a838f9dc7e
None of the asymmetric crypto we inherented from OpenSSL is
constant-time because of BIGNUM. BIGNUM chops leading zeros off the
front of everything, so we end up leaking information about the first
word, in theory. BIGNUM functions additionally tend to take the full
range of inputs and then call into BN_nnmod at various points.
All our secret values should be acted on in constant-time, but k in
ECDSA is a particularly sensitive value. So, ecdsa_sign_setup, in an
attempt to mitigate the BIGNUM leaks, would add a couple copies of the
order.
This does not work at all. k is used to compute two values: k^-1 and kG.
The first operation when computing k^-1 is to call BN_nnmod if k is out
of range. The entry point to our tuned constant-time curve
implementations is to call BN_nnmod if the scalar has too many bits,
which this causes. The result is both corrections are immediately undone
but cause us to do more variable-time work in the meantime.
Replace all these computations around k with the word-based functions
added in the various preceding CLs. In doing so, replace the BN_mod_mul
calls (which internally call BN_nnmod) with Montgomery reduction. We can
avoid taking k^-1 out of Montgomery form, which combines nicely with
Brian Smith's trick in
|
||
---|---|---|
.github | ||
crypto | ||
decrepit | ||
fipstools | ||
fuzz | ||
include/openssl | ||
infra/config | ||
ssl | ||
third_party | ||
tool | ||
util | ||
.clang-format | ||
.gitignore | ||
API-CONVENTIONS.md | ||
BUILDING.md | ||
CMakeLists.txt | ||
codereview.settings | ||
CONTRIBUTING.md | ||
FUZZING.md | ||
INCORPORATING.md | ||
LICENSE | ||
PORTING.md | ||
README.md | ||
sources.cmake | ||
STYLE.md |
BoringSSL
BoringSSL is a fork of OpenSSL that is designed to meet Google's needs.
Although BoringSSL is an open source project, it is not intended for general use, as OpenSSL is. We don't recommend that third parties depend upon it. Doing so is likely to be frustrating because there are no guarantees of API or ABI stability.
Programs ship their own copies of BoringSSL when they use it and we update everything as needed when deciding to make API changes. This allows us to mostly avoid compromises in the name of compatibility. It works for us, but it may not work for you.
BoringSSL arose because Google used OpenSSL for many years in various ways and, over time, built up a large number of patches that were maintained while tracking upstream OpenSSL. As Google's product portfolio became more complex, more copies of OpenSSL sprung up and the effort involved in maintaining all these patches in multiple places was growing steadily.
Currently BoringSSL is the SSL library in Chrome/Chromium, Android (but it's not part of the NDK) and a number of other apps/programs.
There are other files in this directory which might be helpful:
- PORTING.md: how to port OpenSSL-using code to BoringSSL.
- BUILDING.md: how to build BoringSSL
- INCORPORATING.md: how to incorporate BoringSSL into a project.
- API-CONVENTIONS.md: general API conventions for BoringSSL consumers and developers.
- STYLE.md: rules and guidelines for coding style.
- include/openssl: public headers with API documentation in comments. Also available online.
- FUZZING.md: information about fuzzing BoringSSL.
- CONTRIBUTING.md: how to contribute to BoringSSL.