You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

608 lines
21 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.] */
  56. #include <openssl/sha.h>
  57. #include <string.h>
  58. #include <openssl/mem.h>
  59. /* IMPLEMENTATION NOTES.
  60. *
  61. * The 32-bit hash algorithms share a common byte-order neutral collector and
  62. * padding function implementations that operate on unaligned data,
  63. * ../md32_common.h. This SHA-512 implementation does not. Reasons
  64. * [in reverse order] are:
  65. *
  66. * - It's the only 64-bit hash algorithm for the moment of this writing,
  67. * there is no need for common collector/padding implementation [yet];
  68. * - By supporting only a transform function that operates on *aligned* data
  69. * the collector/padding function is simpler and easier to optimize. */
  70. #if !defined(OPENSSL_NO_ASM) && \
  71. (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
  72. defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
  73. #define SHA512_ASM
  74. #endif
  75. #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
  76. defined(__ARM_FEATURE_UNALIGNED)
  77. #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  78. #endif
  79. int SHA384_Init(SHA512_CTX *sha) {
  80. sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
  81. sha->h[1] = UINT64_C(0x629a292a367cd507);
  82. sha->h[2] = UINT64_C(0x9159015a3070dd17);
  83. sha->h[3] = UINT64_C(0x152fecd8f70e5939);
  84. sha->h[4] = UINT64_C(0x67332667ffc00b31);
  85. sha->h[5] = UINT64_C(0x8eb44a8768581511);
  86. sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
  87. sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
  88. sha->Nl = 0;
  89. sha->Nh = 0;
  90. sha->num = 0;
  91. sha->md_len = SHA384_DIGEST_LENGTH;
  92. return 1;
  93. }
  94. int SHA512_Init(SHA512_CTX *sha) {
  95. sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
  96. sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
  97. sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
  98. sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
  99. sha->h[4] = UINT64_C(0x510e527fade682d1);
  100. sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
  101. sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
  102. sha->h[7] = UINT64_C(0x5be0cd19137e2179);
  103. sha->Nl = 0;
  104. sha->Nh = 0;
  105. sha->num = 0;
  106. sha->md_len = SHA512_DIGEST_LENGTH;
  107. return 1;
  108. }
  109. uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
  110. SHA512_CTX ctx;
  111. static uint8_t buf[SHA384_DIGEST_LENGTH];
  112. /* TODO(fork): remove this static buffer. */
  113. if (out == NULL) {
  114. out = buf;
  115. }
  116. SHA384_Init(&ctx);
  117. SHA512_Update(&ctx, data, len);
  118. SHA512_Final(out, &ctx);
  119. OPENSSL_cleanse(&ctx, sizeof(ctx));
  120. return out;
  121. }
  122. uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
  123. SHA512_CTX ctx;
  124. static uint8_t buf[SHA512_DIGEST_LENGTH];
  125. /* TODO(fork): remove this static buffer. */
  126. if (out == NULL) {
  127. out = buf;
  128. }
  129. SHA512_Init(&ctx);
  130. SHA512_Update(&ctx, data, len);
  131. SHA512_Final(out, &ctx);
  132. OPENSSL_cleanse(&ctx, sizeof(ctx));
  133. return out;
  134. }
  135. #if !defined(SHA512_ASM)
  136. static
  137. #endif
  138. void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num);
  139. int SHA384_Final(uint8_t *md, SHA512_CTX *sha) {
  140. return SHA512_Final(md, sha);
  141. }
  142. int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
  143. return SHA512_Update(sha, data, len);
  144. }
  145. void SHA512_Transform(SHA512_CTX *c, const uint8_t *data) {
  146. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  147. if ((size_t)data % sizeof(c->u.d[0]) != 0) {
  148. memcpy(c->u.p, data, sizeof(c->u.p));
  149. data = c->u.p;
  150. }
  151. #endif
  152. sha512_block_data_order(c->h, (uint64_t *)data, 1);
  153. }
  154. int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
  155. uint64_t l;
  156. uint8_t *p = c->u.p;
  157. const uint8_t *data = (const uint8_t *)in_data;
  158. if (len == 0) {
  159. return 1;
  160. }
  161. l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
  162. if (l < c->Nl) {
  163. c->Nh++;
  164. }
  165. if (sizeof(len) >= 8) {
  166. c->Nh += (((uint64_t)len) >> 61);
  167. }
  168. c->Nl = l;
  169. if (c->num != 0) {
  170. size_t n = sizeof(c->u) - c->num;
  171. if (len < n) {
  172. memcpy(p + c->num, data, len);
  173. c->num += (unsigned int)len;
  174. return 1;
  175. } else {
  176. memcpy(p + c->num, data, n), c->num = 0;
  177. len -= n;
  178. data += n;
  179. sha512_block_data_order(c->h, (uint64_t *)p, 1);
  180. }
  181. }
  182. if (len >= sizeof(c->u)) {
  183. #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  184. if ((size_t)data % sizeof(c->u.d[0]) != 0) {
  185. while (len >= sizeof(c->u)) {
  186. memcpy(p, data, sizeof(c->u));
  187. sha512_block_data_order(c->h, (uint64_t *)p, 1);
  188. len -= sizeof(c->u);
  189. data += sizeof(c->u);
  190. }
  191. } else
  192. #endif
  193. {
  194. sha512_block_data_order(c->h, (uint64_t *)data, len / sizeof(c->u));
  195. data += len;
  196. len %= sizeof(c->u);
  197. data -= len;
  198. }
  199. }
  200. if (len != 0) {
  201. memcpy(p, data, len);
  202. c->num = (int)len;
  203. }
  204. return 1;
  205. }
  206. int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
  207. uint8_t *p = (uint8_t *)sha->u.p;
  208. size_t n = sha->num;
  209. p[n] = 0x80; /* There always is a room for one */
  210. n++;
  211. if (n > (sizeof(sha->u) - 16)) {
  212. memset(p + n, 0, sizeof(sha->u) - n);
  213. n = 0;
  214. sha512_block_data_order(sha->h, (uint64_t *)p, 1);
  215. }
  216. memset(p + n, 0, sizeof(sha->u) - 16 - n);
  217. p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl);
  218. p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8);
  219. p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16);
  220. p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24);
  221. p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32);
  222. p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40);
  223. p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48);
  224. p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56);
  225. p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh);
  226. p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8);
  227. p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16);
  228. p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24);
  229. p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32);
  230. p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40);
  231. p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
  232. p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);
  233. sha512_block_data_order(sha->h, (uint64_t *)p, 1);
  234. if (md == NULL) {
  235. /* TODO(davidben): This NULL check is absent in other low-level hash 'final'
  236. * functions and is one of the few places one can fail. */
  237. return 0;
  238. }
  239. switch (sha->md_len) {
  240. /* Let compiler decide if it's appropriate to unroll... */
  241. case SHA384_DIGEST_LENGTH:
  242. for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
  243. uint64_t t = sha->h[n];
  244. *(md++) = (uint8_t)(t >> 56);
  245. *(md++) = (uint8_t)(t >> 48);
  246. *(md++) = (uint8_t)(t >> 40);
  247. *(md++) = (uint8_t)(t >> 32);
  248. *(md++) = (uint8_t)(t >> 24);
  249. *(md++) = (uint8_t)(t >> 16);
  250. *(md++) = (uint8_t)(t >> 8);
  251. *(md++) = (uint8_t)(t);
  252. }
  253. break;
  254. case SHA512_DIGEST_LENGTH:
  255. for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
  256. uint64_t t = sha->h[n];
  257. *(md++) = (uint8_t)(t >> 56);
  258. *(md++) = (uint8_t)(t >> 48);
  259. *(md++) = (uint8_t)(t >> 40);
  260. *(md++) = (uint8_t)(t >> 32);
  261. *(md++) = (uint8_t)(t >> 24);
  262. *(md++) = (uint8_t)(t >> 16);
  263. *(md++) = (uint8_t)(t >> 8);
  264. *(md++) = (uint8_t)(t);
  265. }
  266. break;
  267. /* ... as well as make sure md_len is not abused. */
  268. default:
  269. /* TODO(davidben): This bad |md_len| case is one of the few places a
  270. * low-level hash 'final' function can fail. This should never happen. */
  271. return 0;
  272. }
  273. return 1;
  274. }
  275. #ifndef SHA512_ASM
  276. static const uint64_t K512[80] = {
  277. UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
  278. UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
  279. UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
  280. UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
  281. UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
  282. UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
  283. UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
  284. UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
  285. UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
  286. UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
  287. UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
  288. UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
  289. UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
  290. UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
  291. UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
  292. UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
  293. UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
  294. UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
  295. UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
  296. UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
  297. UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
  298. UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
  299. UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
  300. UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
  301. UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
  302. UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
  303. UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
  304. UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
  305. UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
  306. UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
  307. UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
  308. UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
  309. UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
  310. UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
  311. UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
  312. UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
  313. UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
  314. UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
  315. UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
  316. UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
  317. };
  318. #if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
  319. #if defined(__x86_64) || defined(__x86_64__)
  320. #define ROTR(a, n) \
  321. ({ \
  322. uint64_t ret; \
  323. __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
  324. ret; \
  325. })
  326. #define PULL64(x) \
  327. ({ \
  328. uint64_t ret = *((const uint64_t *)(&(x))); \
  329. __asm__("bswapq %0" : "=r"(ret) : "0"(ret)); \
  330. ret; \
  331. })
  332. #elif(defined(__i386) || defined(__i386__))
  333. #define PULL64(x) \
  334. ({ \
  335. const unsigned int *p = (const unsigned int *)(&(x)); \
  336. unsigned int hi = p[0], lo = p[1]; \
  337. __asm__("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
  338. ((uint64_t)hi) << 32 | lo; \
  339. })
  340. #elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
  341. #define ROTR(a, n) \
  342. ({ \
  343. uint64_t ret; \
  344. __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \
  345. ret; \
  346. })
  347. #elif defined(__aarch64__)
  348. #define ROTR(a, n) \
  349. ({ \
  350. uint64_t ret; \
  351. __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \
  352. ret; \
  353. })
  354. #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
  355. __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  356. #define PULL64(x) \
  357. ({ \
  358. uint64_t ret; \
  359. __asm__("rev %0, %1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
  360. ret; \
  361. })
  362. #endif
  363. #endif
  364. #elif defined(_MSC_VER)
  365. #if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  366. #pragma intrinsic(_rotr64)
  367. #define ROTR(a, n) _rotr64((a), n)
  368. #endif
  369. #if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
  370. static uint64_t __fastcall __pull64be(const void *x) {
  371. _asm mov edx, [ecx + 0]
  372. _asm mov eax, [ecx + 4]
  373. _asm bswap edx
  374. _asm bswap eax
  375. }
  376. #define PULL64(x) __pull64be(&(x))
  377. #if _MSC_VER <= 1200
  378. #pragma inline_depth(0)
  379. #endif
  380. #endif
  381. #endif
  382. #ifndef PULL64
  383. #define B(x, j) \
  384. (((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8))
  385. #define PULL64(x) \
  386. (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
  387. B(x, 7))
  388. #endif
  389. #ifndef ROTR
  390. #define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
  391. #endif
  392. #define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
  393. #define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
  394. #define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
  395. #define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
  396. #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
  397. #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  398. #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  399. /*
  400. * This code should give better results on 32-bit CPU with less than
  401. * ~24 registers, both size and performance wise...
  402. */
  403. static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
  404. size_t num) {
  405. uint64_t A, E, T;
  406. uint64_t X[9 + 80], *F;
  407. int i;
  408. while (num--) {
  409. F = X + 80;
  410. A = state[0];
  411. F[1] = state[1];
  412. F[2] = state[2];
  413. F[3] = state[3];
  414. E = state[4];
  415. F[5] = state[5];
  416. F[6] = state[6];
  417. F[7] = state[7];
  418. for (i = 0; i < 16; i++, F--) {
  419. T = PULL64(W[i]);
  420. F[0] = A;
  421. F[4] = E;
  422. F[8] = T;
  423. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  424. E = F[3] + T;
  425. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  426. }
  427. for (; i < 80; i++, F--) {
  428. T = sigma0(F[8 + 16 - 1]);
  429. T += sigma1(F[8 + 16 - 14]);
  430. T += F[8 + 16] + F[8 + 16 - 9];
  431. F[0] = A;
  432. F[4] = E;
  433. F[8] = T;
  434. T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
  435. E = F[3] + T;
  436. A = T + Sigma0(A) + Maj(A, F[1], F[2]);
  437. }
  438. state[0] += A;
  439. state[1] += F[1];
  440. state[2] += F[2];
  441. state[3] += F[3];
  442. state[4] += E;
  443. state[5] += F[5];
  444. state[6] += F[6];
  445. state[7] += F[7];
  446. W += 16;
  447. }
  448. }
  449. #else
  450. #define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
  451. do { \
  452. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
  453. h = Sigma0(a) + Maj(a, b, c); \
  454. d += T1; \
  455. h += T1; \
  456. } while (0)
  457. #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
  458. do { \
  459. s0 = X[(j + 1) & 0x0f]; \
  460. s0 = sigma0(s0); \
  461. s1 = X[(j + 14) & 0x0f]; \
  462. s1 = sigma1(s1); \
  463. T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
  464. ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
  465. } while (0)
  466. static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
  467. size_t num) {
  468. uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
  469. uint64_t X[16];
  470. int i;
  471. while (num--) {
  472. a = state[0];
  473. b = state[1];
  474. c = state[2];
  475. d = state[3];
  476. e = state[4];
  477. f = state[5];
  478. g = state[6];
  479. h = state[7];
  480. T1 = X[0] = PULL64(W[0]);
  481. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  482. T1 = X[1] = PULL64(W[1]);
  483. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  484. T1 = X[2] = PULL64(W[2]);
  485. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  486. T1 = X[3] = PULL64(W[3]);
  487. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  488. T1 = X[4] = PULL64(W[4]);
  489. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  490. T1 = X[5] = PULL64(W[5]);
  491. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  492. T1 = X[6] = PULL64(W[6]);
  493. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  494. T1 = X[7] = PULL64(W[7]);
  495. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  496. T1 = X[8] = PULL64(W[8]);
  497. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  498. T1 = X[9] = PULL64(W[9]);
  499. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  500. T1 = X[10] = PULL64(W[10]);
  501. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  502. T1 = X[11] = PULL64(W[11]);
  503. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  504. T1 = X[12] = PULL64(W[12]);
  505. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  506. T1 = X[13] = PULL64(W[13]);
  507. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  508. T1 = X[14] = PULL64(W[14]);
  509. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  510. T1 = X[15] = PULL64(W[15]);
  511. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  512. for (i = 16; i < 80; i += 16) {
  513. ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
  514. ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
  515. ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
  516. ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
  517. ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
  518. ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
  519. ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
  520. ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
  521. ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
  522. ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
  523. ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
  524. ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
  525. ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
  526. ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
  527. ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
  528. ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
  529. }
  530. state[0] += a;
  531. state[1] += b;
  532. state[2] += c;
  533. state[3] += d;
  534. state[4] += e;
  535. state[5] += f;
  536. state[6] += g;
  537. state[7] += h;
  538. W += 16;
  539. }
  540. }
  541. #endif
  542. #endif /* SHA512_ASM */