* Fix this function so that it takes an optional type parameter */
  1087. int SSL_check_private_key(const SSL *ssl) {
  1088. if (ssl->cert->x509 == NULL) {
  1089. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED);
  1090. return 0;
  1091. }
  1092. if (ssl->cert->privatekey == NULL) {
  1093. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED);
  1094. return 0;
  1095. }
  1096. return X509_check_private_key(ssl->cert->x509, ssl->cert->privatekey);
  1097. }
  1098. long SSL_get_default_timeout(const SSL *ssl) {
  1099. return SSL_DEFAULT_SESSION_TIMEOUT;
  1100. }
  1101. int SSL_renegotiate(SSL *ssl) {
  1102. /* Caller-initiated renegotiation is not supported. */
  1103. OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  1104. return 0;
  1105. }
  1106. int SSL_renegotiate_pending(SSL *ssl) {
  1107. return SSL_in_init(ssl) && ssl->s3->initial_handshake_complete;
  1108. }
  1109. int SSL_total_renegotiations(const SSL *ssl) {
  1110. return ssl->s3->total_renegotiations;
  1111. }
  1112. size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx) {
  1113. return ctx->max_cert_list;
  1114. }
  1115. void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, size_t max_cert_list) {
  1116. if (max_cert_list > kMaxHandshakeSize) {
  1117. max_cert_list = kMaxHandshakeSize;
  1118. }
  1119. ctx->max_cert_list = (uint32_t)max_cert_list;
  1120. }
  1121. size_t SSL_get_max_cert_list(const SSL *ssl) {
  1122. return ssl->max_cert_list;
  1123. }
  1124. void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list) {
  1125. if (max_cert_list > kMaxHandshakeSize) {
  1126. max_cert_list = kMaxHandshakeSize;
  1127. }
  1128. ssl->max_cert_list = (uint32_t)max_cert_list;
  1129. }
  1130. int SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, size_t max_send_fragment) {
  1131. if (max_send_fragment < 512) {
  1132. max_send_fragment = 512;
  1133. }
  1134. if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) {
  1135. max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
  1136. }
  1137. ctx->max_send_fragment = (uint16_t)max_send_fragment;
  1138. return 1;
  1139. }
  1140. int SSL_set_max_send_fragment(SSL *ssl, size_t max_send_fragment) {
  1141. if (max_send_fragment < 512) {
  1142. max_send_fragment = 512;
  1143. }
  1144. if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) {
  1145. max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
  1146. }
  1147. ssl->max_send_fragment = (uint16_t)max_send_fragment;
  1148. return 1;
  1149. }
  1150. int SSL_set_mtu(SSL *ssl, unsigned mtu) {
  1151. if (!SSL_is_dtls(ssl) || mtu < dtls1_min_mtu()) {
  1152. return 0;
  1153. }
  1154. ssl->d1->mtu = mtu;
  1155. return 1;
  1156. }
  1157. int SSL_get_secure_renegotiation_support(const SSL *ssl) {
  1158. return ssl->s3->send_connection_binding;
  1159. }
  1160. LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) { return ctx->sessions; }
  1161. size_t SSL_CTX_sess_number(const SSL_CTX *ctx) {
  1162. return lh_SSL_SESSION_num_items(ctx->sessions);
  1163. }
  1164. unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, unsigned long size) {
  1165. unsigned long ret = ctx->session_cache_size;
  1166. ctx->session_cache_size = size;
  1167. return ret;
  1168. }
  1169. unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx) {
  1170. return ctx->session_cache_size;
  1171. }
  1172. int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode) {
  1173. int ret = ctx->session_cache_mode;
  1174. ctx->session_cache_mode = mode;
  1175. return ret;
  1176. }
  1177. int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx) {
  1178. return ctx->session_cache_mode;
  1179. }
  1180. int SSL_CTX_get_tlsext_ticket_keys(SSL_CTX *ctx, void *out, size_t len) {
  1181. if (out == NULL) {
  1182. return 48;
  1183. }
  1184. if (len != 48) {
  1185. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH);
  1186. return 0;
  1187. }
  1188. uint8_t *out_bytes = out;
  1189. memcpy(out_bytes, ctx->tlsext_tick_key_name, 16);
  1190. memcpy(out_bytes + 16, ctx->tlsext_tick_hmac_key, 16);
  1191. memcpy(out_bytes + 32, ctx->tlsext_tick_aes_key, 16);
  1192. return 1;
  1193. }
  1194. int SSL_CTX_set_tlsext_ticket_keys(SSL_CTX *ctx, const void *in, size_t len) {
  1195. if (in == NULL) {
  1196. return 48;
  1197. }
  1198. if (len != 48) {
  1199. OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH);
  1200. return 0;
  1201. }
  1202. const uint8_t *in_bytes = in;
  1203. memcpy(ctx->tlsext_tick_key_name, in_bytes, 16);
  1204. memcpy(ctx->tlsext_tick_hmac_key, in_bytes + 16, 16);
  1205. memcpy(ctx->tlsext_tick_aes_key, in_bytes + 32, 16);
  1206. return 1;
  1207. }
  1208. int SSL_CTX_set_tlsext_ticket_key_cb(
  1209. SSL_CTX *ctx, int (*callback)(SSL *ssl, uint8_t *key_name, uint8_t *iv,
  1210. EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
  1211. int encrypt)) {
  1212. ctx->tlsext_ticket_key_cb = callback;
  1213. return 1;
  1214. }
  1215. int SSL_CTX_set1_curves(SSL_CTX *ctx, const int *curves, size_t curves_len) {
  1216. return tls1_set_curves(&ctx->supported_group_list,
  1217. &ctx->supported_group_list_len, curves,
  1218. curves_len);
  1219. }
  1220. int SSL_set1_curves(SSL *ssl, const int *curves, size_t curves_len) {
  1221. return tls1_set_curves(&ssl->supported_group_list,
  1222. &ssl->supported_group_list_len, curves,
  1223. curves_len);
  1224. }
  1225. uint16_t SSL_get_curve_id(const SSL *ssl) {
  1226. /* TODO(davidben): This checks the wrong session if there is a renegotiation in
  1227. * progress. */
  1228. SSL_SESSION *session = SSL_get_session(ssl);
  1229. if (session == NULL ||
  1230. session->cipher == NULL ||
  1231. !SSL_CIPHER_is_ECDHE(session->cipher)) {
  1232. return 0;
  1233. }
  1234. return (uint16_t)session->key_exchange_info;
  1235. }
  1236. int SSL_CTX_set_tmp_dh(SSL_CTX *ctx, const DH *dh) {
  1237. DH_free(ctx->cert->dh_tmp);
  1238. ctx->cert->dh_tmp = DHparams_dup(dh);
  1239. if (ctx->cert->dh_tmp == NULL) {
  1240. OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB);
  1241. return 0;
  1242. }
  1243. return 1;
  1244. }
  1245. int SSL_set_tmp_dh(SSL *ssl, const DH *dh) {
  1246. DH_free(ssl->cert->dh_tmp);
  1247. ssl->cert->dh_tmp = DHparams_dup(dh);
  1248. if (ssl->cert->dh_tmp == NULL) {
  1249. OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB);
  1250. return 0;
  1251. }
  1252. return 1;
  1253. }
  1254. STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl) {
  1255. if (ssl == NULL) {
  1256. return NULL;
  1257. }
  1258. if (ssl->cipher_list != NULL) {
  1259. return ssl->cipher_list->ciphers;
  1260. }
  1261. if (ssl->version >= TLS1_1_VERSION && ssl->ctx->cipher_list_tls11 != NULL) {
  1262. return ssl->ctx->cipher_list_tls11->ciphers;
  1263. }
  1264. if (ssl->version >= TLS1_VERSION && ssl->ctx->cipher_list_tls10 != NULL) {
  1265. return ssl->ctx->cipher_list_tls10->ciphers;
  1266. }
  1267. if (ssl->ctx->cipher_list != NULL) {
  1268. return ssl->ctx->cipher_list->ciphers;
  1269. }
  1270. return NULL;
  1271. }
  1272. /* return a STACK of the ciphers available for the SSL and in order of
  1273. * algorithm id */
  1274. STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL *ssl) {
  1275. if (ssl == NULL) {
  1276. return NULL;
  1277. }
  1278. if (ssl->cipher_list_by_id != NULL) {
  1279. return ssl->cipher_list_by_id;
  1280. }
  1281. if (ssl->ctx->cipher_list_by_id != NULL) {
  1282. return ssl->ctx->cipher_list_by_id;
  1283. }
  1284. return NULL;
  1285. }
  1286. const char *SSL_get_cipher_list(const SSL *ssl, int n) {
  1287. const SSL_CIPHER *c;
  1288. STACK_OF(SSL_CIPHER) *sk;
  1289. if (ssl == NULL) {
  1290. return NULL;
  1291. }
  1292. sk = SSL_get_ciphers(ssl);
  1293. if (sk == NULL || n < 0 || (size_t)n >= sk_SSL_CIPHER_num(sk)) {
  1294. return NULL;
  1295. }
  1296. c = sk_SSL_CIPHER_value(sk, n);
  1297. if (c == NULL) {
  1298. return NULL;
  1299. }
  1300. return c->name;
  1301. }
  1302. int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) {
  1303. STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list(
  1304. ctx->method, &ctx->cipher_list, &ctx->cipher_list_by_id, str);
  1305. if (cipher_list == NULL) {
  1306. return 0;
  1307. }
  1308. /* |ssl_create_cipher_list| may succeed but return an empty cipher list. */
  1309. if (sk_SSL_CIPHER_num(cipher_list) == 0) {
  1310. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
  1311. return 0;
  1312. }
  1313. return 1;
  1314. }
  1315. int SSL_CTX_set_cipher_list_tls10(SSL_CTX *ctx, const char *str) {
  1316. STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list(
  1317. ctx->method, &ctx->cipher_list_tls10, NULL, str);
  1318. if (cipher_list == NULL) {
  1319. return 0;
  1320. }
  1321. /* |ssl_create_cipher_list| may succeed but return an empty cipher list. */
  1322. if (sk_SSL_CIPHER_num(cipher_list) == 0) {
  1323. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
  1324. return 0;
  1325. }
  1326. return 1;
  1327. }
  1328. int SSL_CTX_set_cipher_list_tls11(SSL_CTX *ctx, const char *str) {
  1329. STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list(
  1330. ctx->method, &ctx->cipher_list_tls11, NULL, str);
  1331. if (cipher_list == NULL) {
  1332. return 0;
  1333. }
  1334. /* |ssl_create_cipher_list| may succeed but return an empty cipher list. */
  1335. if (sk_SSL_CIPHER_num(cipher_list) == 0) {
  1336. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
  1337. return 0;
  1338. }
  1339. return 1;
  1340. }
  1341. int SSL_set_cipher_list(SSL *ssl, const char *str) {
  1342. STACK_OF(SSL_CIPHER) *cipher_list = ssl_create_cipher_list(
  1343. ssl->ctx->method, &ssl->cipher_list, &ssl->cipher_list_by_id, str);
  1344. if (cipher_list == NULL) {
  1345. return 0;
  1346. }
  1347. /* |ssl_create_cipher_list| may succeed but return an empty cipher list. */
  1348. if (sk_SSL_CIPHER_num(cipher_list) == 0) {
  1349. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
  1350. return 0;
  1351. }
  1352. return 1;
  1353. }
  1354. STACK_OF(SSL_CIPHER) *
  1355. ssl_parse_client_cipher_list(const struct ssl_early_callback_ctx *ctx) {
  1356. CBS cipher_suites;
  1357. CBS_init(&cipher_suites, ctx->cipher_suites, ctx->cipher_suites_len);
  1358. STACK_OF(SSL_CIPHER) *sk = sk_SSL_CIPHER_new_null();
  1359. if (sk == NULL) {
  1360. OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
  1361. goto err;
  1362. }
  1363. while (CBS_len(&cipher_suites) > 0) {
  1364. uint16_t cipher_suite;
  1365. if (!CBS_get_u16(&cipher_suites, &cipher_suite)) {
  1366. OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST);
  1367. goto err;
  1368. }
  1369. const SSL_CIPHER *c = SSL_get_cipher_by_value(cipher_suite);
  1370. if (c != NULL && !sk_SSL_CIPHER_push(sk, c)) {
  1371. OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
  1372. goto err;
  1373. }
  1374. }
  1375. return sk;
  1376. err:
  1377. sk_SSL_CIPHER_free(sk);
  1378. return NULL;
  1379. }
  1380. const char *SSL_get_servername(const SSL *ssl, const int type) {
  1381. if (type != TLSEXT_NAMETYPE_host_name) {
  1382. return NULL;
  1383. }
  1384. /* Historically, |SSL_get_servername| was also the configuration getter
  1385. * corresponding to |SSL_set_tlsext_host_name|. */
  1386. if (ssl->tlsext_hostname != NULL) {
  1387. return ssl->tlsext_hostname;
  1388. }
  1389. SSL_SESSION *session = SSL_get_session(ssl);
  1390. if (session == NULL) {
  1391. return NULL;
  1392. }
  1393. return session->tlsext_hostname;
  1394. }
  1395. int SSL_get_servername_type(const SSL *ssl) {
  1396. SSL_SESSION *session = SSL_get_session(ssl);
  1397. if (session == NULL || session->tlsext_hostname == NULL) {
  1398. return -1;
  1399. }
  1400. return TLSEXT_NAMETYPE_host_name;
  1401. }
  1402. void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx) {
  1403. ctx->signed_cert_timestamps_enabled = 1;
  1404. }
  1405. int SSL_enable_signed_cert_timestamps(SSL *ssl) {
  1406. ssl->signed_cert_timestamps_enabled = 1;
  1407. return 1;
  1408. }
  1409. void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx) {
  1410. ctx->ocsp_stapling_enabled = 1;
  1411. }
  1412. int SSL_enable_ocsp_stapling(SSL *ssl) {
  1413. ssl->ocsp_stapling_enabled = 1;
  1414. return 1;
  1415. }
  1416. void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, const uint8_t **out,
  1417. size_t *out_len) {
  1418. SSL_SESSION *session = SSL_get_session(ssl);
  1419. *out_len = 0;
  1420. *out = NULL;
  1421. if (ssl->server || !session || !session->tlsext_signed_cert_timestamp_list) {
  1422. return;
  1423. }
  1424. *out = session->tlsext_signed_cert_timestamp_list;
  1425. *out_len = session->tlsext_signed_cert_timestamp_list_length;
  1426. }
  1427. void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out,
  1428. size_t *out_len) {
  1429. SSL_SESSION *session = SSL_get_session(ssl);
  1430. *out_len = 0;
  1431. *out = NULL;
  1432. if (ssl->server || !session || !session->ocsp_response) {
  1433. return;
  1434. }
  1435. *out = session->ocsp_response;
  1436. *out_len = session->ocsp_response_length;
  1437. }
  1438. int SSL_CTX_set_signed_cert_timestamp_list(SSL_CTX *ctx, const uint8_t *list,
  1439. size_t list_len) {
  1440. OPENSSL_free(ctx->signed_cert_timestamp_list);
  1441. ctx->signed_cert_timestamp_list_length = 0;
  1442. ctx->signed_cert_timestamp_list = BUF_memdup(list, list_len);
  1443. if (ctx->signed_cert_timestamp_list == NULL) {
  1444. return 0;
  1445. }
  1446. ctx->signed_cert_timestamp_list_length = list_len;
  1447. return 1;
  1448. }
  1449. int SSL_CTX_set_ocsp_response(SSL_CTX *ctx, const uint8_t *response,
  1450. size_t response_len) {
  1451. OPENSSL_free(ctx->ocsp_response);
  1452. ctx->ocsp_response_length = 0;
  1453. ctx->ocsp_response = BUF_memdup(response, response_len);
  1454. if (ctx->ocsp_response == NULL) {
  1455. return 0;
  1456. }
  1457. ctx->ocsp_response_length = response_len;
  1458. return 1;
  1459. }
  1460. int SSL_set_tlsext_host_name(SSL *ssl, const char *name) {
  1461. OPENSSL_free(ssl->tlsext_hostname);
  1462. ssl->tlsext_hostname = NULL;
  1463. if (name == NULL) {
  1464. return 1;
  1465. }
  1466. size_t len = strlen(name);
  1467. if (len == 0 || len > TLSEXT_MAXLEN_host_name) {
  1468. OPENSSL_PUT_ERROR(SSL, SSL_R_SSL3_EXT_INVALID_SERVERNAME);
  1469. return 0;
  1470. }
  1471. ssl->tlsext_hostname = BUF_strdup(name);
  1472. if (ssl->tlsext_hostname == NULL) {
  1473. OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
  1474. return 0;
  1475. }
  1476. return 1;
  1477. }
  1478. int SSL_CTX_set_tlsext_servername_callback(
  1479. SSL_CTX *ctx, int (*callback)(SSL *ssl, int *out_alert, void *arg)) {
  1480. ctx->tlsext_servername_callback = callback;
  1481. return 1;
  1482. }
  1483. int SSL_CTX_set_tlsext_servername_arg(SSL_CTX *ctx, void *arg) {
  1484. ctx->tlsext_servername_arg = arg;
  1485. return 1;
  1486. }
  1487. int SSL_select_next_proto(uint8_t **out, uint8_t *out_len,
  1488. const uint8_t *server, unsigned server_len,
  1489. const uint8_t *client, unsigned client_len) {
  1490. unsigned int i, j;
  1491. const uint8_t *result;
  1492. int status = OPENSSL_NPN_UNSUPPORTED;
  1493. /* For each protocol in server preference order, see if we support it. */
  1494. for (i = 0; i < server_len;) {
  1495. for (j = 0; j < client_len;) {
  1496. if (server[i] == client[j] &&
  1497. memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) {
  1498. /* We found a match */
  1499. result = &server[i];
  1500. status = OPENSSL_NPN_NEGOTIATED;
  1501. goto found;
  1502. }
  1503. j += client[j];
  1504. j++;
  1505. }
  1506. i += server[i];
  1507. i++;
  1508. }
  1509. /* There's no overlap between our protocols and the server's list. */
  1510. result = client;
  1511. status = OPENSSL_NPN_NO_OVERLAP;
  1512. found:
  1513. *out = (uint8_t *)result + 1;
  1514. *out_len = result[0];
  1515. return status;
  1516. }
  1517. void SSL_get0_next_proto_negotiated(const SSL *ssl, const uint8_t **out_data,
  1518. unsigned *out_len) {
  1519. *out_data = ssl->s3->next_proto_negotiated;
  1520. if (*out_data == NULL) {
  1521. *out_len = 0;
  1522. } else {
  1523. *out_len = ssl->s3->next_proto_negotiated_len;
  1524. }
  1525. }
  1526. void SSL_CTX_set_next_protos_advertised_cb(
  1527. SSL_CTX *ctx,
  1528. int (*cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg),
  1529. void *arg) {
  1530. ctx->next_protos_advertised_cb = cb;
  1531. ctx->next_protos_advertised_cb_arg = arg;
  1532. }
  1533. void SSL_CTX_set_next_proto_select_cb(
  1534. SSL_CTX *ctx, int (*cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
  1535. const uint8_t *in, unsigned in_len, void *arg),
  1536. void *arg) {
  1537. ctx->next_proto_select_cb = cb;
  1538. ctx->next_proto_select_cb_arg = arg;
  1539. }
  1540. int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos,
  1541. unsigned protos_len) {
  1542. OPENSSL_free(ctx->alpn_client_proto_list);
  1543. ctx->alpn_client_proto_list = BUF_memdup(protos, protos_len);
  1544. if (!ctx->alpn_client_proto_list) {
  1545. return 1;
  1546. }
  1547. ctx->alpn_client_proto_list_len = protos_len;
  1548. return 0;
  1549. }
  1550. int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, unsigned protos_len) {
  1551. OPENSSL_free(ssl->alpn_client_proto_list);
  1552. ssl->alpn_client_proto_list = BUF_memdup(protos, protos_len);
  1553. if (!ssl->alpn_client_proto_list) {
  1554. return 1;
  1555. }
  1556. ssl->alpn_client_proto_list_len = protos_len;
  1557. return 0;
  1558. }
  1559. void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx,
  1560. int (*cb)(SSL *ssl, const uint8_t **out,
  1561. uint8_t *out_len, const uint8_t *in,
  1562. unsigned in_len, void *arg),
  1563. void *arg) {
  1564. ctx->alpn_select_cb = cb;
  1565. ctx->alpn_select_cb_arg = arg;
  1566. }
  1567. void SSL_get0_alpn_selected(const SSL *ssl, const uint8_t **out_data,
  1568. unsigned *out_len) {
  1569. *out_data = NULL;
  1570. if (ssl->s3) {
  1571. *out_data = ssl->s3->alpn_selected;
  1572. }
  1573. if (*out_data == NULL) {
  1574. *out_len = 0;
  1575. } else {
  1576. *out_len = ssl->s3->alpn_selected_len;
  1577. }
  1578. }
  1579. int SSL_CTX_enable_tls_channel_id(SSL_CTX *ctx) {
  1580. ctx->tlsext_channel_id_enabled = 1;
  1581. return 1;
  1582. }
  1583. int SSL_enable_tls_channel_id(SSL *ssl) {
  1584. ssl->tlsext_channel_id_enabled = 1;
  1585. return 1;
  1586. }
  1587. static int is_p256_key(EVP_PKEY *private_key) {
  1588. const EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(private_key);
  1589. return ec_key != NULL &&
  1590. EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) ==
  1591. NID_X9_62_prime256v1;
  1592. }
  1593. int SSL_CTX_set1_tls_channel_id(SSL_CTX *ctx, EVP_PKEY *private_key) {
  1594. if (!is_p256_key(private_key)) {
  1595. OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256);
  1596. return 0;
  1597. }
  1598. EVP_PKEY_free(ctx->tlsext_channel_id_private);
  1599. EVP_PKEY_up_ref(private_key);
  1600. ctx->tlsext_channel_id_private = private_key;
  1601. ctx->tlsext_channel_id_enabled = 1;
  1602. return 1;
  1603. }
  1604. int SSL_set1_tls_channel_id(SSL *ssl, EVP_PKEY *private_key) {
  1605. if (!is_p256_key(private_key)) {
  1606. OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256);
  1607. return 0;
  1608. }
  1609. EVP_PKEY_free(ssl->tlsext_channel_id_private);
  1610. EVP_PKEY_up_ref(private_key);
  1611. ssl->tlsext_channel_id_private = private_key;
  1612. ssl->tlsext_channel_id_enabled = 1;
  1613. return 1;
  1614. }
  1615. size_t SSL_get_tls_channel_id(SSL *ssl, uint8_t *out, size_t max_out) {
  1616. if (!ssl->s3->tlsext_channel_id_valid) {
  1617. return 0;
  1618. }
  1619. memcpy(out, ssl->s3->tlsext_channel_id, (max_out < 64) ? max_out : 64);
  1620. return 64;
  1621. }
  1622. void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx,
  1623. int (*cb)(X509_STORE_CTX *store_ctx,
  1624. void *arg),
  1625. void *arg) {
  1626. ctx->app_verify_callback = cb;
  1627. ctx->app_verify_arg = arg;
  1628. }
  1629. void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
  1630. int (*cb)(int, X509_STORE_CTX *)) {
  1631. ctx->verify_mode = mode;
  1632. ctx->default_verify_callback = cb;
  1633. }
  1634. void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) {
  1635. X509_VERIFY_PARAM_set_depth(ctx->param, depth);
  1636. }
  1637. void SSL_CTX_set_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, void *arg),
  1638. void *arg) {
  1639. ssl_cert_set_cert_cb(ctx->cert, cb, arg);
  1640. }
  1641. void SSL_set_cert_cb(SSL *ssl, int (*cb)(SSL *ssl, void *arg), void *arg) {
  1642. ssl_cert_set_cert_cb(ssl->cert, cb, arg);
  1643. }
  1644. size_t SSL_get0_certificate_types(SSL *ssl, const uint8_t **out_types) {
  1645. if (ssl->server) {
  1646. *out_types = NULL;
  1647. return 0;
  1648. }
  1649. *out_types = ssl->s3->tmp.certificate_types;
  1650. return ssl->s3->tmp.num_certificate_types;
  1651. }
  1652. void ssl_get_compatible_server_ciphers(SSL *ssl, uint32_t *out_mask_k,
  1653. uint32_t *out_mask_a) {
  1654. uint32_t mask_k = 0;
  1655. uint32_t mask_a = 0;
  1656. if (ssl->cert->x509 != NULL && ssl_has_private_key(ssl)) {
  1657. int type = ssl_private_key_type(ssl);
  1658. if (type == NID_rsaEncryption) {
  1659. mask_k |= SSL_kRSA;
  1660. mask_a |= SSL_aRSA;
  1661. } else if (ssl_is_ecdsa_key_type(type)) {
  1662. /* An ECC certificate may be usable for ECDSA cipher suites depending on
  1663. * the key usage extension and on the client's group preferences. */
  1664. X509 *x = ssl->cert->x509;
  1665. /* This call populates extension flags (ex_flags). */
  1666. X509_check_purpose(x, -1, 0);
  1667. int ecdsa_ok = (x->ex_flags & EXFLAG_KUSAGE)
  1668. ? (x->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE)
  1669. : 1;
  1670. if (ecdsa_ok && tls1_check_ec_cert(ssl, x)) {
  1671. mask_a |= SSL_aECDSA;
  1672. }
  1673. }
  1674. }
  1675. if (ssl->cert->dh_tmp != NULL || ssl->cert->dh_tmp_cb != NULL) {
  1676. mask_k |= SSL_kDHE;
  1677. }
  1678. /* Check for a shared group to consider ECDHE ciphers. */
  1679. uint16_t unused;
  1680. if (tls1_get_shared_group(ssl, &unused)) {
  1681. mask_k |= SSL_kECDHE;
  1682. }
  1683. /* CECPQ1 ciphers are always acceptable if supported by both sides. */
  1684. mask_k |= SSL_kCECPQ1;
  1685. /* PSK requires a server callback. */
  1686. if (ssl->psk_server_callback != NULL) {
  1687. mask_k |= SSL_kPSK;
  1688. mask_a |= SSL_aPSK;
  1689. }
  1690. *out_mask_k = mask_k;
  1691. *out_mask_a = mask_a;
  1692. }
  1693. void ssl_update_cache(SSL *ssl, int mode) {
  1694. SSL_CTX *ctx = ssl->initial_ctx;
  1695. /* Never cache sessions with empty session IDs. */
  1696. if (ssl->s3->established_session->session_id_length == 0 ||
  1697. (ctx->session_cache_mode & mode) != mode) {
  1698. return;
  1699. }
  1700. /* Clients never use the internal session cache. */
  1701. int use_internal_cache = ssl->server && !(ctx->session_cache_mode &
  1702. SSL_SESS_CACHE_NO_INTERNAL_STORE);
  1703. /* A client may see new sessions on abbreviated handshakes if the server
  1704. * decides to renew the ticket. Once the handshake is completed, it should be
  1705. * inserted into the cache. */
  1706. if (ssl->s3->established_session != ssl->session ||
  1707. (!ssl->server && ssl->tlsext_ticket_expected)) {
  1708. if (use_internal_cache) {
  1709. SSL_CTX_add_session(ctx, ssl->s3->established_session);
  1710. }
  1711. if (ctx->new_session_cb != NULL) {
  1712. SSL_SESSION_up_ref(ssl->s3->established_session);
  1713. if (!ctx->new_session_cb(ssl, ssl->s3->established_session)) {
  1714. /* |new_session_cb|'s return value signals whether it took ownership. */
  1715. SSL_SESSION_free(ssl->s3->established_session);
  1716. }
  1717. }
  1718. }
  1719. if (use_internal_cache &&
  1720. !(ctx->session_cache_mode & SSL_SESS_CACHE_NO_AUTO_CLEAR)) {
  1721. /* Automatically flush the internal session cache every 255 connections. */
  1722. int flush_cache = 0;
  1723. CRYPTO_MUTEX_lock_write(&ctx->lock);
  1724. ctx->handshakes_since_cache_flush++;
  1725. if (ctx->handshakes_since_cache_flush >= 255) {
  1726. flush_cache = 1;
  1727. ctx->handshakes_since_cache_flush = 0;
  1728. }
  1729. CRYPTO_MUTEX_unlock_write(&ctx->lock);
  1730. if (flush_cache) {
  1731. struct timeval now;
  1732. ssl_get_current_time(ssl, &now);
  1733. SSL_CTX_flush_sessions(ctx, (long)now.tv_sec);
  1734. }
  1735. }
  1736. }
  1737. static const char *ssl_get_version(int version) {
  1738. switch (version) {
  1739. case TLS1_3_VERSION:
  1740. return "TLSv1.3";
  1741. case TLS1_2_VERSION:
  1742. return "TLSv1.2";
  1743. case TLS1_1_VERSION:
  1744. return "TLSv1.1";
  1745. case TLS1_VERSION:
  1746. return "TLSv1";
  1747. case SSL3_VERSION:
  1748. return "SSLv3";
  1749. case DTLS1_VERSION:
  1750. return "DTLSv1";
  1751. case DTLS1_2_VERSION:
  1752. return "DTLSv1.2";
  1753. default:
  1754. return "unknown";
  1755. }
  1756. }
  1757. const char *SSL_get_version(const SSL *ssl) {
  1758. return ssl_get_version(ssl->version);
  1759. }
  1760. const char *SSL_SESSION_get_version(const SSL_SESSION *session) {
  1761. return ssl_get_version(session->ssl_version);
  1762. }
  1763. X509 *SSL_get_certificate(const SSL *ssl) {
  1764. if (ssl->cert != NULL) {
  1765. return ssl->cert->x509;
  1766. }
  1767. return NULL;
  1768. }
  1769. EVP_PKEY *SSL_get_privatekey(const SSL *ssl) {
  1770. if (ssl->cert != NULL) {
  1771. return ssl->cert->privatekey;
  1772. }
  1773. return NULL;
  1774. }
  1775. X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) {
  1776. if (ctx->cert != NULL) {
  1777. return ctx->cert->x509;
  1778. }
  1779. return NULL;
  1780. }
  1781. EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) {
  1782. if (ctx->cert != NULL) {
  1783. return ctx->cert->privatekey;
  1784. }
  1785. return NULL;
  1786. }
  1787. const SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl) {
  1788. if (ssl->s3->aead_write_ctx == NULL) {
  1789. return NULL;
  1790. }
  1791. return ssl->s3->aead_write_ctx->cipher;
  1792. }
  1793. int SSL_session_reused(const SSL *ssl) {
  1794. return ssl->s3->session_reused;
  1795. }
  1796. const COMP_METHOD *SSL_get_current_compression(SSL *ssl) { return NULL; }
  1797. const COMP_METHOD *SSL_get_current_expansion(SSL *ssl) { return NULL; }
  1798. int *SSL_get_server_tmp_key(SSL *ssl, EVP_PKEY **out_key) { return 0; }
  1799. int ssl_is_wbio_buffered(const SSL *ssl) {
  1800. return ssl->bbio != NULL;
  1801. }
  1802. int ssl_init_wbio_buffer(SSL *ssl) {
  1803. if (ssl->bbio != NULL) {
  1804. /* Already buffered. */
  1805. assert(ssl->bbio == ssl->wbio);
  1806. return 1;
  1807. }
  1808. BIO *bbio = BIO_new(BIO_f_buffer());
  1809. if (bbio == NULL ||
  1810. !BIO_set_read_buffer_size(bbio, 1)) {
  1811. BIO_free(bbio);
  1812. return 0;
  1813. }
  1814. ssl->bbio = bbio;
  1815. ssl->wbio = BIO_push(bbio, ssl->wbio);
  1816. return 1;
  1817. }
  1818. void ssl_free_wbio_buffer(SSL *ssl) {
  1819. if (ssl->bbio == NULL) {
  1820. return;
  1821. }
  1822. assert(ssl->bbio == ssl->wbio);
  1823. ssl->wbio = BIO_pop(ssl->wbio);
  1824. BIO_free(ssl->bbio);
  1825. ssl->bbio = NULL;
  1826. }
  1827. void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) {
  1828. ctx->quiet_shutdown = (mode != 0);
  1829. }
  1830. int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) {
  1831. return ctx->quiet_shutdown;
  1832. }
  1833. void SSL_set_quiet_shutdown(SSL *ssl, int mode) {
  1834. ssl->quiet_shutdown = (mode != 0);
  1835. }
  1836. int SSL_get_quiet_shutdown(const SSL *ssl) { return ssl->quiet_shutdown; }
  1837. void SSL_set_shutdown(SSL *ssl, int mode) {
  1838. /* It is an error to clear any bits that have already been set. (We can't try
  1839. * to get a second close_notify or send two.) */
  1840. assert((SSL_get_shutdown(ssl) & mode) == SSL_get_shutdown(ssl));
  1841. if (mode & SSL_RECEIVED_SHUTDOWN &&
  1842. ssl->s3->recv_shutdown == ssl_shutdown_none) {
  1843. ssl->s3->recv_shutdown = ssl_shutdown_close_notify;
  1844. }
  1845. if (mode & SSL_SENT_SHUTDOWN &&
  1846. ssl->s3->send_shutdown == ssl_shutdown_none) {
  1847. ssl->s3->send_shutdown = ssl_shutdown_close_notify;
  1848. }
  1849. }
  1850. int SSL_get_shutdown(const SSL *ssl) {
  1851. int ret = 0;
  1852. if (ssl->s3->recv_shutdown != ssl_shutdown_none) {
  1853. /* Historically, OpenSSL set |SSL_RECEIVED_SHUTDOWN| on both close_notify
  1854. * and fatal alert. */
  1855. ret |= SSL_RECEIVED_SHUTDOWN;
  1856. }
  1857. if (ssl->s3->send_shutdown == ssl_shutdown_close_notify) {
  1858. /* Historically, OpenSSL set |SSL_SENT_SHUTDOWN| on only close_notify. */
  1859. ret |= SSL_SENT_SHUTDOWN;
  1860. }
  1861. return ret;
  1862. }
  1863. int SSL_version(const SSL *ssl) { return ssl->version; }
  1864. SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx; }
  1865. SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) {
  1866. if (ssl->ctx == ctx) {
  1867. return ssl->ctx;
  1868. }
  1869. if (ctx == NULL) {
  1870. ctx = ssl->initial_ctx;
  1871. }
  1872. ssl_cert_free(ssl->cert);
  1873. ssl->cert = ssl_cert_dup(ctx->cert);
  1874. CRYPTO_refcount_inc(&ctx->references);
  1875. SSL_CTX_free(ssl->ctx); /* decrement reference count */
  1876. ssl->ctx = ctx;
  1877. ssl->sid_ctx_length = ctx->sid_ctx_length;
  1878. assert(ssl->sid_ctx_length <= sizeof(ssl->sid_ctx));
  1879. memcpy(ssl->sid_ctx, ctx->sid_ctx, sizeof(ssl->sid_ctx));
  1880. return ssl->ctx;
  1881. }
  1882. int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) {
  1883. return X509_STORE_set_default_paths(ctx->cert_store);
  1884. }
  1885. int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *ca_file,
  1886. const char *ca_dir) {
  1887. return X509_STORE_load_locations(ctx->cert_store, ca_file, ca_dir);
  1888. }
  1889. void SSL_set_info_callback(SSL *ssl,
  1890. void (*cb)(const SSL *ssl, int type, int value)) {
  1891. ssl->info_callback = cb;
  1892. }
  1893. void (*SSL_get_info_callback(const SSL *ssl))(const SSL *ssl, int type,
  1894. int value) {
  1895. return ssl->info_callback;
  1896. }
  1897. int SSL_state(const SSL *ssl) { return ssl->state; }
  1898. void SSL_set_state(SSL *ssl, int state) { }
  1899. char *SSL_get_shared_ciphers(const SSL *ssl, char *buf, int len) {
  1900. if (len <= 0) {
  1901. return NULL;
  1902. }
  1903. buf[0] = '\0';
  1904. return buf;
  1905. }
  1906. void SSL_set_verify_result(SSL *ssl, long result) {
  1907. if (result != X509_V_OK) {
  1908. abort();
  1909. }
  1910. }
  1911. long SSL_get_verify_result(const SSL *ssl) {
  1912. SSL_SESSION *session = SSL_get_session(ssl);
  1913. if (session == NULL) {
  1914. return X509_V_ERR_INVALID_CALL;
  1915. }
  1916. return session->verify_result;
  1917. }
  1918. int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
  1919. CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) {
  1920. int index;
  1921. if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl, &index, argl, argp,
  1922. dup_func, free_func)) {
  1923. return -1;
  1924. }
  1925. return index;
  1926. }
  1927. int SSL_set_ex_data(SSL *ssl, int idx, void *arg) {
  1928. return CRYPTO_set_ex_data(&ssl->ex_data, idx, arg);
  1929. }
  1930. void *SSL_get_ex_data(const SSL *ssl, int idx) {
  1931. return CRYPTO_get_ex_data(&ssl->ex_data, idx);
  1932. }
  1933. int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
  1934. CRYPTO_EX_dup *dup_func,
  1935. CRYPTO_EX_free *free_func) {
  1936. int index;
  1937. if (!CRYPTO_get_ex_new_index(&g_ex_data_class_ssl_ctx, &index, argl, argp,
  1938. dup_func, free_func)) {
  1939. return -1;
  1940. }
  1941. return index;
  1942. }
  1943. int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *arg) {
  1944. return CRYPTO_set_ex_data(&ctx->ex_data, idx, arg);
  1945. }
  1946. void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx) {
  1947. return CRYPTO_get_ex_data(&ctx->ex_data, idx);
  1948. }
  1949. X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) {
  1950. return ctx->cert_store;
  1951. }
  1952. void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) {
  1953. X509_STORE_free(ctx->cert_store);
  1954. ctx->cert_store = store;
  1955. }
  1956. int SSL_want(const SSL *ssl) { return ssl->rwstate; }
  1957. void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
  1958. RSA *(*cb)(SSL *ssl, int is_export,
  1959. int keylength)) {
  1960. }
  1961. void SSL_set_tmp_rsa_callback(SSL *ssl, RSA *(*cb)(SSL *ssl, int is_export,
  1962. int keylength)) {
  1963. }
  1964. void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
  1965. DH *(*callback)(SSL *ssl, int is_export,
  1966. int keylength)) {
  1967. ctx->cert->dh_tmp_cb = callback;
  1968. }
  1969. void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*callback)(SSL *ssl, int is_export,
  1970. int keylength)) {
  1971. ssl->cert->dh_tmp_cb = callback;
  1972. }
  1973. unsigned SSL_get_dhe_group_size(const SSL *ssl) {
  1974. /* TODO(davidben): This checks the wrong session if there is a renegotiation in
  1975. * progress. */
  1976. SSL_SESSION *session = SSL_get_session(ssl);
  1977. if (session == NULL ||
  1978. session->cipher == NULL ||
  1979. !SSL_CIPHER_is_DHE(session->cipher)) {
  1980. return 0;
  1981. }
  1982. return session->key_exchange_info;
  1983. }
  1984. int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) {
  1985. if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
  1986. OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
  1987. return 0;
  1988. }
  1989. OPENSSL_free(ctx->psk_identity_hint);
  1990. if (identity_hint != NULL) {
  1991. ctx->psk_identity_hint = BUF_strdup(identity_hint);
  1992. if (ctx->psk_identity_hint == NULL) {
  1993. return 0;
  1994. }
  1995. } else {
  1996. ctx->psk_identity_hint = NULL;
  1997. }
  1998. return 1;
  1999. }
  2000. int SSL_use_psk_identity_hint(SSL *ssl, const char *identity_hint) {
  2001. if (ssl == NULL) {
  2002. return 0;
  2003. }
  2004. if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) {
  2005. OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
  2006. return 0;
  2007. }
  2008. /* Clear currently configured hint, if any. */
  2009. OPENSSL_free(ssl->psk_identity_hint);
  2010. ssl->psk_identity_hint = NULL;
  2011. if (identity_hint != NULL) {
  2012. ssl->psk_identity_hint = BUF_strdup(identity_hint);
  2013. if (ssl->psk_identity_hint == NULL) {
  2014. return 0;
  2015. }
  2016. }
  2017. return 1;
  2018. }
  2019. const char *SSL_get_psk_identity_hint(const SSL *ssl) {
  2020. if (ssl == NULL) {
  2021. return NULL;
  2022. }
  2023. return ssl->psk_identity_hint;
  2024. }
  2025. const char *SSL_get_psk_identity(const SSL *ssl) {
  2026. if (ssl == NULL) {
  2027. return NULL;
  2028. }
  2029. SSL_SESSION *session = SSL_get_session(ssl);
  2030. if (session == NULL) {
  2031. return NULL;
  2032. }
  2033. return session->psk_identity;
  2034. }
  2035. void SSL_set_psk_client_callback(
  2036. SSL *ssl, unsigned (*cb)(SSL *ssl, const char *hint, char *identity,
  2037. unsigned max_identity_len, uint8_t *psk,
  2038. unsigned max_psk_len)) {
  2039. ssl->psk_client_callback = cb;
  2040. }
  2041. void SSL_CTX_set_psk_client_callback(
  2042. SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *hint, char *identity,
  2043. unsigned max_identity_len, uint8_t *psk,
  2044. unsigned max_psk_len)) {
  2045. ctx->psk_client_callback = cb;
  2046. }
  2047. void SSL_set_psk_server_callback(
  2048. SSL *ssl, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk,
  2049. unsigned max_psk_len)) {
  2050. ssl->psk_server_callback = cb;
  2051. }
  2052. void SSL_CTX_set_psk_server_callback(
  2053. SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *identity,
  2054. uint8_t *psk, unsigned max_psk_len)) {
  2055. ctx->psk_server_callback = cb;
  2056. }
  2057. void SSL_CTX_set_msg_callback(SSL_CTX *ctx,
  2058. void (*cb)(int write_p, int version,
  2059. int content_type, const void *buf,
  2060. size_t len, SSL *ssl, void *arg)) {
  2061. ctx->msg_callback = cb;
  2062. }
  2063. void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg) {
  2064. ctx->msg_callback_arg = arg;
  2065. }
  2066. void SSL_set_msg_callback(SSL *ssl,
  2067. void (*cb)(int write_p, int version, int content_type,
  2068. const void *buf, size_t len, SSL *ssl,
  2069. void *arg)) {
  2070. ssl->msg_callback = cb;
  2071. }
  2072. void SSL_set_msg_callback_arg(SSL *ssl, void *arg) {
  2073. ssl->msg_callback_arg = arg;
  2074. }
  2075. void SSL_CTX_set_keylog_callback(SSL_CTX *ctx,
  2076. void (*cb)(const SSL *ssl, const char *line)) {
  2077. ctx->keylog_callback = cb;
  2078. }
  2079. void (*SSL_CTX_get_keylog_callback(const SSL_CTX *ctx))(const SSL *ssl,
  2080. const char *line) {
  2081. return ctx->keylog_callback;
  2082. }
  2083. void SSL_CTX_set_current_time_cb(SSL_CTX *ctx,
  2084. void (*cb)(const SSL *ssl,
  2085. struct timeval *out_clock)) {
  2086. ctx->current_time_cb = cb;
  2087. }
  2088. static int cbb_add_hex(CBB *cbb, const uint8_t *in, size_t in_len) {
  2089. static const char hextable[] = "0123456789abcdef";
  2090. uint8_t *out;
  2091. if (!CBB_add_space(cbb, &out, in_len * 2)) {
  2092. return 0;
  2093. }
  2094. for (size_t i = 0; i < in_len; i++) {
  2095. *(out++) = (uint8_t)hextable[in[i] >> 4];
  2096. *(out++) = (uint8_t)hextable[in[i] & 0xf];
  2097. }
  2098. return 1;
  2099. }
  2100. int ssl_log_rsa_client_key_exchange(const SSL *ssl,
  2101. const uint8_t *encrypted_premaster,
  2102. size_t encrypted_premaster_len,
  2103. const uint8_t *premaster,
  2104. size_t premaster_len) {
  2105. if (ssl->ctx->keylog_callback == NULL) {
  2106. return 1;
  2107. }
  2108. if (encrypted_premaster_len < 8) {
  2109. OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
  2110. return 0;
  2111. }
  2112. CBB cbb;
  2113. uint8_t *out;
  2114. size_t out_len;
  2115. if (!CBB_init(&cbb, 4 + 16 + 1 + premaster_len * 2 + 1) ||
  2116. !CBB_add_bytes(&cbb, (const uint8_t *)"RSA ", 4) ||
  2117. /* Only the first 8 bytes of the encrypted premaster secret are
  2118. * logged. */
  2119. !cbb_add_hex(&cbb, encrypted_premaster, 8) ||
  2120. !CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) ||
  2121. !cbb_add_hex(&cbb, premaster, premaster_len) ||
  2122. !CBB_add_u8(&cbb, 0 /* NUL */) ||
  2123. !CBB_finish(&cbb, &out, &out_len)) {
  2124. CBB_cleanup(&cbb);
  2125. return 0;
  2126. }
  2127. ssl->ctx->keylog_callback(ssl, (const char *)out);
  2128. OPENSSL_free(out);
  2129. return 1;
  2130. }
  2131. int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret,
  2132. size_t secret_len) {
  2133. if (ssl->ctx->keylog_callback == NULL) {
  2134. return 1;
  2135. }
  2136. CBB cbb;
  2137. uint8_t *out;
  2138. size_t out_len;
  2139. if (!CBB_init(&cbb, strlen(label) + 1 + SSL3_RANDOM_SIZE * 2 + 1 +
  2140. secret_len * 2 + 1) ||
  2141. !CBB_add_bytes(&cbb, (const uint8_t *)label, strlen(label)) ||
  2142. !CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) ||
  2143. !cbb_add_hex(&cbb, ssl->s3->client_random, SSL3_RANDOM_SIZE) ||
  2144. !CBB_add_bytes(&cbb, (const uint8_t *)" ", 1) ||
  2145. !cbb_add_hex(&cbb, secret, secret_len) ||
  2146. !CBB_add_u8(&cbb, 0 /* NUL */) ||
  2147. !CBB_finish(&cbb, &out, &out_len)) {
  2148. CBB_cleanup(&cbb);
  2149. return 0;
  2150. }
  2151. ssl->ctx->keylog_callback(ssl, (const char *)out);
  2152. OPENSSL_free(out);
  2153. return 1;
  2154. }
  2155. int SSL_is_init_finished(const SSL *ssl) {
  2156. return ssl->state == SSL_ST_OK;
  2157. }
  2158. int SSL_in_init(const SSL *ssl) {
  2159. return (ssl->state & SSL_ST_INIT) != 0;
  2160. }
  2161. int SSL_in_false_start(const SSL *ssl) {
  2162. return ssl->s3->tmp.in_false_start;
  2163. }
  2164. int SSL_cutthrough_complete(const SSL *ssl) {
  2165. return SSL_in_false_start(ssl);
  2166. }
  2167. void SSL_get_structure_sizes(size_t *ssl_size, size_t *ssl_ctx_size,
  2168. size_t *ssl_session_size) {
  2169. *ssl_size = sizeof(SSL);
  2170. *ssl_ctx_size = sizeof(SSL_CTX);
  2171. *ssl_session_size = sizeof(SSL_SESSION);
  2172. }
  2173. int ssl3_can_false_start(const SSL *ssl) {
  2174. const SSL_CIPHER *const cipher = SSL_get_current_cipher(ssl);
  2175. /* False Start only for TLS 1.2 with an ECDHE+AEAD cipher and ALPN or NPN. */
  2176. return !SSL_is_dtls(ssl) &&
  2177. SSL_version(ssl) == TLS1_2_VERSION &&
  2178. (ssl->s3->alpn_selected || ssl->s3->next_proto_neg_seen) &&
  2179. cipher != NULL &&
  2180. (cipher->algorithm_mkey == SSL_kECDHE ||
  2181. cipher->algorithm_mkey == SSL_kCECPQ1) &&
  2182. cipher->algorithm_mac == SSL_AEAD;
  2183. }
  2184. const SSL3_ENC_METHOD *ssl3_get_enc_method(uint16_t version) {
  2185. switch (version) {
  2186. case SSL3_VERSION:
  2187. return &SSLv3_enc_data;
  2188. case TLS1_VERSION:
  2189. case TLS1_1_VERSION:
  2190. case TLS1_2_VERSION:
  2191. case TLS1_3_VERSION:
  2192. return &TLSv1_enc_data;
  2193. default:
  2194. return NULL;
  2195. }
  2196. }
  2197. const struct {
  2198. uint16_t version;
  2199. uint32_t flag;
  2200. } kVersions[] = {
  2201. {SSL3_VERSION, SSL_OP_NO_SSLv3},
  2202. {TLS1_VERSION, SSL_OP_NO_TLSv1},
  2203. {TLS1_1_VERSION, SSL_OP_NO_TLSv1_1},
  2204. {TLS1_2_VERSION, SSL_OP_NO_TLSv1_2},
  2205. {TLS1_3_VERSION, SSL_OP_NO_TLSv1_3},
  2206. };
  2207. static const size_t kVersionsLen = OPENSSL_ARRAY_SIZE(kVersions);
  2208. int ssl_get_full_version_range(const SSL *ssl, uint16_t *out_min_version,
  2209. uint16_t *out_fallback_version,
  2210. uint16_t *out_max_version) {
  2211. /* For historical reasons, |SSL_OP_NO_DTLSv1| aliases |SSL_OP_NO_TLSv1|, but
  2212. * DTLS 1.0 should be mapped to TLS 1.1. */
  2213. uint32_t options = ssl->options;
  2214. if (SSL_is_dtls(ssl)) {
  2215. options &= ~SSL_OP_NO_TLSv1_1;
  2216. if (options & SSL_OP_NO_DTLSv1) {
  2217. options |= SSL_OP_NO_TLSv1_1;
  2218. }
  2219. }
  2220. uint16_t min_version = ssl->min_version;
  2221. uint16_t max_version = ssl->max_version;
  2222. /* Bound the range to only those implemented in this protocol. */
  2223. if (min_version < ssl->method->min_version) {
  2224. min_version = ssl->method->min_version;
  2225. }
  2226. if (max_version > ssl->method->max_version) {
  2227. max_version = ssl->method->max_version;
  2228. }
  2229. /* OpenSSL's API for controlling versions entails blacklisting individual
  2230. * protocols. This has two problems. First, on the client, the protocol can
  2231. * only express a contiguous range of versions. Second, a library consumer
  2232. * trying to set a maximum version cannot disable protocol versions that get
  2233. * added in a future version of the library.
  2234. *
  2235. * To account for both of these, OpenSSL interprets the client-side bitmask
  2236. * as a min/max range by picking the lowest contiguous non-empty range of
  2237. * enabled protocols. Note that this means it is impossible to set a maximum
  2238. * version of the higest supported TLS version in a future-proof way. */
  2239. int any_enabled = 0;
  2240. for (size_t i = 0; i < kVersionsLen; i++) {
  2241. /* Only look at the versions already enabled. */
  2242. if (min_version > kVersions[i].version) {
  2243. continue;
  2244. }
  2245. if (max_version < kVersions[i].version) {
  2246. break;
  2247. }
  2248. if (!(options & kVersions[i].flag)) {
  2249. /* The minimum version is the first enabled version. */
  2250. if (!any_enabled) {
  2251. any_enabled = 1;
  2252. min_version = kVersions[i].version;
  2253. }
  2254. continue;
  2255. }
  2256. /* If there is a disabled version after the first enabled one, all versions
  2257. * after it are implicitly disabled. */
  2258. if (any_enabled) {
  2259. max_version = kVersions[i-1].version;
  2260. break;
  2261. }
  2262. }
  2263. uint16_t fallback_version = max_version;
  2264. if (ssl->fallback_version != 0 && ssl->fallback_version < fallback_version) {
  2265. fallback_version = ssl->fallback_version;
  2266. }
  2267. if (!any_enabled || fallback_version < min_version) {
  2268. OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION);
  2269. return 0;
  2270. }
  2271. *out_min_version = min_version;
  2272. *out_fallback_version = fallback_version;
  2273. *out_max_version = max_version;
  2274. return 1;
  2275. }
  2276. int ssl_get_version_range(const SSL *ssl, uint16_t *out_min_version,
  2277. uint16_t *out_effective_max_version) {
  2278. /* This function returns the effective maximum version and not the fallback
  2279. * version. */
  2280. uint16_t real_max_version_unused;
  2281. return ssl_get_full_version_range(ssl, out_min_version,
  2282. out_effective_max_version,
  2283. &real_max_version_unused);
  2284. }
  2285. uint16_t ssl3_protocol_version(const SSL *ssl) {
  2286. assert(ssl->s3->have_version);
  2287. return ssl->method->version_from_wire(ssl->version);
  2288. }
  2289. int SSL_is_server(const SSL *ssl) { return ssl->server; }
  2290. int SSL_is_dtls(const SSL *ssl) { return ssl->method->is_dtls; }
  2291. void SSL_CTX_set_select_certificate_cb(
  2292. SSL_CTX *ctx, int (*cb)(const struct ssl_early_callback_ctx *)) {
  2293. ctx->select_certificate_cb = cb;
  2294. }
  2295. void SSL_CTX_set_dos_protection_cb(
  2296. SSL_CTX *ctx, int (*cb)(const struct ssl_early_callback_ctx *)) {
  2297. ctx->dos_protection_cb = cb;
  2298. }
  2299. void SSL_set_renegotiate_mode(SSL *ssl, enum ssl_renegotiate_mode_t mode) {
  2300. ssl->renegotiate_mode = mode;
  2301. }
  2302. void SSL_set_reject_peer_renegotiations(SSL *ssl, int reject) {
  2303. SSL_set_renegotiate_mode(
  2304. ssl, reject ? ssl_renegotiate_never : ssl_renegotiate_freely);
  2305. }
  2306. int SSL_get_ivs(const SSL *ssl, const uint8_t **out_read_iv,
  2307. const uint8_t **out_write_iv, size_t *out_iv_len) {
  2308. if (ssl->s3->aead_read_ctx == NULL || ssl->s3->aead_write_ctx == NULL) {
  2309. return 0;
  2310. }
  2311. size_t write_iv_len;
  2312. if (!EVP_AEAD_CTX_get_iv(&ssl->s3->aead_read_ctx->ctx, out_read_iv,
  2313. out_iv_len) ||
  2314. !EVP_AEAD_CTX_get_iv(&ssl->s3->aead_write_ctx->ctx, out_write_iv,
  2315. &write_iv_len) ||
  2316. *out_iv_len != write_iv_len) {
  2317. return 0;
  2318. }
  2319. return 1;
  2320. }
  2321. static uint64_t be_to_u64(const uint8_t in[8]) {
  2322. return (((uint64_t)in[0]) << 56) | (((uint64_t)in[1]) << 48) |
  2323. (((uint64_t)in[2]) << 40) | (((uint64_t)in[3]) << 32) |
  2324. (((uint64_t)in[4]) << 24) | (((uint64_t)in[5]) << 16) |
  2325. (((uint64_t)in[6]) << 8) | ((uint64_t)in[7]);
  2326. }
  2327. uint64_t SSL_get_read_sequence(const SSL *ssl) {
  2328. /* TODO(davidben): Internally represent sequence numbers as uint64_t. */
  2329. if (SSL_is_dtls(ssl)) {
  2330. /* max_seq_num already includes the epoch. */
  2331. assert(ssl->d1->r_epoch == (ssl->d1->bitmap.max_seq_num >> 48));
  2332. return ssl->d1->bitmap.max_seq_num;
  2333. }
  2334. return be_to_u64(ssl->s3->read_sequence);
  2335. }
  2336. uint64_t SSL_get_write_sequence(const SSL *ssl) {
  2337. uint64_t ret = be_to_u64(ssl->s3->write_sequence);
  2338. if (SSL_is_dtls(ssl)) {
  2339. assert((ret >> 48) == 0);
  2340. ret |= ((uint64_t)ssl->d1->w_epoch) << 48;
  2341. }
  2342. return ret;
  2343. }
  2344. uint16_t SSL_get_peer_signature_algorithm(const SSL *ssl) {
  2345. return ssl->s3->tmp.peer_signature_algorithm;
  2346. }
  2347. size_t SSL_get_client_random(const SSL *ssl, uint8_t *out, size_t max_out) {
  2348. if (max_out == 0) {
  2349. return sizeof(ssl->s3->client_random);
  2350. }
  2351. if (max_out > sizeof(ssl->s3->client_random)) {
  2352. max_out = sizeof(ssl->s3->client_random);
  2353. }
  2354. memcpy(out, ssl->s3->client_random, max_out);
  2355. return max_out;
  2356. }
  2357. size_t SSL_get_server_random(const SSL *ssl, uint8_t *out, size_t max_out) {
  2358. if (max_out == 0) {
  2359. return sizeof(ssl->s3->server_random);
  2360. }
  2361. if (max_out > sizeof(ssl->s3->server_random)) {
  2362. max_out = sizeof(ssl->s3->server_random);
  2363. }
  2364. memcpy(out, ssl->s3->server_random, max_out);
  2365. return max_out;
  2366. }
  2367. const SSL_CIPHER *SSL_get_pending_cipher(const SSL *ssl) {
  2368. if (!SSL_in_init(ssl)) {
  2369. return NULL;
  2370. }
  2371. return ssl->s3->tmp.new_cipher;
  2372. }
  2373. void SSL_CTX_set_retain_only_sha256_of_client_certs(SSL_CTX *ctx, int enabled) {
  2374. ctx->retain_only_sha256_of_client_certs = !!enabled;
  2375. }
  2376. int SSL_clear(SSL *ssl) {
  2377. if (ssl->method == NULL) {
  2378. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_METHOD_SPECIFIED);
  2379. return 0;
  2380. }
  2381. /* TODO(davidben): Some state on |ssl| is reset both in |SSL_new| and
  2382. * |SSL_clear| because it is per-connection state rather than configuration
  2383. * state. Per-connection state should be on |ssl->s3| and |ssl->d1| so it is
  2384. * naturally reset at the right points between |SSL_new|, |SSL_clear|, and
  2385. * |ssl3_new|. */
  2386. ssl->state = SSL_ST_INIT;
  2387. ssl->rwstate = SSL_NOTHING;
  2388. BUF_MEM_free(ssl->init_buf);
  2389. ssl->init_buf = NULL;
  2390. ssl->init_msg = NULL;
  2391. ssl->init_num = 0;
  2392. /* The ssl->d1->mtu is simultaneously configuration (preserved across
  2393. * clear) and connection-specific state (gets reset).
  2394. *
  2395. * TODO(davidben): Avoid this. */
  2396. unsigned mtu = 0;
  2397. if (ssl->d1 != NULL) {
  2398. mtu = ssl->d1->mtu;
  2399. }
  2400. ssl->method->ssl_free(ssl);
  2401. if (!ssl->method->ssl_new(ssl)) {
  2402. return 0;
  2403. }
  2404. if (SSL_is_dtls(ssl) && (SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) {
  2405. ssl->d1->mtu = mtu;
  2406. }
  2407. ssl->client_version = ssl->version;
  2408. return 1;
  2409. }
  2410. void ssl_do_info_callback(const SSL *ssl, int type, int value) {
  2411. void (*cb)(const SSL *ssl, int type, int value) = NULL;
  2412. if (ssl->info_callback != NULL) {
  2413. cb = ssl->info_callback;
  2414. } else if (ssl->ctx->info_callback != NULL) {
  2415. cb = ssl->ctx->info_callback;
  2416. }
  2417. if (cb != NULL) {
  2418. cb(ssl, type, value);
  2419. }
  2420. }
  2421. void ssl_do_msg_callback(SSL *ssl, int is_write, int version, int content_type,
  2422. const void *buf, size_t len) {
  2423. if (ssl->msg_callback != NULL) {
  2424. ssl->msg_callback(is_write, version, content_type, buf, len, ssl,
  2425. ssl->msg_callback_arg);
  2426. }
  2427. }
  2428. int SSL_CTX_sess_connect(const SSL_CTX *ctx) { return 0; }
  2429. int SSL_CTX_sess_connect_good(const SSL_CTX *ctx) { return 0; }
  2430. int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx) { return 0; }
  2431. int SSL_CTX_sess_accept(const SSL_CTX *ctx) { return 0; }
  2432. int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx) { return 0; }
  2433. int SSL_CTX_sess_accept_good(const SSL_CTX *ctx) { return 0; }
  2434. int SSL_CTX_sess_hits(const SSL_CTX *ctx) { return 0; }
  2435. int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx) { return 0; }
  2436. int SSL_CTX_sess_misses(const SSL_CTX *ctx) { return 0; }
  2437. int SSL_CTX_sess_timeouts(const SSL_CTX *ctx) { return 0; }
  2438. int SSL_CTX_sess_cache_full(const SSL_CTX *ctx) { return 0; }
  2439. int SSL_num_renegotiations(const SSL *ssl) {
  2440. return SSL_total_renegotiations(ssl);
  2441. }
  2442. int SSL_CTX_need_tmp_RSA(const SSL_CTX *ctx) { return 0; }
  2443. int SSL_need_tmp_RSA(const SSL *ssl) { return 0; }
  2444. int SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, const RSA *rsa) { return 1; }
  2445. int SSL_set_tmp_rsa(SSL *ssl, const RSA *rsa) { return 1; }
  2446. void ERR_load_SSL_strings(void) {}
  2447. void SSL_load_error_strings(void) {}
  2448. int SSL_cache_hit(SSL *ssl) { return SSL_session_reused(ssl); }
  2449. int SSL_CTX_set_tmp_ecdh(SSL_CTX *ctx, const EC_KEY *ec_key) {
  2450. if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) {
  2451. OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
  2452. return 0;
  2453. }
  2454. int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key));
  2455. return SSL_CTX_set1_curves(ctx, &nid, 1);
  2456. }
  2457. int SSL_set_tmp_ecdh(SSL *ssl, const EC_KEY *ec_key) {
  2458. if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) {
  2459. OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
  2460. return 0;
  2461. }
  2462. int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key));
  2463. return SSL_set1_curves(ssl, &nid, 1);
  2464. }
  2465. void ssl_get_current_time(const SSL *ssl, struct timeval *out_clock) {
  2466. if (ssl->ctx->current_time_cb != NULL) {
  2467. ssl->ctx->current_time_cb(ssl, out_clock);
  2468. return;
  2469. }
  2470. #if defined(OPENSSL_WINDOWS)
  2471. struct _timeb time;
  2472. _ftime(&time);
  2473. out_clock->tv_sec = time.time;
  2474. out_clock->tv_usec = time.millitm * 1000;
  2475. #else
  2476. gettimeofday(out_clock, NULL);
  2477. #endif
  2478. }