boringssl/crypto/bn/bn_test.cc
David Benjamin b9c579db6d Add crypto/bytestring-based BIGNUM DER functions.
RSA and ECDSA will both require being able to convert ASN.1 INTEGERs to
and from DER. Don't bother handling negative BIGNUMs for now. It doesn't
seem necessary and saves bothering with two's-complement vs
sign-and-magnitude.

BUG=499653

Change-Id: I1e80052067ed528809493af73b04f82539d564ff
Reviewed-on: https://boringssl-review.googlesource.com/5268
Reviewed-by: Adam Langley <agl@google.com>
2015-07-07 00:47:39 +00:00

1719 lines
47 KiB
C++

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the Eric Young open source
* license provided above.
*
* The binary polynomial arithmetic software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
/* For BIGNUM format macros. */
#if !defined(__STDC_FORMAT_MACROS)
#define __STDC_FORMAT_MACROS
#endif
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../crypto/test/scoped_types.h"
// This program tests the BIGNUM implementation. It takes an optional -bc
// argument to write a transcript compatible with the UNIX bc utility.
//
// TODO(davidben): Rather than generate random inputs and depend on bc to check
// the results, most of these tests should use known answers.
static const int num0 = 100; // number of tests
static const int num1 = 50; // additional tests for some functions
static const int num2 = 5; // number of tests for slow functions
static bool test_add(FILE *fp);
static bool test_sub(FILE *fp);
static bool test_lshift1(FILE *fp);
static bool test_lshift(FILE *fp, BN_CTX *ctx, ScopedBIGNUM a);
static bool test_rshift1(FILE *fp);
static bool test_rshift(FILE *fp, BN_CTX *ctx);
static bool test_sqr(FILE *fp, BN_CTX *ctx);
static bool test_mul(FILE *fp);
static bool test_div(FILE *fp, BN_CTX *ctx);
static int rand_neg();
static bool test_div_word(FILE *fp);
static bool test_mont(FILE *fp, BN_CTX *ctx);
static bool test_mod(FILE *fp, BN_CTX *ctx);
static bool test_mod_mul(FILE *fp, BN_CTX *ctx);
static bool test_mod_exp(FILE *fp, BN_CTX *ctx);
static bool test_mod_exp_mont_consttime(FILE *fp, BN_CTX *ctx);
static bool test_exp(FILE *fp, BN_CTX *ctx);
static bool test_mod_sqrt(FILE *fp, BN_CTX *ctx);
static bool test_exp_mod_zero(void);
static bool test_small_prime(FILE *fp, BN_CTX *ctx);
static bool test_mod_exp_mont5(FILE *fp, BN_CTX *ctx);
static bool test_sqrt(FILE *fp, BN_CTX *ctx);
static bool test_bn2bin_padded(BN_CTX *ctx);
static bool test_dec2bn(BN_CTX *ctx);
static bool test_hex2bn(BN_CTX *ctx);
static bool test_asc2bn(BN_CTX *ctx);
static bool test_rand();
static bool test_asn1();
static const uint8_t kSample[] =
"\xC6\x4F\x43\x04\x2A\xEA\xCA\x6E\x58\x36\x80\x5B\xE8\xC9"
"\x9B\x04\x5D\x48\x36\xC2\xFD\x16\xC9\x64\xF0";
// A wrapper around puts that takes its arguments in the same order as our *_fp
// functions.
static void puts_fp(FILE *out, const char *m) {
if (out != nullptr) {
fputs(m, out);
}
}
static void flush_fp(FILE *out) {
if (out != nullptr) {
fflush(out);
}
}
static void message(FILE *out, const char *m) {
puts_fp(out, "print \"test ");
puts_fp(out, m);
puts_fp(out, "\\n\"\n");
}
int main(int argc, char *argv[]) {
CRYPTO_library_init();
ScopedFILE bc_file;
argc--;
argv++;
while (argc >= 1) {
if (strcmp(*argv, "-bc") == 0) {
if (argc < 2) {
fprintf(stderr, "Missing parameter to -bc\n");
return 1;
}
bc_file.reset(fopen(argv[1], "w+"));
if (!bc_file) {
fprintf(stderr, "Failed to open %s: %s\n", argv[1], strerror(errno));
}
argc--;
argv++;
} else {
fprintf(stderr, "Unknown option: %s\n", argv[0]);
return 1;
}
argc--;
argv++;
}
ScopedBN_CTX ctx(BN_CTX_new());
if (!ctx) {
return 1;
}
puts_fp(bc_file.get(), "/* This script, when run through the UNIX bc utility, "
"should produce a sequence of zeros. */\n");
puts_fp(bc_file.get(), "/* tr a-f A-F < bn_test.out | sed s/BAsE/base/ | bc "
"| grep -v 0 */\n");
puts_fp(bc_file.get(), "obase=16\nibase=16\n");
message(bc_file.get(), "BN_add");
if (!test_add(bc_file.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_sub");
if (!test_sub(bc_file.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_lshift1");
if (!test_lshift1(bc_file.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_lshift (fixed)");
ScopedBIGNUM sample(BN_bin2bn(kSample, sizeof(kSample) - 1, NULL));
if (!sample) {
return 1;
}
if (!test_lshift(bc_file.get(), ctx.get(), bssl::move(sample))) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_lshift");
if (!test_lshift(bc_file.get(), ctx.get(), nullptr)) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_rshift1");
if (!test_rshift1(bc_file.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_rshift");
if (!test_rshift(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_sqr");
if (!test_sqr(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mul");
if (!test_mul(bc_file.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_div");
if (!test_div(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_div_word");
if (!test_div_word(bc_file.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mod");
if (!test_mod(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mod_mul");
if (!test_mod_mul(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mont");
if (!test_mont(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mod_exp");
if (!test_mod_exp(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mod_exp_mont_consttime");
if (!test_mod_exp_mont_consttime(bc_file.get(), ctx.get()) ||
!test_mod_exp_mont5(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_exp");
if (!test_exp(bc_file.get(), ctx.get()) ||
!test_exp_mod_zero()) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_mod_sqrt");
if (!test_mod_sqrt(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "Small prime generation");
if (!test_small_prime(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
message(bc_file.get(), "BN_sqrt");
if (!test_sqrt(bc_file.get(), ctx.get())) {
return 1;
}
flush_fp(bc_file.get());
if (!test_bn2bin_padded(ctx.get()) ||
!test_dec2bn(ctx.get()) ||
!test_hex2bn(ctx.get()) ||
!test_asc2bn(ctx.get()) ||
!test_rand() ||
!test_asn1()) {
return 1;
}
printf("PASS\n");
return 0;
}
static bool test_add(FILE *fp) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
if (!a || !b || !c || !BN_rand(a.get(), 512, 0, 0)) {
return false;
}
for (int i = 0; i < num0; i++) {
if (!BN_rand(b.get(), 450 + i, 0, 0)) {
return false;
}
a->neg = rand_neg();
b->neg = rand_neg();
if (!BN_add(c.get(), a.get(), b.get())) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " + ");
BN_print_fp(fp, b.get());
puts_fp(fp, " - ");
BN_print_fp(fp, c.get());
puts_fp(fp, "\n");
}
a->neg = !a->neg;
b->neg = !b->neg;
if (!BN_add(c.get(), c.get(), b.get()) ||
!BN_add(c.get(), c.get(), a.get())) {
return false;
}
if (!BN_is_zero(c.get())) {
fprintf(stderr, "Add test failed!\n");
return false;
}
}
return true;
}
static bool test_sub(FILE *fp) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
if (!a || !b || !c) {
return false;
}
for (int i = 0; i < num0 + num1; i++) {
if (i < num1) {
if (!BN_rand(a.get(), 512, 0, 0) ||
!BN_copy(b.get(), a.get()) ||
!BN_set_bit(a.get(), i) ||
!BN_add_word(b.get(), i)) {
return false;
}
} else {
if (!BN_rand(b.get(), 400 + i - num1, 0, 0)) {
return false;
}
a->neg = rand_neg();
b->neg = rand_neg();
}
if (!BN_sub(c.get(), a.get(), b.get())) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " - ");
BN_print_fp(fp, b.get());
puts_fp(fp, " - ");
BN_print_fp(fp, c.get());
puts_fp(fp, "\n");
}
if (!BN_add(c.get(), c.get(), b.get()) ||
!BN_sub(c.get(), c.get(), a.get())) {
return false;
}
if (!BN_is_zero(c.get())) {
fprintf(stderr, "Subtract test failed!\n");
return false;
}
}
return true;
}
static bool test_div(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !c || !d || !e) {
return false;
}
for (int i = 0; i < num0 + num1; i++) {
if (i < num1) {
if (!BN_rand(a.get(), 400, 0, 0) ||
!BN_copy(b.get(), a.get()) ||
!BN_lshift(a.get(), a.get(), i) ||
!BN_add_word(a.get(), i)) {
return false;
}
} else if (!BN_rand(b.get(), 50 + 3 * (i - num1), 0, 0)) {
return false;
}
a->neg = rand_neg();
b->neg = rand_neg();
if (!BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " / ");
BN_print_fp(fp, b.get());
puts_fp(fp, " - ");
BN_print_fp(fp, d.get());
puts_fp(fp, "\n");
BN_print_fp(fp, a.get());
puts_fp(fp, " % ");
BN_print_fp(fp, b.get());
puts_fp(fp, " - ");
BN_print_fp(fp, c.get());
puts_fp(fp, "\n");
}
if (!BN_mul(e.get(), d.get(), b.get(), ctx) ||
!BN_add(d.get(), e.get(), c.get()) ||
!BN_sub(d.get(), d.get(), a.get())) {
return false;
}
if (!BN_is_zero(d.get())) {
fprintf(stderr, "Division test failed!\n");
return false;
}
}
// Test that BN_div never gives negative zero in the quotient.
if (!BN_set_word(a.get(), 1) ||
!BN_set_word(b.get(), 2)) {
return false;
}
BN_set_negative(a.get(), 1);
if (!BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) {
return false;
}
if (!BN_is_zero(d.get()) || BN_is_negative(d.get())) {
fprintf(stderr, "Division test failed!\n");
return false;
}
// Test that BN_div never gives negative zero in the remainder.
if (!BN_set_word(b.get(), 1)) {
return false;
}
if (!BN_div(d.get(), c.get(), a.get(), b.get(), ctx)) {
return false;
}
if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) {
fprintf(stderr, "Division test failed!\n");
return false;
}
return true;
}
static bool test_lshift1(FILE *fp) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
if (!a || !b || !c || !BN_rand(a.get(), 200, 0, 0)) {
return false;
}
a->neg = rand_neg();
for (int i = 0; i < num0; i++) {
if (!BN_lshift1(b.get(), a.get())) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " * 2");
puts_fp(fp, " - ");
BN_print_fp(fp, b.get());
puts_fp(fp, "\n");
}
if (!BN_add(c.get(), a.get(), a.get()) ||
!BN_sub(a.get(), b.get(), c.get())) {
return false;
}
if (!BN_is_zero(a.get())) {
fprintf(stderr, "Left shift one test failed!\n");
return false;
}
if (!BN_copy(a.get(), b.get())) {
return false;
}
}
return true;
}
static bool test_rshift(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !c || !d || !e || !BN_one(c.get()) ||
!BN_rand(a.get(), 200, 0, 0)) {
return false;
}
a->neg = rand_neg();
for (int i = 0; i < num0; i++) {
if (!BN_rshift(b.get(), a.get(), i + 1) ||
!BN_add(c.get(), c.get(), c.get())) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " / ");
BN_print_fp(fp, c.get());
puts_fp(fp, " - ");
BN_print_fp(fp, b.get());
puts_fp(fp, "\n");
}
if (!BN_div(d.get(), e.get(), a.get(), c.get(), ctx) ||
!BN_sub(d.get(), d.get(), b.get())) {
return false;
}
if (!BN_is_zero(d.get())) {
fprintf(stderr, "Right shift test failed!\n");
return false;
}
}
return true;
}
static bool test_rshift1(FILE *fp) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
if (!a || !b || !c || !BN_rand(a.get(), 200, 0, 0)) {
return false;
}
a->neg = rand_neg();
for (int i = 0; i < num0; i++) {
if (!BN_rshift1(b.get(), a.get())) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " / 2");
puts_fp(fp, " - ");
BN_print_fp(fp, b.get());
puts_fp(fp, "\n");
}
if (!BN_sub(c.get(), a.get(), b.get()) ||
!BN_sub(c.get(), c.get(), b.get())) {
return false;
}
if (!BN_is_zero(c.get()) && !BN_abs_is_word(c.get(), 1)) {
fprintf(stderr, "Right shift one test failed!\n");
return false;
}
if (!BN_copy(a.get(), b.get())) {
return false;
}
}
return true;
}
static bool test_lshift(FILE *fp, BN_CTX *ctx, ScopedBIGNUM a) {
if (!a) {
a.reset(BN_new());
if (!a || !BN_rand(a.get(), 200, 0, 0)) {
return false;
}
a->neg = rand_neg();
}
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
if (!b || !c || !d || !BN_one(c.get())) {
return false;
}
for (int i = 0; i < num0; i++) {
if (!BN_lshift(b.get(), a.get(), i + 1) ||
!BN_add(c.get(), c.get(), c.get())) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " * ");
BN_print_fp(fp, c.get());
puts_fp(fp, " - ");
BN_print_fp(fp, b.get());
puts_fp(fp, "\n");
}
if (!BN_mul(d.get(), a.get(), c.get(), ctx) ||
!BN_sub(d.get(), d.get(), b.get())) {
return false;
}
if (!BN_is_zero(d.get())) {
fprintf(stderr, "Left shift test failed!\n");
fprintf(stderr, "a=");
BN_print_fp(stderr, a.get());
fprintf(stderr, "\nb=");
BN_print_fp(stderr, b.get());
fprintf(stderr, "\nc=");
BN_print_fp(stderr, c.get());
fprintf(stderr, "\nd=");
BN_print_fp(stderr, d.get());
fprintf(stderr, "\n");
return false;
}
}
return true;
}
static bool test_mul(FILE *fp) {
ScopedBN_CTX ctx(BN_CTX_new());
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!ctx || !a || !b || !c || !d || !e) {
return false;
}
for (int i = 0; i < num0 + num1; i++) {
if (i <= num1) {
if (!BN_rand(a.get(), 100, 0, 0) ||
!BN_rand(b.get(), 100, 0, 0)) {
return false;
}
} else if (!BN_rand(b.get(), i - num1, 0, 0)) {
return false;
}
a->neg = rand_neg();
b->neg = rand_neg();
if (!BN_mul(c.get(), a.get(), b.get(), ctx.get())) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " * ");
BN_print_fp(fp, b.get());
puts_fp(fp, " - ");
BN_print_fp(fp, c.get());
puts_fp(fp, "\n");
}
if (!BN_div(d.get(), e.get(), c.get(), a.get(), ctx.get()) ||
!BN_sub(d.get(), d.get(), b.get())) {
return false;
}
if (!BN_is_zero(d.get()) || !BN_is_zero(e.get())) {
fprintf(stderr, "Multiplication test failed!\n");
return false;
}
}
// Test that BN_mul never gives negative zero.
if (!BN_set_word(a.get(), 1)) {
return false;
}
BN_set_negative(a.get(), 1);
BN_zero(b.get());
if (!BN_mul(c.get(), a.get(), b.get(), ctx.get())) {
return false;
}
if (!BN_is_zero(c.get()) || BN_is_negative(c.get())) {
fprintf(stderr, "Multiplication test failed!\n");
return false;
}
return true;
}
static bool test_sqr(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !c || !d || !e) {
return false;
}
for (int i = 0; i < num0; i++) {
if (!BN_rand(a.get(), 40 + i * 10, 0, 0)) {
return false;
}
a->neg = rand_neg();
if (!BN_sqr(c.get(), a.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " * ");
BN_print_fp(fp, a.get());
puts_fp(fp, " - ");
BN_print_fp(fp, c.get());
puts_fp(fp, "\n");
}
if (!BN_div(d.get(), e.get(), c.get(), a.get(), ctx) ||
!BN_sub(d.get(), d.get(), a.get())) {
return false;
}
if (!BN_is_zero(d.get()) || !BN_is_zero(e.get())) {
fprintf(stderr, "Square test failed!\n");
return false;
}
}
// Regression test for a BN_sqr overflow bug.
BIGNUM *a_raw = a.get();
if (!BN_hex2bn(
&a_raw,
"80000000000000008000000000000001FFFFFFFFFFFFFFFE0000000000000000") ||
!BN_sqr(c.get(), a.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " * ");
BN_print_fp(fp, a.get());
puts_fp(fp, " - ");
BN_print_fp(fp, c.get());
puts_fp(fp, "\n");
}
if (!BN_mul(d.get(), a.get(), a.get(), ctx)) {
return false;
}
if (BN_cmp(c.get(), d.get())) {
fprintf(stderr,
"Square test failed: BN_sqr and BN_mul produce "
"different results!\n");
return false;
}
// Regression test for a BN_sqr overflow bug.
a_raw = a.get();
if (!BN_hex2bn(
&a_raw,
"80000000000000000000000080000001FFFFFFFE000000000000000000000000") ||
!BN_sqr(c.get(), a.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " * ");
BN_print_fp(fp, a.get());
puts_fp(fp, " - ");
BN_print_fp(fp, c.get());
puts_fp(fp, "\n");
}
if (!BN_mul(d.get(), a.get(), a.get(), ctx)) {
return false;
}
if (BN_cmp(c.get(), d.get())) {
fprintf(stderr,
"Square test failed: BN_sqr and BN_mul produce "
"different results!\n");
return false;
}
return true;
}
static int rand_neg() {
static unsigned int neg = 0;
static const int sign[8] = {0, 0, 0, 1, 1, 0, 1, 1};
return sign[(neg++) % 8];
}
static void print_word(FILE *fp, BN_ULONG w) {
fprintf(fp, BN_HEX_FMT1, w);
}
static bool test_div_word(FILE *fp) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
if (!a || !b) {
return false;
}
for (int i = 0; i < num0; i++) {
BN_ULONG s;
do {
if (!BN_rand(a.get(), 512, -1, 0) ||
!BN_rand(b.get(), BN_BITS2, -1, 0)) {
return false;
}
s = b->d[0];
} while (!s);
if (!BN_copy(b.get(), a.get())) {
return false;
}
BN_ULONG r = BN_div_word(b.get(), s);
if (r == (BN_ULONG)-1) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " / ");
print_word(fp, s);
puts_fp(fp, " - ");
BN_print_fp(fp, b.get());
puts_fp(fp, "\n");
BN_print_fp(fp, a.get());
puts_fp(fp, " % ");
print_word(fp, s);
puts_fp(fp, " - ");
print_word(fp, r);
puts_fp(fp, "\n");
}
if (!BN_mul_word(b.get(), s) ||
!BN_add_word(b.get(), r) ||
!BN_sub(b.get(), a.get(), b.get())) {
return false;
}
if (!BN_is_zero(b.get())) {
fprintf(stderr, "Division (word) test failed!\n");
return false;
}
}
return true;
}
static bool test_mont(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM A(BN_new());
ScopedBIGNUM B(BN_new());
ScopedBIGNUM n(BN_new());
ScopedBN_MONT_CTX mont(BN_MONT_CTX_new());
if (!a || !b || !c || !d || !A || !B || !n || !mont ||
!BN_rand(a.get(), 100, 0, 0) ||
!BN_rand(b.get(), 100, 0, 0)) {
return false;
}
for (int i = 0; i < num2; i++) {
int bits = (200 * (i + 1)) / num2;
if (bits == 0) {
continue;
}
if (!BN_rand(n.get(), bits, 0, 1) ||
!BN_MONT_CTX_set(mont.get(), n.get(), ctx) ||
!BN_nnmod(a.get(), a.get(), n.get(), ctx) ||
!BN_nnmod(b.get(), b.get(), n.get(), ctx) ||
!BN_to_montgomery(A.get(), a.get(), mont.get(), ctx) ||
!BN_to_montgomery(B.get(), b.get(), mont.get(), ctx) ||
!BN_mod_mul_montgomery(c.get(), A.get(), B.get(), mont.get(), ctx) ||
!BN_from_montgomery(A.get(), c.get(), mont.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " * ");
BN_print_fp(fp, b.get());
puts_fp(fp, " % ");
BN_print_fp(fp, &mont->N);
puts_fp(fp, " - ");
BN_print_fp(fp, A.get());
puts_fp(fp, "\n");
}
if (!BN_mod_mul(d.get(), a.get(), b.get(), n.get(), ctx) ||
!BN_sub(d.get(), d.get(), A.get())) {
return false;
}
if (!BN_is_zero(d.get())) {
fprintf(stderr, "Montgomery multiplication test failed!\n");
return false;
}
}
return true;
}
static bool test_mod(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !c || !d || !e ||
!BN_rand(a.get(), 1024, 0, 0)) {
return false;
}
for (int i = 0; i < num0; i++) {
if (!BN_rand(b.get(), 450 + i * 10, 0, 0)) {
return false;
}
a->neg = rand_neg();
b->neg = rand_neg();
if (!BN_mod(c.get(), a.get(), b.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " % ");
BN_print_fp(fp, b.get());
puts_fp(fp, " - ");
BN_print_fp(fp, c.get());
puts_fp(fp, "\n");
}
if (!BN_div(d.get(), e.get(), a.get(), b.get(), ctx) ||
!BN_sub(e.get(), e.get(), c.get())) {
return false;
}
if (!BN_is_zero(e.get())) {
fprintf(stderr, "Modulo test failed!\n");
return false;
}
}
return true;
}
static bool test_mod_mul(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !c || !d || !e) {
return false;
}
for (int j = 0; j < 3; j++) {
if (!BN_rand(c.get(), 1024, 0, 0)) {
return false;
}
for (int i = 0; i < num0; i++) {
if (!BN_rand(a.get(), 475 + i * 10, 0, 0) ||
!BN_rand(b.get(), 425 + i * 11, 0, 0)) {
return false;
}
a->neg = rand_neg();
b->neg = rand_neg();
if (!BN_mod_mul(e.get(), a.get(), b.get(), c.get(), ctx)) {
ERR_print_errors_fp(stderr);
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " * ");
BN_print_fp(fp, b.get());
puts_fp(fp, " % ");
BN_print_fp(fp, c.get());
if (a->neg != b->neg && !BN_is_zero(e.get())) {
// If (a*b) % c is negative, c must be added
// in order to obtain the normalized remainder
// (new with OpenSSL 0.9.7, previous versions of
// BN_mod_mul could generate negative results)
puts_fp(fp, " + ");
BN_print_fp(fp, c.get());
}
puts_fp(fp, " - ");
BN_print_fp(fp, e.get());
puts_fp(fp, "\n");
}
if (!BN_mul(d.get(), a.get(), b.get(), ctx) ||
!BN_sub(d.get(), d.get(), e.get()) ||
!BN_div(a.get(), b.get(), d.get(), c.get(), ctx)) {
return false;
}
if (!BN_is_zero(b.get())) {
fprintf(stderr, "Modulo multiply test failed!\n");
ERR_print_errors_fp(stderr);
return false;
}
}
}
return true;
}
static bool test_mod_exp(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !c || !d || !e ||
!BN_rand(c.get(), 30, 0, 1)) { // must be odd for montgomery
return false;
}
for (int i = 0; i < num2; i++) {
if (!BN_rand(a.get(), 20 + i * 5, 0, 0) ||
!BN_rand(b.get(), 2 + i, 0, 0) ||
!BN_mod_exp(d.get(), a.get(), b.get(), c.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " ^ ");
BN_print_fp(fp, b.get());
puts_fp(fp, " % ");
BN_print_fp(fp, c.get());
puts_fp(fp, " - ");
BN_print_fp(fp, d.get());
puts_fp(fp, "\n");
}
if (!BN_exp(e.get(), a.get(), b.get(), ctx) ||
!BN_sub(e.get(), e.get(), d.get()) ||
!BN_div(a.get(), b.get(), e.get(), c.get(), ctx)) {
return false;
}
if (!BN_is_zero(b.get())) {
fprintf(stderr, "Modulo exponentiation test failed!\n");
return false;
}
}
return true;
}
static bool test_mod_exp_mont_consttime(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM c(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !c || !d || !e ||
!BN_rand(c.get(), 30, 0, 1)) { // must be odd for montgomery
return false;
}
for (int i = 0; i < num2; i++) {
if (!BN_rand(a.get(), 20 + i * 5, 0, 0) ||
!BN_rand(b.get(), 2 + i, 0, 0) ||
!BN_mod_exp_mont_consttime(d.get(), a.get(), b.get(), c.get(), ctx,
NULL)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " ^ ");
BN_print_fp(fp, b.get());
puts_fp(fp, " % ");
BN_print_fp(fp, c.get());
puts_fp(fp, " - ");
BN_print_fp(fp, d.get());
puts_fp(fp, "\n");
}
if (!BN_exp(e.get(), a.get(), b.get(), ctx) ||
!BN_sub(e.get(), e.get(), d.get()) ||
!BN_div(a.get(), b.get(), e.get(), c.get(), ctx)) {
return false;
}
if (!BN_is_zero(b.get())) {
fprintf(stderr, "Modulo exponentiation test failed!\n");
return false;
}
}
return true;
}
// Test constant-time modular exponentiation with 1024-bit inputs,
// which on x86_64 cause a different code branch to be taken.
static bool test_mod_exp_mont5(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM p(BN_new());
ScopedBIGNUM m(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !p || !m || !d || !e ||
!BN_rand(m.get(), 1024, 0, 1) || // must be odd for montgomery
!BN_rand(a.get(), 1024, 0, 0)) {
return false;
}
// Zero exponent.
BN_zero(p.get());
if (!BN_mod_exp_mont_consttime(d.get(), a.get(), p.get(), m.get(), ctx,
NULL)) {
return false;
}
if (!BN_is_one(d.get())) {
fprintf(stderr, "Modular exponentiation test failed!\n");
return false;
}
if (!BN_rand(p.get(), 1024, 0, 0)) {
return false;
}
// Zero input.
BN_zero(a.get());
if (!BN_mod_exp_mont_consttime(d.get(), a.get(), p.get(), m.get(), ctx,
NULL)) {
return false;
}
if (!BN_is_zero(d.get())) {
fprintf(stderr, "Modular exponentiation test failed!\n");
return false;
}
// Craft an input whose Montgomery representation is 1, i.e., shorter than the
// modulus m, in order to test the const time precomputation
// scattering/gathering.
ScopedBN_MONT_CTX mont(BN_MONT_CTX_new());
if (!mont || !BN_one(a.get()) ||
!BN_MONT_CTX_set(mont.get(), m.get(), ctx) ||
!BN_from_montgomery(e.get(), a.get(), mont.get(), ctx) ||
!BN_mod_exp_mont_consttime(d.get(), e.get(), p.get(), m.get(), ctx,
NULL) ||
!BN_mod_exp(a.get(), e.get(), p.get(), m.get(), ctx)) {
return false;
}
if (BN_cmp(a.get(), d.get()) != 0) {
fprintf(stderr, "Modular exponentiation test failed!\n");
return false;
}
// Finally, some regular test vectors.
if (!BN_rand(e.get(), 1024, 0, 0) ||
!BN_mod_exp_mont_consttime(d.get(), e.get(), p.get(), m.get(), ctx,
NULL) ||
!BN_mod_exp(a.get(), e.get(), p.get(), m.get(), ctx)) {
return false;
}
if (BN_cmp(a.get(), d.get()) != 0) {
fprintf(stderr, "Modular exponentiation test failed!\n");
return false;
}
return true;
}
static bool test_exp(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM b(BN_new());
ScopedBIGNUM d(BN_new());
ScopedBIGNUM e(BN_new());
if (!a || !b || !d || !e) {
return false;
}
for (int i = 0; i < num2; i++) {
if (!BN_rand(a.get(), 20 + i * 5, 0, 0) ||
!BN_rand(b.get(), 2 + i, 0, 0) ||
!BN_exp(d.get(), a.get(), b.get(), ctx)) {
return false;
}
if (fp != NULL) {
BN_print_fp(fp, a.get());
puts_fp(fp, " ^ ");
BN_print_fp(fp, b.get());
puts_fp(fp, " - ");
BN_print_fp(fp, d.get());
puts_fp(fp, "\n");
}
if (!BN_one(e.get())) {
return false;
}
for (; !BN_is_zero(b.get()); BN_sub(b.get(), b.get(), BN_value_one())) {
if (!BN_mul(e.get(), e.get(), a.get(), ctx)) {
return false;
}
}
if (!BN_sub(e.get(), e.get(), d.get())) {
return false;
}
if (!BN_is_zero(e.get())) {
fprintf(stderr, "Exponentiation test failed!\n");
return false;
}
}
return true;
}
// test_exp_mod_zero tests that 1**0 mod 1 == 0.
static bool test_exp_mod_zero(void) {
ScopedBIGNUM zero(BN_new());
if (!zero) {
return false;
}
BN_zero(zero.get());
ScopedBN_CTX ctx(BN_CTX_new());
ScopedBIGNUM r(BN_new());
if (!ctx || !r ||
!BN_mod_exp(r.get(), BN_value_one(), zero.get(), BN_value_one(), ctx.get())) {
return false;
}
if (!BN_is_zero(r.get())) {
fprintf(stderr, "1**0 mod 1 = ");
BN_print_fp(stderr, r.get());
fprintf(stderr, ", should be 0\n");
return false;
}
return true;
}
static bool test_mod_sqrt(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM a(BN_new());
ScopedBIGNUM p(BN_new());
ScopedBIGNUM r(BN_new());
if (!a || !p || !r) {
return false;
}
for (int i = 0; i < 16; i++) {
if (i < 8) {
const unsigned kPrimes[8] = {2, 3, 5, 7, 11, 13, 17, 19};
if (!BN_set_word(p.get(), kPrimes[i])) {
return false;
}
} else {
if (!BN_set_word(a.get(), 32) ||
!BN_set_word(r.get(), 2 * i + 1) ||
!BN_generate_prime_ex(p.get(), 256, 0, a.get(), r.get(), nullptr)) {
return false;
}
}
p->neg = rand_neg();
for (int j = 0; j < num2; j++) {
// construct 'a' such that it is a square modulo p, but in general not a
// proper square and not reduced modulo p
if (!BN_rand(r.get(), 256, 0, 3) ||
!BN_nnmod(r.get(), r.get(), p.get(), ctx) ||
!BN_mod_sqr(r.get(), r.get(), p.get(), ctx) ||
!BN_rand(a.get(), 256, 0, 3) ||
!BN_nnmod(a.get(), a.get(), p.get(), ctx) ||
!BN_mod_sqr(a.get(), a.get(), p.get(), ctx) ||
!BN_mul(a.get(), a.get(), r.get(), ctx)) {
return false;
}
if (rand_neg() && !BN_sub(a.get(), a.get(), p.get())) {
return false;
}
if (!BN_mod_sqrt(r.get(), a.get(), p.get(), ctx) ||
!BN_mod_sqr(r.get(), r.get(), p.get(), ctx) ||
!BN_nnmod(a.get(), a.get(), p.get(), ctx)) {
return false;
}
if (BN_cmp(a.get(), r.get()) != 0) {
fprintf(stderr, "BN_mod_sqrt failed: a = ");
BN_print_fp(stderr, a.get());
fprintf(stderr, ", r = ");
BN_print_fp(stderr, r.get());
fprintf(stderr, ", p = ");
BN_print_fp(stderr, p.get());
fprintf(stderr, "\n");
return false;
}
}
}
return true;
}
static bool test_small_prime(FILE *fp, BN_CTX *ctx) {
static const unsigned kBits = 10;
ScopedBIGNUM r(BN_new());
if (!r || !BN_generate_prime_ex(r.get(), static_cast<int>(kBits), 0, NULL,
NULL, NULL)) {
return false;
}
if (BN_num_bits(r.get()) != kBits) {
fprintf(fp, "Expected %u bit prime, got %u bit number\n", kBits,
BN_num_bits(r.get()));
return false;
}
return true;
}
static bool test_sqrt(FILE *fp, BN_CTX *ctx) {
ScopedBIGNUM n(BN_new());
ScopedBIGNUM nn(BN_new());
ScopedBIGNUM sqrt(BN_new());
if (!n || !nn || !sqrt) {
return false;
}
// Test some random squares.
for (int i = 0; i < 100; i++) {
if (!BN_rand(n.get(), 1024 /* bit length */,
-1 /* no modification of top bits */,
0 /* don't modify bottom bit */) ||
!BN_mul(nn.get(), n.get(), n.get(), ctx) ||
!BN_sqrt(sqrt.get(), nn.get(), ctx)) {
ERR_print_errors_fp(stderr);
return false;
}
if (BN_cmp(n.get(), sqrt.get()) != 0) {
fprintf(stderr, "Bad result from BN_sqrt.\n");
return false;
}
}
// Test some non-squares.
for (int i = 0; i < 100; i++) {
if (!BN_rand(n.get(), 1024 /* bit length */,
-1 /* no modification of top bits */,
0 /* don't modify bottom bit */) ||
!BN_mul(nn.get(), n.get(), n.get(), ctx) ||
!BN_add(nn.get(), nn.get(), BN_value_one())) {
ERR_print_errors_fp(stderr);
return false;
}
if (BN_sqrt(sqrt.get(), nn.get(), ctx)) {
char *nn_str = BN_bn2dec(nn.get());
fprintf(stderr, "BIO_sqrt didn't fail on a non-square: %s\n", nn_str);
OPENSSL_free(nn_str);
}
}
return true;
}
static bool test_bn2bin_padded(BN_CTX *ctx) {
uint8_t zeros[256], out[256], reference[128];
memset(zeros, 0, sizeof(zeros));
// Test edge case at 0.
ScopedBIGNUM n(BN_new());
if (!n || !BN_bn2bin_padded(NULL, 0, n.get())) {
fprintf(stderr,
"BN_bn2bin_padded failed to encode 0 in an empty buffer.\n");
return false;
}
memset(out, -1, sizeof(out));
if (!BN_bn2bin_padded(out, sizeof(out), n.get())) {
fprintf(stderr,
"BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n");
return false;
}
if (memcmp(zeros, out, sizeof(out))) {
fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n");
return false;
}
// Test a random numbers at various byte lengths.
for (size_t bytes = 128 - 7; bytes <= 128; bytes++) {
if (!BN_rand(n.get(), bytes * 8, 0 /* make sure top bit is 1 */,
0 /* don't modify bottom bit */)) {
ERR_print_errors_fp(stderr);
return false;
}
if (BN_num_bytes(n.get()) != bytes ||
BN_bn2bin(n.get(), reference) != bytes) {
fprintf(stderr, "Bad result from BN_rand; bytes.\n");
return false;
}
// Empty buffer should fail.
if (BN_bn2bin_padded(NULL, 0, n.get())) {
fprintf(stderr,
"BN_bn2bin_padded incorrectly succeeded on empty buffer.\n");
return false;
}
// One byte short should fail.
if (BN_bn2bin_padded(out, bytes - 1, n.get())) {
fprintf(stderr, "BN_bn2bin_padded incorrectly succeeded on short.\n");
return false;
}
// Exactly right size should encode.
if (!BN_bn2bin_padded(out, bytes, n.get()) ||
memcmp(out, reference, bytes) != 0) {
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
return false;
}
// Pad up one byte extra.
if (!BN_bn2bin_padded(out, bytes + 1, n.get()) ||
memcmp(out + 1, reference, bytes) || memcmp(out, zeros, 1)) {
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
return false;
}
// Pad up to 256.
if (!BN_bn2bin_padded(out, sizeof(out), n.get()) ||
memcmp(out + sizeof(out) - bytes, reference, bytes) ||
memcmp(out, zeros, sizeof(out) - bytes)) {
fprintf(stderr, "BN_bn2bin_padded gave a bad result.\n");
return false;
}
}
return true;
}
static int DecimalToBIGNUM(ScopedBIGNUM *out, const char *in) {
BIGNUM *raw = NULL;
int ret = BN_dec2bn(&raw, in);
out->reset(raw);
return ret;
}
static bool test_dec2bn(BN_CTX *ctx) {
ScopedBIGNUM bn;
int ret = DecimalToBIGNUM(&bn, "0");
if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "256");
if (ret != 3 || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "-42");
if (ret != 3 || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "-0");
if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
ret = DecimalToBIGNUM(&bn, "42trailing garbage is ignored");
if (ret != 2 || !BN_abs_is_word(bn.get(), 42) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_dec2bn gave a bad result.\n");
return false;
}
return true;
}
static int HexToBIGNUM(ScopedBIGNUM *out, const char *in) {
BIGNUM *raw = NULL;
int ret = BN_hex2bn(&raw, in);
out->reset(raw);
return ret;
}
static bool test_hex2bn(BN_CTX *ctx) {
ScopedBIGNUM bn;
int ret = HexToBIGNUM(&bn, "0");
if (ret != 1 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "256");
if (ret != 3 || !BN_is_word(bn.get(), 0x256) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "-42");
if (ret != 3 || !BN_abs_is_word(bn.get(), 0x42) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "-0");
if (ret != 2 || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "abctrailing garbage is ignored");
if (ret != 3 || !BN_is_word(bn.get(), 0xabc) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
return true;
}
static ScopedBIGNUM ASCIIToBIGNUM(const char *in) {
BIGNUM *raw = NULL;
if (!BN_asc2bn(&raw, in)) {
return nullptr;
}
return ScopedBIGNUM(raw);
}
static bool test_asc2bn(BN_CTX *ctx) {
ScopedBIGNUM bn = ASCIIToBIGNUM("0");
if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("256");
if (!bn || !BN_is_word(bn.get(), 256) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("-42");
if (!bn || !BN_abs_is_word(bn.get(), 42) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("0x1234");
if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("0X1234");
if (!bn || !BN_is_word(bn.get(), 0x1234) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("-0xabcd");
if (!bn || !BN_abs_is_word(bn.get(), 0xabcd) || !BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("-0");
if (!bn || !BN_is_zero(bn.get()) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
bn = ASCIIToBIGNUM("123trailing garbage is ignored");
if (!bn || !BN_is_word(bn.get(), 123) || BN_is_negative(bn.get())) {
fprintf(stderr, "BN_asc2bn gave a bad result.\n");
return false;
}
return true;
}
static bool test_rand() {
ScopedBIGNUM bn(BN_new());
if (!bn) {
return false;
}
// Test BN_rand accounts for degenerate cases with |top| and |bottom|
// parameters.
if (!BN_rand(bn.get(), 0, 0 /* top */, 0 /* bottom */) ||
!BN_is_zero(bn.get())) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 0, 1 /* top */, 1 /* bottom */) ||
!BN_is_zero(bn.get())) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 1, 0 /* top */, 0 /* bottom */) ||
!BN_is_word(bn.get(), 1)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 1, 1 /* top */, 0 /* bottom */) ||
!BN_is_word(bn.get(), 1)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 1, -1 /* top */, 1 /* bottom */) ||
!BN_is_word(bn.get(), 1)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 2, 1 /* top */, 0 /* bottom */) ||
!BN_is_word(bn.get(), 3)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
return true;
}
struct ASN1Test {
const char *value_ascii;
const char *der;
size_t der_len;
};
static const ASN1Test kASN1Tests[] = {
{"0", "\x02\x01\x00", 3},
{"1", "\x02\x01\x01", 3},
{"127", "\x02\x01\x7f", 3},
{"128", "\x02\x02\x00\x80", 4},
{"0xdeadbeef", "\x02\x05\x00\xde\xad\xbe\xef", 7},
{"0x0102030405060708",
"\x02\x08\x01\x02\x03\x04\x05\x06\x07\x08", 10},
{"0xffffffffffffffff",
"\x02\x09\x00\xff\xff\xff\xff\xff\xff\xff\xff", 11},
};
struct ASN1InvalidTest {
const char *der;
size_t der_len;
};
static const ASN1InvalidTest kASN1InvalidTests[] = {
// Bad tag.
{"\x03\x01\x00", 3},
// Empty contents.
{"\x02\x00", 2},
// Negative number.
{"\x02\x01\x80", 3},
// Leading zeros.
{"\x02\x02\x00\x01", 4},
};
static bool test_asn1() {
for (const ASN1Test &test : kASN1Tests) {
ScopedBIGNUM bn = ASCIIToBIGNUM(test.value_ascii);
if (!bn) {
return false;
}
// Test that the input is correctly parsed.
ScopedBIGNUM bn2(BN_new());
if (!bn2) {
return false;
}
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (!BN_cbs2unsigned(&cbs, bn2.get()) || CBS_len(&cbs) != 0) {
fprintf(stderr, "Parsing ASN.1 INTEGER failed.\n");
return false;
}
if (BN_cmp(bn.get(), bn2.get()) != 0) {
fprintf(stderr, "Bad parse.\n");
return false;
}
// Test the value serializes correctly.
CBB cbb;
uint8_t *der;
size_t der_len;
CBB_zero(&cbb);
if (!CBB_init(&cbb, 0) ||
!BN_bn2cbb(&cbb, bn.get()) ||
!CBB_finish(&cbb, &der, &der_len)) {
CBB_cleanup(&cbb);
return false;
}
ScopedOpenSSLBytes delete_der(der);
if (der_len != test.der_len ||
memcmp(der, reinterpret_cast<const uint8_t*>(test.der), der_len) != 0) {
fprintf(stderr, "Bad serialization.\n");
return false;
}
}
for (const ASN1InvalidTest &test : kASN1InvalidTests) {
ScopedBIGNUM bn(BN_new());
if (!bn) {
return false;
}
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(test.der), test.der_len);
if (BN_cbs2unsigned(&cbs, bn.get())) {
fprintf(stderr, "Parsed invalid input.\n");
return false;
}
ERR_clear_error();
}
// Serializing negative numbers is not supported.
ScopedBIGNUM bn = ASCIIToBIGNUM("-1");
if (!bn) {
return false;
}
CBB cbb;
CBB_zero(&cbb);
if (!CBB_init(&cbb, 0) ||
BN_bn2cbb(&cbb, bn.get())) {
fprintf(stderr, "Serialized negative number.\n");
CBB_cleanup(&cbb);
return false;
}
CBB_cleanup(&cbb);
return true;
}