e99e912bea
SSL3_ENC_METHOD will remain version-specific while SSL_METHOD will become protocol-specific. This finally removes all the version-specific portions of SSL_METHOD but the version tag itself. (SSL3_ENC_METHOD's version-specific bits themselves can probably be handled by tracking a canonicalized protocol version. It would simplify version comparisons anyway. The one catch is SSLv3 has a very different table. But that's a cleanup for future. Then again, perhaps a version-specific method table swap somewhere will be useful later for TLS 1.3.) Much of this commit was generated with sed invocation: s/method->ssl3_enc/enc_method/g Change-Id: I2b192507876aadd4f9310240687e562e56e6c0b1 Reviewed-on: https://boringssl-review.googlesource.com/2581 Reviewed-by: Adam Langley <agl@google.com>
491 lines
16 KiB
C
491 lines
16 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
|
|
#include <openssl/buf.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/obj.h>
|
|
#include <openssl/rand.h>
|
|
|
|
#include "ssl_locl.h"
|
|
|
|
static int ssl23_get_client_hello(SSL *s);
|
|
static int ssl23_get_v2_client_hello(SSL *s);
|
|
|
|
int ssl23_accept(SSL *s)
|
|
{
|
|
BUF_MEM *buf;
|
|
void (*cb)(const SSL *ssl,int type,int val)=NULL;
|
|
int ret= -1;
|
|
int new_state,state;
|
|
|
|
assert(s->handshake_func == ssl23_accept);
|
|
assert(s->server);
|
|
assert(!SSL_IS_DTLS(s));
|
|
|
|
ERR_clear_error();
|
|
ERR_clear_system_error();
|
|
|
|
if (s->info_callback != NULL)
|
|
cb=s->info_callback;
|
|
else if (s->ctx->info_callback != NULL)
|
|
cb=s->ctx->info_callback;
|
|
|
|
s->in_handshake++;
|
|
|
|
for (;;)
|
|
{
|
|
state=s->state;
|
|
|
|
switch(s->state)
|
|
{
|
|
case SSL_ST_ACCEPT:
|
|
case SSL_ST_BEFORE|SSL_ST_ACCEPT:
|
|
|
|
if (cb != NULL) cb(s,SSL_CB_HANDSHAKE_START,1);
|
|
|
|
if (s->init_buf == NULL)
|
|
{
|
|
if ((buf=BUF_MEM_new()) == NULL)
|
|
{
|
|
ret= -1;
|
|
goto end;
|
|
}
|
|
if (!BUF_MEM_grow(buf,SSL3_RT_MAX_PLAIN_LENGTH))
|
|
{
|
|
ret= -1;
|
|
goto end;
|
|
}
|
|
s->init_buf=buf;
|
|
}
|
|
|
|
if (!ssl3_init_finished_mac(s))
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_accept, ERR_R_INTERNAL_ERROR);
|
|
ret = -1;
|
|
goto end;
|
|
}
|
|
|
|
s->state=SSL23_ST_SR_CLNT_HELLO;
|
|
s->ctx->stats.sess_accept++;
|
|
s->init_num=0;
|
|
break;
|
|
|
|
case SSL23_ST_SR_CLNT_HELLO:
|
|
s->shutdown = 0;
|
|
ret = ssl23_get_client_hello(s);
|
|
if (ret <= 0) goto end;
|
|
break;
|
|
|
|
case SSL23_ST_SR_V2_CLNT_HELLO:
|
|
ret = ssl23_get_v2_client_hello(s);
|
|
if (ret <= 0) goto end;
|
|
break;
|
|
|
|
case SSL23_ST_SR_SWITCH_VERSION:
|
|
if (!ssl_init_wbio_buffer(s, 1))
|
|
{
|
|
ret = -1;
|
|
goto end;
|
|
}
|
|
|
|
s->state = SSL3_ST_SR_CLNT_HELLO_A;
|
|
s->method = ssl3_get_method(s->version);
|
|
assert(s->method != NULL);
|
|
s->enc_method = ssl3_get_enc_method(s->version);
|
|
assert(s->enc_method != NULL);
|
|
s->handshake_func = s->method->ssl_accept;
|
|
s->init_num = 0;
|
|
|
|
/* NULL the callback; SSL_accept will call it instead. */
|
|
cb = NULL;
|
|
ret = SSL_accept(s);
|
|
goto end;
|
|
/* break; */
|
|
|
|
default:
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_accept, SSL_R_UNKNOWN_STATE);
|
|
ret= -1;
|
|
goto end;
|
|
/* break; */
|
|
}
|
|
|
|
if ((cb != NULL) && (s->state != state))
|
|
{
|
|
new_state=s->state;
|
|
s->state=state;
|
|
cb(s,SSL_CB_ACCEPT_LOOP,1);
|
|
s->state=new_state;
|
|
}
|
|
}
|
|
end:
|
|
s->in_handshake--;
|
|
if (cb != NULL)
|
|
cb(s,SSL_CB_ACCEPT_EXIT,ret);
|
|
return(ret);
|
|
}
|
|
|
|
static int ssl23_get_client_hello(SSL *s)
|
|
{
|
|
uint8_t *p;
|
|
int n = 0;
|
|
|
|
/* Sniff enough of the input to determine ClientHello type and the
|
|
* client version. */
|
|
if (!ssl3_setup_buffers(s)) goto err;
|
|
|
|
/* Read the initial 11 bytes of the input. This is sufficient to
|
|
* determine the client version for a ClientHello or a
|
|
* V2ClientHello.
|
|
*
|
|
* ClientHello (assuming client_version is unfragmented):
|
|
* Byte Content
|
|
* 0 type \
|
|
* 1-2 version > record header
|
|
* 3-4 length /
|
|
* 5 msg_type \
|
|
* 6-8 length > Client Hello message
|
|
* 9-10 client_version /
|
|
*
|
|
* V2ClientHello:
|
|
* Byte Content
|
|
* 0-1 msg_length
|
|
* 2 msg_type
|
|
* 3-4 version
|
|
* 5-6 cipher_spec_length
|
|
* 7-8 session_id_length
|
|
* 9-10 challenge_length
|
|
*/
|
|
n = ssl23_read_bytes(s, 11);
|
|
if (n <= 0)
|
|
return n;
|
|
assert(n == 11);
|
|
|
|
p = s->packet;
|
|
|
|
/* Some dedicated error codes for protocol mixups should the application
|
|
* wish to interpret them differently. (These do not overlap with
|
|
* ClientHello or V2ClientHello.) */
|
|
if ((strncmp("GET ", (char *)p, 4) == 0) ||
|
|
(strncmp("POST ",(char *)p, 5) == 0) ||
|
|
(strncmp("HEAD ",(char *)p, 5) == 0) ||
|
|
(strncmp("PUT ", (char *)p, 4) == 0))
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_client_hello, SSL_R_HTTP_REQUEST);
|
|
goto err;
|
|
}
|
|
if (strncmp("CONNECT",(char *)p, 7) == 0)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_client_hello, SSL_R_HTTPS_PROXY_REQUEST);
|
|
goto err;
|
|
}
|
|
|
|
/* Determine if this is a ClientHello or V2ClientHello. */
|
|
if ((p[0] & 0x80) && (p[2] == SSL2_MT_CLIENT_HELLO))
|
|
{
|
|
/* This is a V2ClientHello. Determine the version to
|
|
* use. */
|
|
uint16_t client_version = (p[3] << 8) | p[4];
|
|
uint16_t version = ssl3_get_mutual_version(s, client_version);
|
|
if (version == 0)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_client_hello, SSL_R_UNSUPPORTED_PROTOCOL);
|
|
goto err;
|
|
}
|
|
s->version = version;
|
|
/* Parse the entire V2ClientHello. */
|
|
s->state = SSL23_ST_SR_V2_CLNT_HELLO;
|
|
}
|
|
else if ((p[0] == SSL3_RT_HANDSHAKE) &&
|
|
(p[1] >= SSL3_VERSION_MAJOR) &&
|
|
(p[5] == SSL3_MT_CLIENT_HELLO))
|
|
{
|
|
/* This is a fragment of a ClientHello. We look at the
|
|
* client_hello to negotiate the version. However, this
|
|
* is difficult if we have only a pathologically small
|
|
* fragment. No known client fragments ClientHello like
|
|
* this, so we simply reject such connections to avoid
|
|
* protocol version downgrade attacks. */
|
|
uint16_t record_length = (p[3] << 8) | p[4];
|
|
uint16_t client_version, version;
|
|
if (record_length < 6)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_client_hello, SSL_R_RECORD_TOO_SMALL);
|
|
goto err;
|
|
}
|
|
|
|
client_version = (p[9] << 8) | p[10];
|
|
version = ssl3_get_mutual_version(s, client_version);
|
|
if (version == 0)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_client_hello, SSL_R_UNSUPPORTED_PROTOCOL);
|
|
goto err;
|
|
}
|
|
s->version = version;
|
|
|
|
/* Reset the record-layer state for SSL3. */
|
|
assert(s->rstate == SSL_ST_READ_HEADER);
|
|
s->s3->rbuf.left = s->packet_length;
|
|
s->s3->rbuf.offset = 0;
|
|
s->packet_length = 0;
|
|
|
|
/* Ready to switch versions. */
|
|
s->state = SSL23_ST_SR_SWITCH_VERSION;
|
|
}
|
|
else
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_client_hello, SSL_R_UNKNOWN_PROTOCOL);
|
|
goto err;
|
|
}
|
|
|
|
return 1;
|
|
err:
|
|
return -1;
|
|
}
|
|
|
|
static int ssl23_get_v2_client_hello(SSL *s)
|
|
{
|
|
uint8_t *p;
|
|
size_t rand_len;
|
|
int n = 0;
|
|
|
|
CBS v2_client_hello, cipher_specs, session_id, challenge;
|
|
size_t msg_length, len;
|
|
uint8_t msg_type;
|
|
uint16_t version, cipher_spec_length, session_id_length, challenge_length;
|
|
CBB client_hello, hello_body, cipher_suites;
|
|
uint8_t random[SSL3_RANDOM_SIZE];
|
|
|
|
/* Read the remainder of the V2ClientHello. We have previously read 11
|
|
* bytes in ssl23_get_client_hello. */
|
|
p = s->packet;
|
|
msg_length = ((p[0] & 0x7f) << 8) | p[1];
|
|
if (msg_length > (1024 * 4))
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_v2_client_hello, SSL_R_RECORD_TOO_LARGE);
|
|
goto err;
|
|
}
|
|
if (msg_length < 11 - 2)
|
|
{
|
|
/* Reject lengths that are too short early. We have already read
|
|
* 11 bytes, so we should not attempt to process an (invalid)
|
|
* V2ClientHello which would be shorter than that. */
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_v2_client_hello, SSL_R_RECORD_LENGTH_MISMATCH);
|
|
goto err;
|
|
}
|
|
n = ssl23_read_bytes(s, msg_length + 2);
|
|
if (n <= 0)
|
|
return n;
|
|
assert(n == s->packet_length);
|
|
|
|
/* The V2ClientHello without the length is incorporated into the
|
|
* Finished hash. */
|
|
ssl3_finish_mac(s, s->packet + 2, s->packet_length - 2);
|
|
if (s->msg_callback)
|
|
s->msg_callback(0, SSL2_VERSION, 0, s->packet+2, s->packet_length-2, s, s->msg_callback_arg); /* CLIENT-HELLO */
|
|
|
|
CBS_init(&v2_client_hello, s->packet + 2, s->packet_length - 2);
|
|
if (!CBS_get_u8(&v2_client_hello, &msg_type) ||
|
|
!CBS_get_u16(&v2_client_hello, &version) ||
|
|
!CBS_get_u16(&v2_client_hello, &cipher_spec_length) ||
|
|
!CBS_get_u16(&v2_client_hello, &session_id_length) ||
|
|
!CBS_get_u16(&v2_client_hello, &challenge_length) ||
|
|
!CBS_get_bytes(&v2_client_hello, &cipher_specs, cipher_spec_length) ||
|
|
!CBS_get_bytes(&v2_client_hello, &session_id, session_id_length) ||
|
|
!CBS_get_bytes(&v2_client_hello, &challenge, challenge_length) ||
|
|
CBS_len(&v2_client_hello) != 0)
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_v2_client_hello, SSL_R_DECODE_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
/* msg_type has already been checked. */
|
|
assert(msg_type == SSL2_MT_CLIENT_HELLO);
|
|
|
|
/* The client_random is the V2ClientHello challenge. Truncate or
|
|
* left-pad with zeros as needed. */
|
|
memset(random, 0, SSL3_RANDOM_SIZE);
|
|
rand_len = CBS_len(&challenge);
|
|
if (rand_len > SSL3_RANDOM_SIZE)
|
|
rand_len = SSL3_RANDOM_SIZE;
|
|
memcpy(random + (SSL3_RANDOM_SIZE - rand_len), CBS_data(&challenge), rand_len);
|
|
|
|
/* Write out an equivalent SSLv3 ClientHello. */
|
|
if (!CBB_init_fixed(&client_hello, (uint8_t *)s->init_buf->data, s->init_buf->max))
|
|
{
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_v2_client_hello, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
if (!CBB_add_u8(&client_hello, SSL3_MT_CLIENT_HELLO) ||
|
|
!CBB_add_u24_length_prefixed(&client_hello, &hello_body) ||
|
|
!CBB_add_u16(&hello_body, version) ||
|
|
!CBB_add_bytes(&hello_body, random, SSL3_RANDOM_SIZE) ||
|
|
/* No session id. */
|
|
!CBB_add_u8(&hello_body, 0) ||
|
|
!CBB_add_u16_length_prefixed(&hello_body, &cipher_suites))
|
|
{
|
|
CBB_cleanup(&client_hello);
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_v2_client_hello, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
/* Copy the cipher suites. */
|
|
while (CBS_len(&cipher_specs) > 0)
|
|
{
|
|
uint32_t cipher_spec;
|
|
if (!CBS_get_u24(&cipher_specs, &cipher_spec))
|
|
{
|
|
CBB_cleanup(&client_hello);
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_v2_client_hello, SSL_R_DECODE_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
/* Skip SSLv2 ciphers. */
|
|
if ((cipher_spec & 0xff0000) != 0)
|
|
continue;
|
|
if (!CBB_add_u16(&cipher_suites, cipher_spec))
|
|
{
|
|
CBB_cleanup(&client_hello);
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_v2_client_hello, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Add the null compression scheme and finish. */
|
|
if (!CBB_add_u8(&hello_body, 1) ||
|
|
!CBB_add_u8(&hello_body, 0) ||
|
|
!CBB_finish(&client_hello, NULL, &len))
|
|
{
|
|
CBB_cleanup(&client_hello);
|
|
OPENSSL_PUT_ERROR(SSL, ssl23_get_v2_client_hello, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
/* Mark the message for "re"-use by the version-specific
|
|
* method. */
|
|
s->s3->tmp.reuse_message = 1;
|
|
s->s3->tmp.message_type = SSL3_MT_CLIENT_HELLO;
|
|
/* The handshake message header is 4 bytes. */
|
|
s->s3->tmp.message_size = len - 4;
|
|
|
|
/* Reset the record layer for SSL3. */
|
|
assert(s->rstate == SSL_ST_READ_HEADER);
|
|
s->packet_length = 0;
|
|
s->s3->rbuf.left = 0;
|
|
s->s3->rbuf.offset = 0;
|
|
|
|
s->state = SSL23_ST_SR_SWITCH_VERSION;
|
|
return 1;
|
|
err:
|
|
return -1;
|
|
}
|