17cf2cb1d2
Most C standard library functions are undefined if passed NULL, even when the corresponding length is zero. This gives them (and, in turn, all functions which call them) surprising behavior on empty arrays. Some compilers will miscompile code due to this rule. See also https://www.imperialviolet.org/2016/06/26/nonnull.html Add OPENSSL_memcpy, etc., wrappers which avoid this problem. BUG=23 Change-Id: I95f42b23e92945af0e681264fffaf578e7f8465e Reviewed-on: https://boringssl-review.googlesource.com/12928 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
600 lines
15 KiB
C
600 lines
15 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/bn.h>
|
|
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bio.h>
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "internal.h"
|
|
|
|
BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
|
|
size_t num_words;
|
|
unsigned m;
|
|
BN_ULONG word = 0;
|
|
BIGNUM *bn = NULL;
|
|
|
|
if (ret == NULL) {
|
|
ret = bn = BN_new();
|
|
}
|
|
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (len == 0) {
|
|
ret->top = 0;
|
|
return ret;
|
|
}
|
|
|
|
num_words = ((len - 1) / BN_BYTES) + 1;
|
|
m = (len - 1) % BN_BYTES;
|
|
if (bn_wexpand(ret, num_words) == NULL) {
|
|
if (bn) {
|
|
BN_free(bn);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* |bn_wexpand| must check bounds on |num_words| to write it into
|
|
* |ret->dmax|. */
|
|
assert(num_words <= INT_MAX);
|
|
ret->top = (int)num_words;
|
|
ret->neg = 0;
|
|
|
|
while (len--) {
|
|
word = (word << 8) | *(in++);
|
|
if (m-- == 0) {
|
|
ret->d[--num_words] = word;
|
|
word = 0;
|
|
m = BN_BYTES - 1;
|
|
}
|
|
}
|
|
|
|
/* need to call this due to clear byte at top if avoiding having the top bit
|
|
* set (-ve number) */
|
|
bn_correct_top(ret);
|
|
return ret;
|
|
}
|
|
|
|
size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
|
|
size_t n, i;
|
|
BN_ULONG l;
|
|
|
|
n = i = BN_num_bytes(in);
|
|
while (i--) {
|
|
l = in->d[i / BN_BYTES];
|
|
*(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
|
|
* behavior is undefined if |v| takes any other value. */
|
|
static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
|
|
BN_ULONG mask = v;
|
|
mask--;
|
|
|
|
return (~mask & x) | (mask & y);
|
|
}
|
|
|
|
/* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
|
|
* must not have their MSBs set. */
|
|
static int constant_time_le_size_t(size_t x, size_t y) {
|
|
return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
|
|
}
|
|
|
|
/* read_word_padded returns the |i|'th word of |in|, if it is not out of
|
|
* bounds. Otherwise, it returns 0. It does so without branches on the size of
|
|
* |in|, however it necessarily does not have the same memory access pattern. If
|
|
* the access would be out of bounds, it reads the last word of |in|. |in| must
|
|
* not be zero. */
|
|
static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
|
|
/* Read |in->d[i]| if valid. Otherwise, read the last word. */
|
|
BN_ULONG l = in->d[constant_time_select_ulong(
|
|
constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];
|
|
|
|
/* Clamp to zero if above |d->top|. */
|
|
return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
|
|
}
|
|
|
|
int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
|
|
/* Special case for |in| = 0. Just branch as the probability is negligible. */
|
|
if (BN_is_zero(in)) {
|
|
OPENSSL_memset(out, 0, len);
|
|
return 1;
|
|
}
|
|
|
|
/* Check if the integer is too big. This case can exit early in non-constant
|
|
* time. */
|
|
if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
|
|
return 0;
|
|
}
|
|
if ((len % BN_BYTES) != 0) {
|
|
BN_ULONG l = read_word_padded(in, len / BN_BYTES);
|
|
if (l >> (8 * (len % BN_BYTES)) != 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Write the bytes out one by one. Serialization is done without branching on
|
|
* the bits of |in| or on |in->top|, but if the routine would otherwise read
|
|
* out of bounds, the memory access pattern can't be fixed. However, for an
|
|
* RSA key of size a multiple of the word size, the probability of BN_BYTES
|
|
* leading zero octets is low.
|
|
*
|
|
* See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
|
|
size_t i = len;
|
|
while (i--) {
|
|
BN_ULONG l = read_word_padded(in, i / BN_BYTES);
|
|
*(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in) {
|
|
uint8_t *ptr;
|
|
return CBB_add_space(out, &ptr, len) && BN_bn2bin_padded(ptr, len, in);
|
|
}
|
|
|
|
static const char hextable[] = "0123456789abcdef";
|
|
|
|
char *BN_bn2hex(const BIGNUM *bn) {
|
|
char *buf = OPENSSL_malloc(1 /* leading '-' */ + 1 /* zero is non-empty */ +
|
|
bn->top * BN_BYTES * 2 + 1 /* trailing NUL */);
|
|
if (buf == NULL) {
|
|
OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
char *p = buf;
|
|
if (bn->neg) {
|
|
*(p++) = '-';
|
|
}
|
|
|
|
if (BN_is_zero(bn)) {
|
|
*(p++) = '0';
|
|
}
|
|
|
|
int z = 0;
|
|
for (int i = bn->top - 1; i >= 0; i--) {
|
|
for (int j = BN_BITS2 - 8; j >= 0; j -= 8) {
|
|
/* strip leading zeros */
|
|
int v = ((int)(bn->d[i] >> (long)j)) & 0xff;
|
|
if (z || v != 0) {
|
|
*(p++) = hextable[v >> 4];
|
|
*(p++) = hextable[v & 0x0f];
|
|
z = 1;
|
|
}
|
|
}
|
|
}
|
|
*p = '\0';
|
|
|
|
return buf;
|
|
}
|
|
|
|
/* decode_hex decodes |in_len| bytes of hex data from |in| and updates |bn|. */
|
|
static int decode_hex(BIGNUM *bn, const char *in, int in_len) {
|
|
if (in_len > INT_MAX/4) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG);
|
|
return 0;
|
|
}
|
|
/* |in_len| is the number of hex digits. */
|
|
if (bn_expand(bn, in_len * 4) == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
int i = 0;
|
|
while (in_len > 0) {
|
|
/* Decode one |BN_ULONG| at a time. */
|
|
int todo = BN_BYTES * 2;
|
|
if (todo > in_len) {
|
|
todo = in_len;
|
|
}
|
|
|
|
BN_ULONG word = 0;
|
|
int j;
|
|
for (j = todo; j > 0; j--) {
|
|
char c = in[in_len - j];
|
|
|
|
BN_ULONG hex;
|
|
if (c >= '0' && c <= '9') {
|
|
hex = c - '0';
|
|
} else if (c >= 'a' && c <= 'f') {
|
|
hex = c - 'a' + 10;
|
|
} else if (c >= 'A' && c <= 'F') {
|
|
hex = c - 'A' + 10;
|
|
} else {
|
|
hex = 0;
|
|
/* This shouldn't happen. The caller checks |isxdigit|. */
|
|
assert(0);
|
|
}
|
|
word = (word << 4) | hex;
|
|
}
|
|
|
|
bn->d[i++] = word;
|
|
in_len -= todo;
|
|
}
|
|
assert(i <= bn->dmax);
|
|
bn->top = i;
|
|
return 1;
|
|
}
|
|
|
|
/* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */
|
|
static int decode_dec(BIGNUM *bn, const char *in, int in_len) {
|
|
int i, j;
|
|
BN_ULONG l = 0;
|
|
|
|
/* Decode |BN_DEC_NUM| digits at a time. */
|
|
j = BN_DEC_NUM - (in_len % BN_DEC_NUM);
|
|
if (j == BN_DEC_NUM) {
|
|
j = 0;
|
|
}
|
|
l = 0;
|
|
for (i = 0; i < in_len; i++) {
|
|
l *= 10;
|
|
l += in[i] - '0';
|
|
if (++j == BN_DEC_NUM) {
|
|
if (!BN_mul_word(bn, BN_DEC_CONV) ||
|
|
!BN_add_word(bn, l)) {
|
|
return 0;
|
|
}
|
|
l = 0;
|
|
j = 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
typedef int (*decode_func) (BIGNUM *bn, const char *in, int in_len);
|
|
typedef int (*char_test_func) (int c);
|
|
|
|
static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
|
|
BIGNUM *ret = NULL;
|
|
int neg = 0, i;
|
|
int num;
|
|
|
|
if (in == NULL || *in == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (*in == '-') {
|
|
neg = 1;
|
|
in++;
|
|
}
|
|
|
|
for (i = 0; want_char((unsigned char)in[i]) && i + neg < INT_MAX; i++) {}
|
|
|
|
num = i + neg;
|
|
if (outp == NULL) {
|
|
return num;
|
|
}
|
|
|
|
/* in is the start of the hex digits, and it is 'i' long */
|
|
if (*outp == NULL) {
|
|
ret = BN_new();
|
|
if (ret == NULL) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
ret = *outp;
|
|
BN_zero(ret);
|
|
}
|
|
|
|
if (!decode(ret, in, i)) {
|
|
goto err;
|
|
}
|
|
|
|
bn_correct_top(ret);
|
|
if (!BN_is_zero(ret)) {
|
|
ret->neg = neg;
|
|
}
|
|
|
|
*outp = ret;
|
|
return num;
|
|
|
|
err:
|
|
if (*outp == NULL) {
|
|
BN_free(ret);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int BN_hex2bn(BIGNUM **outp, const char *in) {
|
|
return bn_x2bn(outp, in, decode_hex, isxdigit);
|
|
}
|
|
|
|
char *BN_bn2dec(const BIGNUM *a) {
|
|
/* It is easier to print strings little-endian, so we assemble it in reverse
|
|
* and fix at the end. */
|
|
BIGNUM *copy = NULL;
|
|
CBB cbb;
|
|
if (!CBB_init(&cbb, 16) ||
|
|
!CBB_add_u8(&cbb, 0 /* trailing NUL */)) {
|
|
goto cbb_err;
|
|
}
|
|
|
|
if (BN_is_zero(a)) {
|
|
if (!CBB_add_u8(&cbb, '0')) {
|
|
goto cbb_err;
|
|
}
|
|
} else {
|
|
copy = BN_dup(a);
|
|
if (copy == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
while (!BN_is_zero(copy)) {
|
|
BN_ULONG word = BN_div_word(copy, BN_DEC_CONV);
|
|
if (word == (BN_ULONG)-1) {
|
|
goto err;
|
|
}
|
|
|
|
const int add_leading_zeros = !BN_is_zero(copy);
|
|
for (int i = 0; i < BN_DEC_NUM && (add_leading_zeros || word != 0); i++) {
|
|
if (!CBB_add_u8(&cbb, '0' + word % 10)) {
|
|
goto cbb_err;
|
|
}
|
|
word /= 10;
|
|
}
|
|
assert(word == 0);
|
|
}
|
|
}
|
|
|
|
if (BN_is_negative(a) &&
|
|
!CBB_add_u8(&cbb, '-')) {
|
|
goto cbb_err;
|
|
}
|
|
|
|
uint8_t *data;
|
|
size_t len;
|
|
if (!CBB_finish(&cbb, &data, &len)) {
|
|
goto cbb_err;
|
|
}
|
|
|
|
/* Reverse the buffer. */
|
|
for (size_t i = 0; i < len/2; i++) {
|
|
uint8_t tmp = data[i];
|
|
data[i] = data[len - 1 - i];
|
|
data[len - 1 - i] = tmp;
|
|
}
|
|
|
|
BN_free(copy);
|
|
return (char *)data;
|
|
|
|
cbb_err:
|
|
OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
|
|
err:
|
|
BN_free(copy);
|
|
CBB_cleanup(&cbb);
|
|
return NULL;
|
|
}
|
|
|
|
int BN_dec2bn(BIGNUM **outp, const char *in) {
|
|
return bn_x2bn(outp, in, decode_dec, isdigit);
|
|
}
|
|
|
|
int BN_asc2bn(BIGNUM **outp, const char *in) {
|
|
const char *const orig_in = in;
|
|
if (*in == '-') {
|
|
in++;
|
|
}
|
|
|
|
if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
|
|
if (!BN_hex2bn(outp, in+2)) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (!BN_dec2bn(outp, in)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (*orig_in == '-' && !BN_is_zero(*outp)) {
|
|
(*outp)->neg = 1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int BN_print(BIO *bp, const BIGNUM *a) {
|
|
int i, j, v, z = 0;
|
|
int ret = 0;
|
|
|
|
if (a->neg && BIO_write(bp, "-", 1) != 1) {
|
|
goto end;
|
|
}
|
|
|
|
if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
|
|
goto end;
|
|
}
|
|
|
|
for (i = a->top - 1; i >= 0; i--) {
|
|
for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
|
|
/* strip leading zeros */
|
|
v = ((int)(a->d[i] >> (long)j)) & 0x0f;
|
|
if (z || v != 0) {
|
|
if (BIO_write(bp, &hextable[v], 1) != 1) {
|
|
goto end;
|
|
}
|
|
z = 1;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
|
|
end:
|
|
return ret;
|
|
}
|
|
|
|
int BN_print_fp(FILE *fp, const BIGNUM *a) {
|
|
BIO *b;
|
|
int ret;
|
|
|
|
b = BIO_new(BIO_s_file());
|
|
if (b == NULL) {
|
|
return 0;
|
|
}
|
|
BIO_set_fp(b, fp, BIO_NOCLOSE);
|
|
ret = BN_print(b, a);
|
|
BIO_free(b);
|
|
|
|
return ret;
|
|
}
|
|
|
|
BN_ULONG BN_get_word(const BIGNUM *bn) {
|
|
switch (bn->top) {
|
|
case 0:
|
|
return 0;
|
|
case 1:
|
|
return bn->d[0];
|
|
default:
|
|
return BN_MASK2;
|
|
}
|
|
}
|
|
|
|
size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out) {
|
|
const size_t bits = BN_num_bits(in);
|
|
const size_t bytes = (bits + 7) / 8;
|
|
/* If the number of bits is a multiple of 8, i.e. if the MSB is set,
|
|
* prefix with a zero byte. */
|
|
int extend = 0;
|
|
if (bytes != 0 && (bits & 0x07) == 0) {
|
|
extend = 1;
|
|
}
|
|
|
|
const size_t len = bytes + extend;
|
|
if (len < bytes ||
|
|
4 + len < len ||
|
|
(len & 0xffffffff) != len) {
|
|
/* If we cannot represent the number then we emit zero as the interface
|
|
* doesn't allow an error to be signalled. */
|
|
if (out) {
|
|
OPENSSL_memset(out, 0, 4);
|
|
}
|
|
return 4;
|
|
}
|
|
|
|
if (out == NULL) {
|
|
return 4 + len;
|
|
}
|
|
|
|
out[0] = len >> 24;
|
|
out[1] = len >> 16;
|
|
out[2] = len >> 8;
|
|
out[3] = len;
|
|
if (extend) {
|
|
out[4] = 0;
|
|
}
|
|
BN_bn2bin(in, out + 4 + extend);
|
|
if (in->neg && len > 0) {
|
|
out[4] |= 0x80;
|
|
}
|
|
return len + 4;
|
|
}
|
|
|
|
BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out) {
|
|
if (len < 4) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
|
|
return NULL;
|
|
}
|
|
const size_t in_len = ((size_t)in[0] << 24) |
|
|
((size_t)in[1] << 16) |
|
|
((size_t)in[2] << 8) |
|
|
((size_t)in[3]);
|
|
if (in_len != len - 4) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BAD_ENCODING);
|
|
return NULL;
|
|
}
|
|
|
|
int out_is_alloced = 0;
|
|
if (out == NULL) {
|
|
out = BN_new();
|
|
if (out == NULL) {
|
|
OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
out_is_alloced = 1;
|
|
}
|
|
|
|
if (in_len == 0) {
|
|
BN_zero(out);
|
|
return out;
|
|
}
|
|
|
|
in += 4;
|
|
if (BN_bin2bn(in, in_len, out) == NULL) {
|
|
if (out_is_alloced) {
|
|
BN_free(out);
|
|
}
|
|
return NULL;
|
|
}
|
|
out->neg = ((*in) & 0x80) != 0;
|
|
if (out->neg) {
|
|
BN_clear_bit(out, BN_num_bits(out) - 1);
|
|
}
|
|
return out;
|
|
}
|