boringssl/ssl/ssl_aead_ctx.cc
Martin Kreichgauer 9f2bffbb72 Add SSL_AEAD_CTX_seal_scatter.
This plumbs EVP_AEAD_CTX_seal_scatter all the way through to
tls_record.c, so we can add a new zero-copy record sealing method on top
of the existing code.

Change-Id: I01fdd88abef5442dc16605ea31b29b4b1231c073
Reviewed-on: https://boringssl-review.googlesource.com/17684
Reviewed-by: Adam Langley <agl@google.com>
2017-07-14 23:37:57 +00:00

367 lines
12 KiB
C++

/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <openssl/aead.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/type_check.h>
#include "../crypto/internal.h"
#include "internal.h"
SSL_AEAD_CTX *SSL_AEAD_CTX_new(enum evp_aead_direction_t direction,
uint16_t version, int is_dtls,
const SSL_CIPHER *cipher, const uint8_t *enc_key,
size_t enc_key_len, const uint8_t *mac_key,
size_t mac_key_len, const uint8_t *fixed_iv,
size_t fixed_iv_len) {
const EVP_AEAD *aead;
size_t expected_mac_key_len, expected_fixed_iv_len;
if (!ssl_cipher_get_evp_aead(&aead, &expected_mac_key_len,
&expected_fixed_iv_len, cipher, version,
is_dtls) ||
/* Ensure the caller returned correct key sizes. */
expected_fixed_iv_len != fixed_iv_len ||
expected_mac_key_len != mac_key_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
uint8_t merged_key[EVP_AEAD_MAX_KEY_LENGTH];
if (mac_key_len > 0) {
/* This is a "stateful" AEAD (for compatibility with pre-AEAD cipher
* suites). */
if (mac_key_len + enc_key_len + fixed_iv_len > sizeof(merged_key)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
OPENSSL_memcpy(merged_key, mac_key, mac_key_len);
OPENSSL_memcpy(merged_key + mac_key_len, enc_key, enc_key_len);
OPENSSL_memcpy(merged_key + mac_key_len + enc_key_len, fixed_iv,
fixed_iv_len);
enc_key = merged_key;
enc_key_len += mac_key_len;
enc_key_len += fixed_iv_len;
}
SSL_AEAD_CTX *aead_ctx = (SSL_AEAD_CTX *)OPENSSL_malloc(sizeof(SSL_AEAD_CTX));
if (aead_ctx == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return NULL;
}
OPENSSL_memset(aead_ctx, 0, sizeof(SSL_AEAD_CTX));
aead_ctx->cipher = cipher;
aead_ctx->version = version;
if (!EVP_AEAD_CTX_init_with_direction(
&aead_ctx->ctx, aead, enc_key, enc_key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH, direction)) {
OPENSSL_free(aead_ctx);
return NULL;
}
assert(EVP_AEAD_nonce_length(aead) <= EVP_AEAD_MAX_NONCE_LENGTH);
OPENSSL_COMPILE_ASSERT(EVP_AEAD_MAX_NONCE_LENGTH < 256,
variable_nonce_len_doesnt_fit_in_uint8_t);
aead_ctx->variable_nonce_len = (uint8_t)EVP_AEAD_nonce_length(aead);
if (mac_key_len == 0) {
assert(fixed_iv_len <= sizeof(aead_ctx->fixed_nonce));
OPENSSL_memcpy(aead_ctx->fixed_nonce, fixed_iv, fixed_iv_len);
aead_ctx->fixed_nonce_len = fixed_iv_len;
if (cipher->algorithm_enc & SSL_CHACHA20POLY1305) {
/* The fixed nonce into the actual nonce (the sequence number). */
aead_ctx->xor_fixed_nonce = 1;
aead_ctx->variable_nonce_len = 8;
} else {
/* The fixed IV is prepended to the nonce. */
assert(fixed_iv_len <= aead_ctx->variable_nonce_len);
aead_ctx->variable_nonce_len -= fixed_iv_len;
}
/* AES-GCM uses an explicit nonce. */
if (cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)) {
aead_ctx->variable_nonce_included_in_record = 1;
}
/* The TLS 1.3 construction XORs the fixed nonce into the sequence number
* and omits the additional data. */
if (version >= TLS1_3_VERSION) {
aead_ctx->xor_fixed_nonce = 1;
aead_ctx->variable_nonce_len = 8;
aead_ctx->variable_nonce_included_in_record = 0;
aead_ctx->omit_ad = 1;
assert(fixed_iv_len >= aead_ctx->variable_nonce_len);
}
} else {
assert(version < TLS1_3_VERSION);
aead_ctx->variable_nonce_included_in_record = 1;
aead_ctx->random_variable_nonce = 1;
aead_ctx->omit_length_in_ad = 1;
aead_ctx->omit_version_in_ad = (version == SSL3_VERSION);
}
return aead_ctx;
}
void SSL_AEAD_CTX_free(SSL_AEAD_CTX *aead) {
if (aead == NULL) {
return;
}
EVP_AEAD_CTX_cleanup(&aead->ctx);
OPENSSL_free(aead);
}
size_t SSL_AEAD_CTX_explicit_nonce_len(const SSL_AEAD_CTX *aead) {
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
aead = NULL;
#endif
if (aead != NULL && aead->variable_nonce_included_in_record) {
return aead->variable_nonce_len;
}
return 0;
}
size_t SSL_AEAD_CTX_max_suffix_len(const SSL_AEAD_CTX *aead,
size_t extra_in_len) {
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
aead = NULL;
#endif
return extra_in_len +
(aead == NULL ? 0 : EVP_AEAD_max_overhead(aead->ctx.aead));
}
size_t SSL_AEAD_CTX_max_overhead(const SSL_AEAD_CTX *aead) {
return SSL_AEAD_CTX_explicit_nonce_len(aead) +
SSL_AEAD_CTX_max_suffix_len(aead, 0);
}
/* ssl_aead_ctx_get_ad writes the additional data for |aead| into |out| and
* returns the number of bytes written. */
static size_t ssl_aead_ctx_get_ad(SSL_AEAD_CTX *aead, uint8_t out[13],
uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8],
size_t plaintext_len) {
if (aead->omit_ad) {
return 0;
}
OPENSSL_memcpy(out, seqnum, 8);
size_t len = 8;
out[len++] = type;
if (!aead->omit_version_in_ad) {
out[len++] = (uint8_t)(wire_version >> 8);
out[len++] = (uint8_t)wire_version;
}
if (!aead->omit_length_in_ad) {
out[len++] = (uint8_t)(plaintext_len >> 8);
out[len++] = (uint8_t)plaintext_len;
}
return len;
}
int SSL_AEAD_CTX_open(SSL_AEAD_CTX *aead, CBS *out, uint8_t type,
uint16_t wire_version, const uint8_t seqnum[8],
uint8_t *in, size_t in_len) {
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
aead = NULL;
#endif
if (aead == NULL) {
/* Handle the initial NULL cipher. */
CBS_init(out, in, in_len);
return 1;
}
/* TLS 1.2 AEADs include the length in the AD and are assumed to have fixed
* overhead. Otherwise the parameter is unused. */
size_t plaintext_len = 0;
if (!aead->omit_length_in_ad) {
size_t overhead = SSL_AEAD_CTX_max_overhead(aead);
if (in_len < overhead) {
/* Publicly invalid. */
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH);
return 0;
}
plaintext_len = in_len - overhead;
}
uint8_t ad[13];
size_t ad_len = ssl_aead_ctx_get_ad(aead, ad, type, wire_version, seqnum,
plaintext_len);
/* Assemble the nonce. */
uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
size_t nonce_len = 0;
/* Prepend the fixed nonce, or left-pad with zeros if XORing. */
if (aead->xor_fixed_nonce) {
nonce_len = aead->fixed_nonce_len - aead->variable_nonce_len;
OPENSSL_memset(nonce, 0, nonce_len);
} else {
OPENSSL_memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len);
nonce_len += aead->fixed_nonce_len;
}
/* Add the variable nonce. */
if (aead->variable_nonce_included_in_record) {
if (in_len < aead->variable_nonce_len) {
/* Publicly invalid. */
OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH);
return 0;
}
OPENSSL_memcpy(nonce + nonce_len, in, aead->variable_nonce_len);
in += aead->variable_nonce_len;
in_len -= aead->variable_nonce_len;
} else {
assert(aead->variable_nonce_len == 8);
OPENSSL_memcpy(nonce + nonce_len, seqnum, aead->variable_nonce_len);
}
nonce_len += aead->variable_nonce_len;
/* XOR the fixed nonce, if necessary. */
if (aead->xor_fixed_nonce) {
assert(nonce_len == aead->fixed_nonce_len);
for (size_t i = 0; i < aead->fixed_nonce_len; i++) {
nonce[i] ^= aead->fixed_nonce[i];
}
}
/* Decrypt in-place. */
size_t len;
if (!EVP_AEAD_CTX_open(&aead->ctx, in, &len, in_len, nonce, nonce_len,
in, in_len, ad, ad_len)) {
return 0;
}
CBS_init(out, in, len);
return 1;
}
int SSL_AEAD_CTX_seal_scatter(SSL_AEAD_CTX *aead, uint8_t *out_prefix,
uint8_t *out, uint8_t *out_suffix,
size_t *out_suffix_len, size_t max_out_suffix_len,
uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], const uint8_t *in,
size_t in_len, const uint8_t *extra_in,
size_t extra_in_len) {
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
aead = NULL;
#endif
if ((in != out && buffers_alias(in, in_len, out, in_len)) ||
buffers_alias(in, in_len, out_suffix, max_out_suffix_len)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
return 0;
}
if (extra_in_len > max_out_suffix_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return 0;
}
if (aead == NULL) {
/* Handle the initial NULL cipher. */
OPENSSL_memmove(out, in, in_len);
OPENSSL_memmove(out_suffix, extra_in, extra_in_len);
*out_suffix_len = extra_in_len;
return 1;
}
uint8_t ad[13];
size_t ad_len = ssl_aead_ctx_get_ad(aead, ad, type, wire_version, seqnum,
in_len);
/* Assemble the nonce. */
uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
size_t nonce_len = 0;
/* Prepend the fixed nonce, or left-pad with zeros if XORing. */
if (aead->xor_fixed_nonce) {
nonce_len = aead->fixed_nonce_len - aead->variable_nonce_len;
OPENSSL_memset(nonce, 0, nonce_len);
} else {
OPENSSL_memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len);
nonce_len += aead->fixed_nonce_len;
}
/* Select the variable nonce. */
if (aead->random_variable_nonce) {
assert(aead->variable_nonce_included_in_record);
if (!RAND_bytes(nonce + nonce_len, aead->variable_nonce_len)) {
return 0;
}
} else {
/* When sending we use the sequence number as the variable part of the
* nonce. */
assert(aead->variable_nonce_len == 8);
OPENSSL_memcpy(nonce + nonce_len, seqnum, aead->variable_nonce_len);
}
nonce_len += aead->variable_nonce_len;
/* Emit the variable nonce if included in the record. */
if (aead->variable_nonce_included_in_record) {
assert(!aead->xor_fixed_nonce);
if (buffers_alias(in, in_len, out_prefix, aead->variable_nonce_len)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT);
return 0;
}
OPENSSL_memcpy(out_prefix, nonce + aead->fixed_nonce_len,
aead->variable_nonce_len);
}
/* XOR the fixed nonce, if necessary. */
if (aead->xor_fixed_nonce) {
assert(nonce_len == aead->fixed_nonce_len);
for (size_t i = 0; i < aead->fixed_nonce_len; i++) {
nonce[i] ^= aead->fixed_nonce[i];
}
}
return EVP_AEAD_CTX_seal_scatter(&aead->ctx, out, out_suffix, out_suffix_len,
max_out_suffix_len, nonce, nonce_len, in,
in_len, extra_in, extra_in_len, ad, ad_len);
}
int SSL_AEAD_CTX_seal(SSL_AEAD_CTX *aead, uint8_t *out, size_t *out_len,
size_t max_out_len, uint8_t type, uint16_t wire_version,
const uint8_t seqnum[8], const uint8_t *in,
size_t in_len) {
size_t prefix_len = SSL_AEAD_CTX_explicit_nonce_len(aead);
if (in_len + prefix_len < in_len) {
OPENSSL_PUT_ERROR(CIPHER, SSL_R_RECORD_TOO_LARGE);
return 0;
}
if (in_len + prefix_len > max_out_len) {
OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
return 0;
}
size_t suffix_len;
if (!SSL_AEAD_CTX_seal_scatter(aead, out, out + prefix_len,
out + prefix_len + in_len, &suffix_len,
max_out_len - prefix_len - in_len, type,
wire_version, seqnum, in, in_len, 0, 0)) {
return 0;
}
assert(suffix_len <= SSL_AEAD_CTX_max_suffix_len(aead, 0));
*out_len = prefix_len + in_len + suffix_len;
return 1;
}