aadcce380f
glibc inlines bsearch, so CFI does observe the function pointer mishap. Binary search is easy enough, aside from thinking through the edge case at the end, so just implement it by hand. As a bonus, it actually gives O(lg N) behavior. sk_*_find needs to return the *first* match, while bsearch does not promise a particular one. sk_find thus performs a fixup step to find the first one, but this is linear in the number of matching elements. Instead, the binary search should take this into account. This still leaves qsort, but it's not inlined, so hopefully we can leave it alone. Bug: chromium:941463 Change-Id: I5c94d6b15423beea3bdb389639466f8b3ff0dc5d Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/35304 Reviewed-by: Adam Langley <agl@google.com>
432 lines
11 KiB
C
432 lines
11 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/stack.h>
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/mem.h>
|
|
|
|
#include "../internal.h"
|
|
|
|
|
|
// kMinSize is the number of pointers that will be initially allocated in a new
|
|
// stack.
|
|
static const size_t kMinSize = 4;
|
|
|
|
_STACK *sk_new(stack_cmp_func comp) {
|
|
_STACK *ret;
|
|
|
|
ret = OPENSSL_malloc(sizeof(_STACK));
|
|
if (ret == NULL) {
|
|
goto err;
|
|
}
|
|
OPENSSL_memset(ret, 0, sizeof(_STACK));
|
|
|
|
ret->data = OPENSSL_malloc(sizeof(void *) * kMinSize);
|
|
if (ret->data == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
OPENSSL_memset(ret->data, 0, sizeof(void *) * kMinSize);
|
|
|
|
ret->comp = comp;
|
|
ret->num_alloc = kMinSize;
|
|
|
|
return ret;
|
|
|
|
err:
|
|
OPENSSL_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
_STACK *sk_new_null(void) { return sk_new(NULL); }
|
|
|
|
size_t sk_num(const _STACK *sk) {
|
|
if (sk == NULL) {
|
|
return 0;
|
|
}
|
|
return sk->num;
|
|
}
|
|
|
|
void sk_zero(_STACK *sk) {
|
|
if (sk == NULL || sk->num == 0) {
|
|
return;
|
|
}
|
|
OPENSSL_memset(sk->data, 0, sizeof(void*) * sk->num);
|
|
sk->num = 0;
|
|
sk->sorted = 0;
|
|
}
|
|
|
|
void *sk_value(const _STACK *sk, size_t i) {
|
|
if (!sk || i >= sk->num) {
|
|
return NULL;
|
|
}
|
|
return sk->data[i];
|
|
}
|
|
|
|
void *sk_set(_STACK *sk, size_t i, void *value) {
|
|
if (!sk || i >= sk->num) {
|
|
return NULL;
|
|
}
|
|
return sk->data[i] = value;
|
|
}
|
|
|
|
void sk_free(_STACK *sk) {
|
|
if (sk == NULL) {
|
|
return;
|
|
}
|
|
OPENSSL_free(sk->data);
|
|
OPENSSL_free(sk);
|
|
}
|
|
|
|
void sk_pop_free_ex(_STACK *sk, void (*call_free_func)(stack_free_func, void *),
|
|
stack_free_func free_func) {
|
|
if (sk == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sk->num; i++) {
|
|
if (sk->data[i] != NULL) {
|
|
call_free_func(free_func, sk->data[i]);
|
|
}
|
|
}
|
|
sk_free(sk);
|
|
}
|
|
|
|
// Historically, |sk_pop_free| called the function as |stack_free_func|
|
|
// directly. This is undefined in C. Some callers called |sk_pop_free| directly,
|
|
// so we must maintain a compatibility version for now.
|
|
static void call_free_func_legacy(stack_free_func func, void *ptr) {
|
|
func(ptr);
|
|
}
|
|
|
|
void sk_pop_free(_STACK *sk, stack_free_func free_func) {
|
|
sk_pop_free_ex(sk, call_free_func_legacy, free_func);
|
|
}
|
|
|
|
size_t sk_insert(_STACK *sk, void *p, size_t where) {
|
|
if (sk == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (sk->num_alloc <= sk->num + 1) {
|
|
// Attempt to double the size of the array.
|
|
size_t new_alloc = sk->num_alloc << 1;
|
|
size_t alloc_size = new_alloc * sizeof(void *);
|
|
void **data;
|
|
|
|
// If the doubling overflowed, try to increment.
|
|
if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
|
|
new_alloc = sk->num_alloc + 1;
|
|
alloc_size = new_alloc * sizeof(void *);
|
|
}
|
|
|
|
// If the increment also overflowed, fail.
|
|
if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
|
|
return 0;
|
|
}
|
|
|
|
data = OPENSSL_realloc(sk->data, alloc_size);
|
|
if (data == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
sk->data = data;
|
|
sk->num_alloc = new_alloc;
|
|
}
|
|
|
|
if (where >= sk->num) {
|
|
sk->data[sk->num] = p;
|
|
} else {
|
|
OPENSSL_memmove(&sk->data[where + 1], &sk->data[where],
|
|
sizeof(void *) * (sk->num - where));
|
|
sk->data[where] = p;
|
|
}
|
|
|
|
sk->num++;
|
|
sk->sorted = 0;
|
|
|
|
return sk->num;
|
|
}
|
|
|
|
void *sk_delete(_STACK *sk, size_t where) {
|
|
void *ret;
|
|
|
|
if (!sk || where >= sk->num) {
|
|
return NULL;
|
|
}
|
|
|
|
ret = sk->data[where];
|
|
|
|
if (where != sk->num - 1) {
|
|
OPENSSL_memmove(&sk->data[where], &sk->data[where + 1],
|
|
sizeof(void *) * (sk->num - where - 1));
|
|
}
|
|
|
|
sk->num--;
|
|
return ret;
|
|
}
|
|
|
|
void *sk_delete_ptr(_STACK *sk, const void *p) {
|
|
if (sk == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
for (size_t i = 0; i < sk->num; i++) {
|
|
if (sk->data[i] == p) {
|
|
return sk_delete(sk, i);
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int sk_find(const _STACK *sk, size_t *out_index, const void *p,
|
|
int (*call_cmp_func)(stack_cmp_func, const void **,
|
|
const void **)) {
|
|
if (sk == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (sk->comp == NULL) {
|
|
// Use pointer equality when no comparison function has been set.
|
|
for (size_t i = 0; i < sk->num; i++) {
|
|
if (sk->data[i] == p) {
|
|
if (out_index) {
|
|
*out_index = i;
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (p == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (!sk_is_sorted(sk)) {
|
|
for (size_t i = 0; i < sk->num; i++) {
|
|
const void *elem = sk->data[i];
|
|
if (call_cmp_func(sk->comp, &p, &elem) == 0) {
|
|
if (out_index) {
|
|
*out_index = i;
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// The stack is sorted, so binary search to find the element.
|
|
//
|
|
// |lo| and |hi| maintain a half-open interval of where the answer may be. All
|
|
// indices such that |lo <= idx < hi| are candidates.
|
|
size_t lo = 0, hi = sk->num;
|
|
while (lo < hi) {
|
|
// Bias |mid| towards |lo|. See the |r == 0| case below.
|
|
size_t mid = lo + (hi - lo - 1) / 2;
|
|
assert(lo <= mid && mid < hi);
|
|
const void *elem = sk->data[mid];
|
|
int r = call_cmp_func(sk->comp, &p, &elem);
|
|
if (r > 0) {
|
|
lo = mid + 1; // |mid| is too low.
|
|
} else if (r < 0) {
|
|
hi = mid; // |mid| is too high.
|
|
} else {
|
|
// |mid| matches. However, this function returns the earliest match, so we
|
|
// can only return if the range has size one.
|
|
if (hi - lo == 1) {
|
|
if (out_index != NULL) {
|
|
*out_index = mid;
|
|
}
|
|
return 1;
|
|
}
|
|
// The sample is biased towards |lo|. |mid| can only be |hi - 1| if
|
|
// |hi - lo| was one, so this makes forward progress.
|
|
assert(mid + 1 < hi);
|
|
hi = mid + 1;
|
|
}
|
|
}
|
|
|
|
assert(lo == hi);
|
|
return 0; // Not found.
|
|
}
|
|
|
|
void *sk_shift(_STACK *sk) {
|
|
if (sk == NULL) {
|
|
return NULL;
|
|
}
|
|
if (sk->num == 0) {
|
|
return NULL;
|
|
}
|
|
return sk_delete(sk, 0);
|
|
}
|
|
|
|
size_t sk_push(_STACK *sk, void *p) { return (sk_insert(sk, p, sk->num)); }
|
|
|
|
void *sk_pop(_STACK *sk) {
|
|
if (sk == NULL) {
|
|
return NULL;
|
|
}
|
|
if (sk->num == 0) {
|
|
return NULL;
|
|
}
|
|
return sk_delete(sk, sk->num - 1);
|
|
}
|
|
|
|
_STACK *sk_dup(const _STACK *sk) {
|
|
_STACK *ret;
|
|
void **s;
|
|
|
|
if (sk == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
ret = sk_new(sk->comp);
|
|
if (ret == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
s = (void **)OPENSSL_realloc(ret->data, sizeof(void *) * sk->num_alloc);
|
|
if (s == NULL) {
|
|
goto err;
|
|
}
|
|
ret->data = s;
|
|
|
|
ret->num = sk->num;
|
|
OPENSSL_memcpy(ret->data, sk->data, sizeof(void *) * sk->num);
|
|
ret->sorted = sk->sorted;
|
|
ret->num_alloc = sk->num_alloc;
|
|
ret->comp = sk->comp;
|
|
return ret;
|
|
|
|
err:
|
|
sk_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
void sk_sort(_STACK *sk) {
|
|
if (sk == NULL || sk->comp == NULL || sk->sorted) {
|
|
return;
|
|
}
|
|
|
|
// sk->comp is a function that takes pointers to pointers to elements, but
|
|
// qsort take a comparison function that just takes pointers to elements.
|
|
// However, since we're passing an array of pointers to qsort, we can just
|
|
// cast the comparison function and everything works.
|
|
//
|
|
// TODO(davidben): This is undefined behavior, but the call is in libc so,
|
|
// e.g., CFI does not notice. Unfortunately, |qsort| is missing a void*
|
|
// parameter in its callback and |qsort_s| / |qsort_r| are a mess of
|
|
// incompatibility.
|
|
if (sk->num >= 2) {
|
|
int (*comp_func)(const void *, const void *) =
|
|
(int (*)(const void *, const void *))(sk->comp);
|
|
qsort(sk->data, sk->num, sizeof(void *), comp_func);
|
|
}
|
|
sk->sorted = 1;
|
|
}
|
|
|
|
int sk_is_sorted(const _STACK *sk) {
|
|
if (!sk) {
|
|
return 1;
|
|
}
|
|
return sk->sorted;
|
|
}
|
|
|
|
stack_cmp_func sk_set_cmp_func(_STACK *sk, stack_cmp_func comp) {
|
|
stack_cmp_func old = sk->comp;
|
|
|
|
if (sk->comp != comp) {
|
|
sk->sorted = 0;
|
|
}
|
|
sk->comp = comp;
|
|
|
|
return old;
|
|
}
|
|
|
|
_STACK *sk_deep_copy(const _STACK *sk,
|
|
void *(*call_copy_func)(stack_copy_func, void *),
|
|
stack_copy_func copy_func,
|
|
void (*call_free_func)(stack_free_func, void *),
|
|
stack_free_func free_func) {
|
|
_STACK *ret = sk_dup(sk);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
for (size_t i = 0; i < ret->num; i++) {
|
|
if (ret->data[i] == NULL) {
|
|
continue;
|
|
}
|
|
ret->data[i] = call_copy_func(copy_func, ret->data[i]);
|
|
if (ret->data[i] == NULL) {
|
|
for (size_t j = 0; j < i; j++) {
|
|
if (ret->data[j] != NULL) {
|
|
call_free_func(free_func, ret->data[j]);
|
|
}
|
|
}
|
|
sk_free(ret);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|