You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1147 line
37 KiB

  1. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  2. * All rights reserved.
  3. *
  4. * This package is an SSL implementation written
  5. * by Eric Young (eay@cryptsoft.com).
  6. * The implementation was written so as to conform with Netscapes SSL.
  7. *
  8. * This library is free for commercial and non-commercial use as long as
  9. * the following conditions are aheared to. The following conditions
  10. * apply to all code found in this distribution, be it the RC4, RSA,
  11. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  12. * included with this distribution is covered by the same copyright terms
  13. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  14. *
  15. * Copyright remains Eric Young's, and as such any Copyright notices in
  16. * the code are not to be removed.
  17. * If this package is used in a product, Eric Young should be given attribution
  18. * as the author of the parts of the library used.
  19. * This can be in the form of a textual message at program startup or
  20. * in documentation (online or textual) provided with the package.
  21. *
  22. * Redistribution and use in source and binary forms, with or without
  23. * modification, are permitted provided that the following conditions
  24. * are met:
  25. * 1. Redistributions of source code must retain the copyright
  26. * notice, this list of conditions and the following disclaimer.
  27. * 2. Redistributions in binary form must reproduce the above copyright
  28. * notice, this list of conditions and the following disclaimer in the
  29. * documentation and/or other materials provided with the distribution.
  30. * 3. All advertising materials mentioning features or use of this software
  31. * must display the following acknowledgement:
  32. * "This product includes cryptographic software written by
  33. * Eric Young (eay@cryptsoft.com)"
  34. * The word 'cryptographic' can be left out if the rouines from the library
  35. * being used are not cryptographic related :-).
  36. * 4. If you include any Windows specific code (or a derivative thereof) from
  37. * the apps directory (application code) you must include an acknowledgement:
  38. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  39. *
  40. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  41. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  42. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  43. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  44. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  45. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  46. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  47. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  48. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  49. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  50. * SUCH DAMAGE.
  51. *
  52. * The licence and distribution terms for any publically available version or
  53. * derivative of this code cannot be changed. i.e. this code cannot simply be
  54. * copied and put under another distribution licence
  55. * [including the GNU Public Licence.]
  56. */
  57. /* ====================================================================
  58. * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
  59. *
  60. * Redistribution and use in source and binary forms, with or without
  61. * modification, are permitted provided that the following conditions
  62. * are met:
  63. *
  64. * 1. Redistributions of source code must retain the above copyright
  65. * notice, this list of conditions and the following disclaimer.
  66. *
  67. * 2. Redistributions in binary form must reproduce the above copyright
  68. * notice, this list of conditions and the following disclaimer in
  69. * the documentation and/or other materials provided with the
  70. * distribution.
  71. *
  72. * 3. All advertising materials mentioning features or use of this
  73. * software must display the following acknowledgment:
  74. * "This product includes software developed by the OpenSSL Project
  75. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  76. *
  77. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  78. * endorse or promote products derived from this software without
  79. * prior written permission. For written permission, please contact
  80. * openssl-core@openssl.org.
  81. *
  82. * 5. Products derived from this software may not be called "OpenSSL"
  83. * nor may "OpenSSL" appear in their names without prior written
  84. * permission of the OpenSSL Project.
  85. *
  86. * 6. Redistributions of any form whatsoever must retain the following
  87. * acknowledgment:
  88. * "This product includes software developed by the OpenSSL Project
  89. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  90. *
  91. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  92. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  93. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  94. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  95. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  96. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  97. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  98. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  99. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  100. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  101. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  102. * OF THE POSSIBILITY OF SUCH DAMAGE.
  103. * ====================================================================
  104. *
  105. * This product includes cryptographic software written by Eric Young
  106. * (eay@cryptsoft.com). This product includes software written by Tim
  107. * Hudson (tjh@cryptsoft.com). */
  108. #include <assert.h>
  109. #include <limits.h>
  110. #include <stdio.h>
  111. #include <string.h>
  112. #include <openssl/buf.h>
  113. #include <openssl/err.h>
  114. #include <openssl/evp.h>
  115. #include <openssl/mem.h>
  116. #include <openssl/rand.h>
  117. #include "internal.h"
  118. static int do_ssl3_write(SSL *s, int type, const uint8_t *buf, unsigned int len,
  119. char fragment);
  120. static int ssl3_get_record(SSL *s);
  121. int ssl3_read_n(SSL *s, int n, int extend) {
  122. /* If |extend| is 0, obtain new n-byte packet;
  123. * if |extend| is 1, increase packet by another n bytes.
  124. *
  125. * The packet will be in the sub-array of |s->s3->rbuf.buf| specified by
  126. * |s->packet| and |s->packet_length|. (If DTLS and |extend| is 0, additional
  127. * bytes will be read into |rbuf|, up to the size of the buffer.)
  128. *
  129. * TODO(davidben): |dtls1_get_record| and |ssl3_get_record| have very
  130. * different needs. Separate the two record layers. In DTLS, |BIO_read| is
  131. * called at most once, and only when |extend| is 0. In TLS, the buffer never
  132. * contains more than one record. */
  133. int i, len, left;
  134. uintptr_t align = 0;
  135. uint8_t *pkt;
  136. SSL3_BUFFER *rb;
  137. if (n <= 0) {
  138. return n;
  139. }
  140. rb = &s->s3->rbuf;
  141. if (rb->buf == NULL && !ssl3_setup_read_buffer(s)) {
  142. return -1;
  143. }
  144. left = rb->left;
  145. align = (uintptr_t)rb->buf + SSL3_RT_HEADER_LENGTH;
  146. align = (0 - align) & (SSL3_ALIGN_PAYLOAD - 1);
  147. if (!extend) {
  148. /* start with empty packet ... */
  149. if (left == 0) {
  150. rb->offset = align;
  151. } else if (align != 0 && left >= SSL3_RT_HEADER_LENGTH) {
  152. /* check if next packet length is large enough to justify payload
  153. * alignment... */
  154. pkt = rb->buf + rb->offset;
  155. if (pkt[0] == SSL3_RT_APPLICATION_DATA && (pkt[3] << 8 | pkt[4]) >= 128) {
  156. /* Note that even if packet is corrupted and its length field is
  157. * insane, we can only be led to wrong decision about whether memmove
  158. * will occur or not. Header values has no effect on memmove arguments
  159. * and therefore no buffer overrun can be triggered. */
  160. memmove(rb->buf + align, pkt, left);
  161. rb->offset = align;
  162. }
  163. }
  164. s->packet = rb->buf + rb->offset;
  165. s->packet_length = 0;
  166. /* ... now we can act as if 'extend' was set */
  167. }
  168. /* In DTLS, if there is leftover data from the previous packet or |extend| is
  169. * true, clamp to the previous read. DTLS records may not span packet
  170. * boundaries. */
  171. if (SSL_IS_DTLS(s) && n > left && (left > 0 || extend)) {
  172. n = left;
  173. }
  174. /* if there is enough in the buffer from a previous read, take some */
  175. if (left >= n) {
  176. s->packet_length += n;
  177. rb->left = left - n;
  178. rb->offset += n;
  179. return n;
  180. }
  181. /* else we need to read more data */
  182. len = s->packet_length;
  183. pkt = rb->buf + align;
  184. /* Move any available bytes to front of buffer: |len| bytes already pointed
  185. * to by |packet|, |left| extra ones at the end. */
  186. if (s->packet != pkt) {
  187. /* len > 0 */
  188. memmove(pkt, s->packet, len + left);
  189. s->packet = pkt;
  190. rb->offset = len + align;
  191. }
  192. if (n > (int)(rb->len - rb->offset)) {
  193. OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
  194. return -1;
  195. }
  196. int max = n;
  197. if (SSL_IS_DTLS(s) && !extend) {
  198. max = rb->len - rb->offset;
  199. }
  200. while (left < n) {
  201. /* Now we have len+left bytes at the front of s->s3->rbuf.buf and need to
  202. * read in more until we have len+n (up to len+max if possible). */
  203. ERR_clear_system_error();
  204. if (s->rbio != NULL) {
  205. s->rwstate = SSL_READING;
  206. i = BIO_read(s->rbio, pkt + len + left, max - left);
  207. } else {
  208. OPENSSL_PUT_ERROR(SSL, SSL_R_READ_BIO_NOT_SET);
  209. i = -1;
  210. }
  211. if (i <= 0) {
  212. rb->left = left;
  213. if (len + left == 0) {
  214. ssl3_release_read_buffer(s);
  215. }
  216. return i;
  217. }
  218. left += i;
  219. /* reads should *never* span multiple packets for DTLS because the
  220. * underlying transport protocol is message oriented as opposed to byte
  221. * oriented as in the TLS case. */
  222. if (SSL_IS_DTLS(s) && n > left) {
  223. n = left; /* makes the while condition false */
  224. }
  225. }
  226. /* done reading, now the book-keeping */
  227. rb->offset += n;
  228. rb->left = left - n;
  229. s->packet_length += n;
  230. s->rwstate = SSL_NOTHING;
  231. return n;
  232. }
  233. /* kMaxEmptyRecords is the number of consecutive, empty records that will be
  234. * processed. Without this limit an attacker could send empty records at a
  235. * faster rate than we can process and cause |ssl3_get_record| to loop
  236. * forever. */
  237. static const uint8_t kMaxEmptyRecords = 32;
  238. /* kMaxWarningAlerts is the number of consecutive warning alerts that will be
  239. * processed. */
  240. static const uint8_t kMaxWarningAlerts = 4;
  241. /* Call this to get a new input record. It will return <= 0 if more data is
  242. * needed, normally due to an error or non-blocking IO. When it finishes, one
  243. * packet has been decoded and can be found in
  244. * ssl->s3->rrec.type - is the type of record
  245. * ssl->s3->rrec.data - data
  246. * ssl->s3->rrec.length - number of bytes */
  247. /* used only by ssl3_read_bytes */
  248. static int ssl3_get_record(SSL *s) {
  249. uint8_t ssl_major, ssl_minor;
  250. int al, n, i, ret = -1;
  251. SSL3_RECORD *rr = &s->s3->rrec;
  252. uint8_t *p;
  253. uint16_t version;
  254. size_t extra;
  255. again:
  256. /* check if we have the header */
  257. if (s->rstate != SSL_ST_READ_BODY ||
  258. s->packet_length < SSL3_RT_HEADER_LENGTH) {
  259. n = ssl3_read_n(s, SSL3_RT_HEADER_LENGTH, 0);
  260. if (n <= 0) {
  261. return n; /* error or non-blocking */
  262. }
  263. s->rstate = SSL_ST_READ_BODY;
  264. /* Some bytes were read, so the read buffer must be existant and
  265. * |s->s3->init_extra| is defined. */
  266. assert(s->s3->rbuf.buf != NULL);
  267. extra = s->s3->init_extra ? SSL3_RT_MAX_EXTRA : 0;
  268. p = s->packet;
  269. if (s->msg_callback) {
  270. s->msg_callback(0, 0, SSL3_RT_HEADER, p, 5, s, s->msg_callback_arg);
  271. }
  272. /* Pull apart the header into the SSL3_RECORD */
  273. rr->type = *(p++);
  274. ssl_major = *(p++);
  275. ssl_minor = *(p++);
  276. version = (((uint16_t)ssl_major) << 8) | ssl_minor;
  277. n2s(p, rr->length);
  278. if (s->s3->have_version && version != s->version) {
  279. OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER);
  280. al = SSL_AD_PROTOCOL_VERSION;
  281. goto f_err;
  282. }
  283. if ((version >> 8) != SSL3_VERSION_MAJOR) {
  284. OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER);
  285. goto err;
  286. }
  287. if (rr->length > SSL3_RT_MAX_ENCRYPTED_LENGTH + extra) {
  288. al = SSL_AD_RECORD_OVERFLOW;
  289. OPENSSL_PUT_ERROR(SSL, SSL_R_ENCRYPTED_LENGTH_TOO_LONG);
  290. goto f_err;
  291. }
  292. /* now s->rstate == SSL_ST_READ_BODY */
  293. } else {
  294. /* |packet_length| is non-zero and |s->rstate| is |SSL_ST_READ_BODY|. The
  295. * read buffer must be existant and |s->s3->init_extra| is defined. */
  296. assert(s->s3->rbuf.buf != NULL);
  297. extra = s->s3->init_extra ? SSL3_RT_MAX_EXTRA : 0;
  298. }
  299. /* s->rstate == SSL_ST_READ_BODY, get and decode the data */
  300. if (rr->length > s->packet_length - SSL3_RT_HEADER_LENGTH) {
  301. /* now s->packet_length == SSL3_RT_HEADER_LENGTH */
  302. i = rr->length;
  303. n = ssl3_read_n(s, i, 1);
  304. if (n <= 0) {
  305. /* Error or non-blocking IO. Now |n| == |rr->length|, and
  306. * |s->packet_length| == |SSL3_RT_HEADER_LENGTH| + |rr->length|. */
  307. return n;
  308. }
  309. }
  310. s->rstate = SSL_ST_READ_HEADER; /* set state for later operations */
  311. /* |rr->data| points to |rr->length| bytes of ciphertext in |s->packet|. */
  312. rr->data = &s->packet[SSL3_RT_HEADER_LENGTH];
  313. /* Decrypt the packet in-place.
  314. *
  315. * TODO(davidben): This assumes |s->version| is the same as the record-layer
  316. * version which isn't always true, but it only differs with the NULL cipher
  317. * which ignores the parameter. */
  318. size_t plaintext_len;
  319. if (!SSL_AEAD_CTX_open(s->aead_read_ctx, rr->data, &plaintext_len, rr->length,
  320. rr->type, s->version, s->s3->read_sequence, rr->data,
  321. rr->length)) {
  322. al = SSL_AD_BAD_RECORD_MAC;
  323. OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC);
  324. goto f_err;
  325. }
  326. if (!ssl3_record_sequence_update(s->s3->read_sequence, 8)) {
  327. goto err;
  328. }
  329. if (plaintext_len > SSL3_RT_MAX_PLAIN_LENGTH + extra) {
  330. al = SSL_AD_RECORD_OVERFLOW;
  331. OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG);
  332. goto f_err;
  333. }
  334. assert(plaintext_len <= (1u << 16));
  335. rr->length = plaintext_len;
  336. rr->off = 0;
  337. /* So at this point the following is true:
  338. * ssl->s3->rrec.type is the type of record;
  339. * ssl->s3->rrec.length is the number of bytes in the record;
  340. * ssl->s3->rrec.off is the offset to first valid byte;
  341. * ssl->s3->rrec.data the first byte of the record body. */
  342. /* we have pulled in a full packet so zero things */
  343. s->packet_length = 0;
  344. /* just read a 0 length packet */
  345. if (rr->length == 0) {
  346. s->s3->empty_record_count++;
  347. if (s->s3->empty_record_count > kMaxEmptyRecords) {
  348. al = SSL_AD_UNEXPECTED_MESSAGE;
  349. OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_EMPTY_FRAGMENTS);
  350. goto f_err;
  351. }
  352. goto again;
  353. }
  354. s->s3->empty_record_count = 0;
  355. return 1;
  356. f_err:
  357. ssl3_send_alert(s, SSL3_AL_FATAL, al);
  358. err:
  359. return ret;
  360. }
  361. int ssl3_write_app_data(SSL *ssl, const void *buf, int len) {
  362. return ssl3_write_bytes(ssl, SSL3_RT_APPLICATION_DATA, buf, len);
  363. }
  364. /* Call this to write data in records of type |type|. It will return <= 0 if
  365. * not all data has been sent or non-blocking IO. */
  366. int ssl3_write_bytes(SSL *s, int type, const void *buf_, int len) {
  367. const uint8_t *buf = buf_;
  368. unsigned int tot, n, nw;
  369. int i;
  370. s->rwstate = SSL_NOTHING;
  371. assert(s->s3->wnum <= INT_MAX);
  372. tot = s->s3->wnum;
  373. s->s3->wnum = 0;
  374. if (!s->in_handshake && SSL_in_init(s) && !SSL_in_false_start(s)) {
  375. i = s->handshake_func(s);
  376. if (i < 0) {
  377. return i;
  378. }
  379. if (i == 0) {
  380. OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE);
  381. return -1;
  382. }
  383. }
  384. /* Ensure that if we end up with a smaller value of data to write out than
  385. * the the original len from a write which didn't complete for non-blocking
  386. * I/O and also somehow ended up avoiding the check for this in
  387. * ssl3_write_pending/SSL_R_BAD_WRITE_RETRY as it must never be possible to
  388. * end up with (len-tot) as a large number that will then promptly send
  389. * beyond the end of the users buffer ... so we trap and report the error in
  390. * a way the user will notice. */
  391. if (len < 0 || (size_t)len < tot) {
  392. OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_LENGTH);
  393. return -1;
  394. }
  395. int record_split_done = 0;
  396. n = (len - tot);
  397. for (;;) {
  398. /* max contains the maximum number of bytes that we can put into a
  399. * record. */
  400. unsigned max = s->max_send_fragment;
  401. /* fragment is true if do_ssl3_write should send the first byte in its own
  402. * record in order to randomise a CBC IV. */
  403. int fragment = 0;
  404. if (!record_split_done && s->s3->need_record_splitting &&
  405. type == SSL3_RT_APPLICATION_DATA) {
  406. /* Only the the first record per write call needs to be split. The
  407. * remaining plaintext was determined before the IV was randomized. */
  408. fragment = 1;
  409. record_split_done = 1;
  410. }
  411. if (n > max) {
  412. nw = max;
  413. } else {
  414. nw = n;
  415. }
  416. i = do_ssl3_write(s, type, &buf[tot], nw, fragment);
  417. if (i <= 0) {
  418. s->s3->wnum = tot;
  419. return i;
  420. }
  421. if (i == (int)n || (type == SSL3_RT_APPLICATION_DATA &&
  422. (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE))) {
  423. return tot + i;
  424. }
  425. n -= i;
  426. tot += i;
  427. }
  428. }
  429. /* ssl3_seal_record seals a new record of type |type| and plaintext |in| and
  430. * writes it to |out|. At most |max_out| bytes will be written. It returns one
  431. * on success and zero on error. On success, it updates the write sequence
  432. * number. */
  433. static int ssl3_seal_record(SSL *s, uint8_t *out, size_t *out_len,
  434. size_t max_out, uint8_t type, const uint8_t *in,
  435. size_t in_len) {
  436. if (max_out < SSL3_RT_HEADER_LENGTH) {
  437. OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL);
  438. return 0;
  439. }
  440. out[0] = type;
  441. /* Some servers hang if initial ClientHello is larger than 256 bytes and
  442. * record version number > TLS 1.0. */
  443. uint16_t wire_version = s->version;
  444. if (!s->s3->have_version && s->version > SSL3_VERSION) {
  445. wire_version = TLS1_VERSION;
  446. }
  447. out[1] = wire_version >> 8;
  448. out[2] = wire_version & 0xff;
  449. size_t ciphertext_len;
  450. if (!SSL_AEAD_CTX_seal(s->aead_write_ctx, out + SSL3_RT_HEADER_LENGTH,
  451. &ciphertext_len, max_out - SSL3_RT_HEADER_LENGTH,
  452. type, wire_version, s->s3->write_sequence, in,
  453. in_len) ||
  454. !ssl3_record_sequence_update(s->s3->write_sequence, 8)) {
  455. return 0;
  456. }
  457. if (ciphertext_len >= 1 << 16) {
  458. OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
  459. return 0;
  460. }
  461. out[3] = ciphertext_len >> 8;
  462. out[4] = ciphertext_len & 0xff;
  463. *out_len = SSL3_RT_HEADER_LENGTH + ciphertext_len;
  464. if (s->msg_callback) {
  465. s->msg_callback(1 /* write */, 0, SSL3_RT_HEADER, out, SSL3_RT_HEADER_LENGTH,
  466. s, s->msg_callback_arg);
  467. }
  468. return 1;
  469. }
  470. /* do_ssl3_write writes an SSL record of the given type. If |fragment| is 1
  471. * then it splits the record into a one byte record and a record with the rest
  472. * of the data in order to randomise a CBC IV. */
  473. static int do_ssl3_write(SSL *s, int type, const uint8_t *buf, unsigned int len,
  474. char fragment) {
  475. SSL3_BUFFER *wb = &s->s3->wbuf;
  476. /* first check if there is a SSL3_BUFFER still being written out. This will
  477. * happen with non blocking IO */
  478. if (wb->left != 0) {
  479. return ssl3_write_pending(s, type, buf, len);
  480. }
  481. /* If we have an alert to send, lets send it */
  482. if (s->s3->alert_dispatch) {
  483. int ret = s->method->ssl_dispatch_alert(s);
  484. if (ret <= 0) {
  485. return ret;
  486. }
  487. /* if it went, fall through and send more stuff */
  488. }
  489. if (wb->buf == NULL && !ssl3_setup_write_buffer(s)) {
  490. return -1;
  491. }
  492. if (len == 0) {
  493. return 0;
  494. }
  495. if (len == 1) {
  496. /* No sense in fragmenting a one-byte record. */
  497. fragment = 0;
  498. }
  499. /* Align the output so the ciphertext is aligned to |SSL3_ALIGN_PAYLOAD|. */
  500. uintptr_t align;
  501. if (fragment) {
  502. /* Only CBC-mode ciphers require fragmenting. CBC-mode ciphertext is a
  503. * multiple of the block size which we may assume is aligned. Thus we only
  504. * need to account for a second copy of the record header. */
  505. align = (uintptr_t)wb->buf + 2 * SSL3_RT_HEADER_LENGTH;
  506. } else {
  507. align = (uintptr_t)wb->buf + SSL3_RT_HEADER_LENGTH;
  508. }
  509. align = (0 - align) & (SSL3_ALIGN_PAYLOAD - 1);
  510. uint8_t *out = wb->buf + align;
  511. wb->offset = align;
  512. size_t max_out = wb->len - wb->offset;
  513. const uint8_t *orig_buf = buf;
  514. unsigned int orig_len = len;
  515. size_t fragment_len = 0;
  516. if (fragment) {
  517. /* Write the first byte in its own record as a countermeasure against
  518. * known-IV weaknesses in CBC ciphersuites. (See
  519. * http://www.openssl.org/~bodo/tls-cbc.txt.) */
  520. if (!ssl3_seal_record(s, out, &fragment_len, max_out, type, buf, 1)) {
  521. return -1;
  522. }
  523. out += fragment_len;
  524. max_out -= fragment_len;
  525. buf++;
  526. len--;
  527. }
  528. assert((((uintptr_t)out + SSL3_RT_HEADER_LENGTH) & (SSL3_ALIGN_PAYLOAD - 1))
  529. == 0);
  530. size_t ciphertext_len;
  531. if (!ssl3_seal_record(s, out, &ciphertext_len, max_out, type, buf, len)) {
  532. return -1;
  533. }
  534. ciphertext_len += fragment_len;
  535. /* now let's set up wb */
  536. wb->left = ciphertext_len;
  537. /* memorize arguments so that ssl3_write_pending can detect bad write retries
  538. * later */
  539. s->s3->wpend_tot = orig_len;
  540. s->s3->wpend_buf = orig_buf;
  541. s->s3->wpend_type = type;
  542. s->s3->wpend_ret = orig_len;
  543. /* we now just need to write the buffer */
  544. return ssl3_write_pending(s, type, orig_buf, orig_len);
  545. }
  546. /* if s->s3->wbuf.left != 0, we need to call this */
  547. int ssl3_write_pending(SSL *s, int type, const uint8_t *buf, unsigned int len) {
  548. int i;
  549. SSL3_BUFFER *wb = &(s->s3->wbuf);
  550. if (s->s3->wpend_tot > (int)len ||
  551. (s->s3->wpend_buf != buf &&
  552. !(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER)) ||
  553. s->s3->wpend_type != type) {
  554. OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_WRITE_RETRY);
  555. return -1;
  556. }
  557. for (;;) {
  558. ERR_clear_system_error();
  559. if (s->wbio != NULL) {
  560. s->rwstate = SSL_WRITING;
  561. i = BIO_write(s->wbio, (char *)&(wb->buf[wb->offset]),
  562. (unsigned int)wb->left);
  563. } else {
  564. OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET);
  565. i = -1;
  566. }
  567. if (i == wb->left) {
  568. wb->left = 0;
  569. wb->offset += i;
  570. ssl3_release_write_buffer(s);
  571. s->rwstate = SSL_NOTHING;
  572. return s->s3->wpend_ret;
  573. } else if (i <= 0) {
  574. if (SSL_IS_DTLS(s)) {
  575. /* For DTLS, just drop it. That's kind of the whole point in
  576. * using a datagram service */
  577. wb->left = 0;
  578. }
  579. return i;
  580. }
  581. /* TODO(davidben): This codepath is used in DTLS, but the write
  582. * payload may not split across packets. */
  583. wb->offset += i;
  584. wb->left -= i;
  585. }
  586. }
  587. /* ssl3_expect_change_cipher_spec informs the record layer that a
  588. * ChangeCipherSpec record is required at this point. If a Handshake record is
  589. * received before ChangeCipherSpec, the connection will fail. Moreover, if
  590. * there are unprocessed handshake bytes, the handshake will also fail and the
  591. * function returns zero. Otherwise, the function returns one. */
  592. int ssl3_expect_change_cipher_spec(SSL *s) {
  593. if (s->s3->handshake_fragment_len > 0 || s->s3->tmp.reuse_message) {
  594. OPENSSL_PUT_ERROR(SSL, SSL_R_UNPROCESSED_HANDSHAKE_DATA);
  595. return 0;
  596. }
  597. s->s3->flags |= SSL3_FLAGS_EXPECT_CCS;
  598. return 1;
  599. }
  600. int ssl3_read_app_data(SSL *ssl, uint8_t *buf, int len, int peek) {
  601. return ssl3_read_bytes(ssl, SSL3_RT_APPLICATION_DATA, buf, len, peek);
  602. }
  603. void ssl3_read_close_notify(SSL *ssl) {
  604. ssl3_read_bytes(ssl, 0, NULL, 0, 0);
  605. }
  606. /* Return up to 'len' payload bytes received in 'type' records.
  607. * 'type' is one of the following:
  608. *
  609. * - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us)
  610. * - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us)
  611. * - 0 (during a shutdown, no data has to be returned)
  612. *
  613. * If we don't have stored data to work from, read a SSL/TLS record first
  614. * (possibly multiple records if we still don't have anything to return).
  615. *
  616. * This function must handle any surprises the peer may have for us, such as
  617. * Alert records (e.g. close_notify), ChangeCipherSpec records (not really
  618. * a surprise, but handled as if it were), or renegotiation requests.
  619. * Also if record payloads contain fragments too small to process, we store
  620. * them until there is enough for the respective protocol (the record protocol
  621. * may use arbitrary fragmentation and even interleaving):
  622. * Change cipher spec protocol
  623. * just 1 byte needed, no need for keeping anything stored
  624. * Alert protocol
  625. * 2 bytes needed (AlertLevel, AlertDescription)
  626. * Handshake protocol
  627. * 4 bytes needed (HandshakeType, uint24 length) -- we just have
  628. * to detect unexpected Client Hello and Hello Request messages
  629. * here, anything else is handled by higher layers
  630. * Application data protocol
  631. * none of our business
  632. */
  633. int ssl3_read_bytes(SSL *s, int type, uint8_t *buf, int len, int peek) {
  634. int al, i, ret;
  635. unsigned int n;
  636. SSL3_RECORD *rr;
  637. void (*cb)(const SSL *ssl, int type2, int val) = NULL;
  638. if ((type && type != SSL3_RT_APPLICATION_DATA && type != SSL3_RT_HANDSHAKE) ||
  639. (peek && type != SSL3_RT_APPLICATION_DATA)) {
  640. OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
  641. return -1;
  642. }
  643. if (type == SSL3_RT_HANDSHAKE && s->s3->handshake_fragment_len > 0) {
  644. /* (partially) satisfy request from storage */
  645. uint8_t *src = s->s3->handshake_fragment;
  646. uint8_t *dst = buf;
  647. unsigned int k;
  648. /* peek == 0 */
  649. n = 0;
  650. while (len > 0 && s->s3->handshake_fragment_len > 0) {
  651. *dst++ = *src++;
  652. len--;
  653. s->s3->handshake_fragment_len--;
  654. n++;
  655. }
  656. /* move any remaining fragment bytes: */
  657. for (k = 0; k < s->s3->handshake_fragment_len; k++) {
  658. s->s3->handshake_fragment[k] = *src++;
  659. }
  660. return n;
  661. }
  662. /* Now s->s3->handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE. */
  663. /* This may require multiple iterations. False Start will cause
  664. * |s->handshake_func| to signal success one step early, but the handshake
  665. * must be completely finished before other modes are accepted.
  666. *
  667. * TODO(davidben): Move this check up to a higher level. */
  668. while (!s->in_handshake && SSL_in_init(s)) {
  669. assert(type == SSL3_RT_APPLICATION_DATA);
  670. i = s->handshake_func(s);
  671. if (i < 0) {
  672. return i;
  673. }
  674. if (i == 0) {
  675. OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE);
  676. return -1;
  677. }
  678. }
  679. start:
  680. s->rwstate = SSL_NOTHING;
  681. /* s->s3->rrec.type - is the type of record
  682. * s->s3->rrec.data - data
  683. * s->s3->rrec.off - offset into 'data' for next read
  684. * s->s3->rrec.length - number of bytes. */
  685. rr = &s->s3->rrec;
  686. /* get new packet if necessary */
  687. if (rr->length == 0 || s->rstate == SSL_ST_READ_BODY) {
  688. ret = ssl3_get_record(s);
  689. if (ret <= 0) {
  690. return ret;
  691. }
  692. }
  693. /* we now have a packet which can be read and processed */
  694. /* |change_cipher_spec is set when we receive a ChangeCipherSpec and reset by
  695. * ssl3_get_finished. */
  696. if (s->s3->change_cipher_spec && rr->type != SSL3_RT_HANDSHAKE &&
  697. rr->type != SSL3_RT_ALERT) {
  698. al = SSL_AD_UNEXPECTED_MESSAGE;
  699. OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_BETWEEN_CCS_AND_FINISHED);
  700. goto f_err;
  701. }
  702. /* If we are expecting a ChangeCipherSpec, it is illegal to receive a
  703. * Handshake record. */
  704. if (rr->type == SSL3_RT_HANDSHAKE && (s->s3->flags & SSL3_FLAGS_EXPECT_CCS)) {
  705. al = SSL_AD_UNEXPECTED_MESSAGE;
  706. OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_RECORD_BEFORE_CCS);
  707. goto f_err;
  708. }
  709. /* If the other end has shut down, throw anything we read away (even in
  710. * 'peek' mode) */
  711. if (s->shutdown & SSL_RECEIVED_SHUTDOWN) {
  712. rr->length = 0;
  713. s->rwstate = SSL_NOTHING;
  714. return 0;
  715. }
  716. if (type == rr->type) {
  717. s->s3->warning_alert_count = 0;
  718. /* SSL3_RT_APPLICATION_DATA or SSL3_RT_HANDSHAKE */
  719. /* make sure that we are not getting application data when we are doing a
  720. * handshake for the first time */
  721. if (SSL_in_init(s) && type == SSL3_RT_APPLICATION_DATA &&
  722. s->aead_read_ctx == NULL) {
  723. /* TODO(davidben): Is this check redundant with the handshake_func
  724. * check? */
  725. al = SSL_AD_UNEXPECTED_MESSAGE;
  726. OPENSSL_PUT_ERROR(SSL, SSL_R_APP_DATA_IN_HANDSHAKE);
  727. goto f_err;
  728. }
  729. if (len <= 0) {
  730. return len;
  731. }
  732. if ((unsigned int)len > rr->length) {
  733. n = rr->length;
  734. } else {
  735. n = (unsigned int)len;
  736. }
  737. memcpy(buf, &(rr->data[rr->off]), n);
  738. if (!peek) {
  739. rr->length -= n;
  740. rr->off += n;
  741. if (rr->length == 0) {
  742. s->rstate = SSL_ST_READ_HEADER;
  743. rr->off = 0;
  744. if (s->s3->rbuf.left == 0) {
  745. ssl3_release_read_buffer(s);
  746. }
  747. }
  748. }
  749. return n;
  750. }
  751. /* Process unexpected records. */
  752. if (rr->type == SSL3_RT_HANDSHAKE) {
  753. /* If peer renegotiations are disabled, all out-of-order handshake records
  754. * are fatal. Renegotiations as a server are never supported. */
  755. if (!s->accept_peer_renegotiations || s->server) {
  756. al = SSL_AD_NO_RENEGOTIATION;
  757. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION);
  758. goto f_err;
  759. }
  760. /* HelloRequests may be fragmented across multiple records. */
  761. const size_t size = sizeof(s->s3->handshake_fragment);
  762. const size_t avail = size - s->s3->handshake_fragment_len;
  763. const size_t todo = (rr->length < avail) ? rr->length : avail;
  764. memcpy(s->s3->handshake_fragment + s->s3->handshake_fragment_len,
  765. &rr->data[rr->off], todo);
  766. rr->off += todo;
  767. rr->length -= todo;
  768. s->s3->handshake_fragment_len += todo;
  769. if (s->s3->handshake_fragment_len < size) {
  770. goto start; /* fragment was too small */
  771. }
  772. /* Parse out and consume a HelloRequest. */
  773. if (s->s3->handshake_fragment[0] != SSL3_MT_HELLO_REQUEST ||
  774. s->s3->handshake_fragment[1] != 0 ||
  775. s->s3->handshake_fragment[2] != 0 ||
  776. s->s3->handshake_fragment[3] != 0) {
  777. al = SSL_AD_DECODE_ERROR;
  778. OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HELLO_REQUEST);
  779. goto f_err;
  780. }
  781. s->s3->handshake_fragment_len = 0;
  782. if (s->msg_callback) {
  783. s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE,
  784. s->s3->handshake_fragment, 4, s, s->msg_callback_arg);
  785. }
  786. if (!SSL_is_init_finished(s) || !s->s3->initial_handshake_complete) {
  787. /* This cannot happen. If a handshake is in progress, |type| must be
  788. * |SSL3_RT_HANDSHAKE|. */
  789. assert(0);
  790. OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
  791. goto err;
  792. }
  793. /* Renegotiation is only supported at quiescent points in the application
  794. * protocol, namely in HTTPS, just before reading the HTTP response. Require
  795. * the record-layer be idle and avoid complexities of sending a handshake
  796. * record while an application_data record is being written. */
  797. if (s->s3->wbuf.left != 0 || s->s3->rbuf.left != 0) {
  798. al = SSL_AD_NO_RENEGOTIATION;
  799. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION);
  800. goto f_err;
  801. }
  802. /* Begin a new handshake. */
  803. s->state = SSL_ST_CONNECT;
  804. i = s->handshake_func(s);
  805. if (i < 0) {
  806. return i;
  807. }
  808. if (i == 0) {
  809. OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE);
  810. return -1;
  811. }
  812. /* The handshake completed synchronously. Continue reading records. */
  813. goto start;
  814. }
  815. /* If an alert record, process one alert out of the record. Note that we allow
  816. * a single record to contain multiple alerts. */
  817. if (rr->type == SSL3_RT_ALERT) {
  818. /* Alerts may not be fragmented. */
  819. if (rr->length < 2) {
  820. al = SSL_AD_DECODE_ERROR;
  821. OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ALERT);
  822. goto f_err;
  823. }
  824. if (s->msg_callback) {
  825. s->msg_callback(0, s->version, SSL3_RT_ALERT, &rr->data[rr->off], 2, s,
  826. s->msg_callback_arg);
  827. }
  828. const uint8_t alert_level = rr->data[rr->off++];
  829. const uint8_t alert_descr = rr->data[rr->off++];
  830. rr->length -= 2;
  831. if (s->info_callback != NULL) {
  832. cb = s->info_callback;
  833. } else if (s->ctx->info_callback != NULL) {
  834. cb = s->ctx->info_callback;
  835. }
  836. if (cb != NULL) {
  837. uint16_t alert = (alert_level << 8) | alert_descr;
  838. cb(s, SSL_CB_READ_ALERT, alert);
  839. }
  840. if (alert_level == SSL3_AL_WARNING) {
  841. s->s3->warn_alert = alert_descr;
  842. if (alert_descr == SSL_AD_CLOSE_NOTIFY) {
  843. s->shutdown |= SSL_RECEIVED_SHUTDOWN;
  844. return 0;
  845. }
  846. /* This is a warning but we receive it if we requested renegotiation and
  847. * the peer denied it. Terminate with a fatal alert because if
  848. * application tried to renegotiatie it presumably had a good reason and
  849. * expects it to succeed.
  850. *
  851. * In future we might have a renegotiation where we don't care if the
  852. * peer refused it where we carry on. */
  853. else if (alert_descr == SSL_AD_NO_RENEGOTIATION) {
  854. al = SSL_AD_HANDSHAKE_FAILURE;
  855. OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION);
  856. goto f_err;
  857. }
  858. s->s3->warning_alert_count++;
  859. if (s->s3->warning_alert_count > kMaxWarningAlerts) {
  860. al = SSL_AD_UNEXPECTED_MESSAGE;
  861. OPENSSL_PUT_ERROR(SSL, SSL_R_TOO_MANY_WARNING_ALERTS);
  862. goto f_err;
  863. }
  864. } else if (alert_level == SSL3_AL_FATAL) {
  865. char tmp[16];
  866. s->rwstate = SSL_NOTHING;
  867. s->s3->fatal_alert = alert_descr;
  868. OPENSSL_PUT_ERROR(SSL, SSL_AD_REASON_OFFSET + alert_descr);
  869. BIO_snprintf(tmp, sizeof(tmp), "%d", alert_descr);
  870. ERR_add_error_data(2, "SSL alert number ", tmp);
  871. s->shutdown |= SSL_RECEIVED_SHUTDOWN;
  872. SSL_CTX_remove_session(s->ctx, s->session);
  873. return 0;
  874. } else {
  875. al = SSL_AD_ILLEGAL_PARAMETER;
  876. OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_ALERT_TYPE);
  877. goto f_err;
  878. }
  879. goto start;
  880. }
  881. if (s->shutdown & SSL_SENT_SHUTDOWN) {
  882. /* but we have not received a shutdown */
  883. s->rwstate = SSL_NOTHING;
  884. rr->length = 0;
  885. return 0;
  886. }
  887. if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC) {
  888. /* 'Change Cipher Spec' is just a single byte, so we know exactly what the
  889. * record payload has to look like */
  890. if (rr->length != 1 || rr->off != 0 || rr->data[0] != SSL3_MT_CCS) {
  891. al = SSL_AD_ILLEGAL_PARAMETER;
  892. OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC);
  893. goto f_err;
  894. }
  895. /* Check we have a cipher to change to */
  896. if (s->s3->tmp.new_cipher == NULL) {
  897. al = SSL_AD_UNEXPECTED_MESSAGE;
  898. OPENSSL_PUT_ERROR(SSL, SSL_R_CCS_RECEIVED_EARLY);
  899. goto f_err;
  900. }
  901. if (!(s->s3->flags & SSL3_FLAGS_EXPECT_CCS)) {
  902. al = SSL_AD_UNEXPECTED_MESSAGE;
  903. OPENSSL_PUT_ERROR(SSL, SSL_R_CCS_RECEIVED_EARLY);
  904. goto f_err;
  905. }
  906. s->s3->flags &= ~SSL3_FLAGS_EXPECT_CCS;
  907. rr->length = 0;
  908. if (s->msg_callback) {
  909. s->msg_callback(0, s->version, SSL3_RT_CHANGE_CIPHER_SPEC, rr->data, 1, s,
  910. s->msg_callback_arg);
  911. }
  912. s->s3->change_cipher_spec = 1;
  913. if (!ssl3_do_change_cipher_spec(s)) {
  914. goto err;
  915. } else {
  916. goto start;
  917. }
  918. }
  919. /* We already handled these. */
  920. assert(rr->type != SSL3_RT_CHANGE_CIPHER_SPEC && rr->type != SSL3_RT_ALERT &&
  921. rr->type != SSL3_RT_HANDSHAKE);
  922. al = SSL_AD_UNEXPECTED_MESSAGE;
  923. OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD);
  924. f_err:
  925. ssl3_send_alert(s, SSL3_AL_FATAL, al);
  926. err:
  927. return -1;
  928. }
  929. int ssl3_do_change_cipher_spec(SSL *s) {
  930. int i;
  931. if (s->state & SSL_ST_ACCEPT) {
  932. i = SSL3_CHANGE_CIPHER_SERVER_READ;
  933. } else {
  934. i = SSL3_CHANGE_CIPHER_CLIENT_READ;
  935. }
  936. if (s->s3->tmp.key_block == NULL) {
  937. if (s->session == NULL || s->session->master_key_length == 0) {
  938. /* might happen if dtls1_read_bytes() calls this */
  939. OPENSSL_PUT_ERROR(SSL, SSL_R_CCS_RECEIVED_EARLY);
  940. return 0;
  941. }
  942. s->session->cipher = s->s3->tmp.new_cipher;
  943. if (!s->enc_method->setup_key_block(s)) {
  944. return 0;
  945. }
  946. }
  947. if (!s->enc_method->change_cipher_state(s, i)) {
  948. return 0;
  949. }
  950. return 1;
  951. }
  952. int ssl3_send_alert(SSL *s, int level, int desc) {
  953. /* Map tls/ssl alert value to correct one */
  954. desc = s->enc_method->alert_value(desc);
  955. if (s->version == SSL3_VERSION && desc == SSL_AD_PROTOCOL_VERSION) {
  956. /* SSL 3.0 does not have protocol_version alerts */
  957. desc = SSL_AD_HANDSHAKE_FAILURE;
  958. }
  959. if (desc < 0) {
  960. return -1;
  961. }
  962. /* If a fatal one, remove from cache */
  963. if (level == 2 && s->session != NULL) {
  964. SSL_CTX_remove_session(s->ctx, s->session);
  965. }
  966. s->s3->alert_dispatch = 1;
  967. s->s3->send_alert[0] = level;
  968. s->s3->send_alert[1] = desc;
  969. if (s->s3->wbuf.left == 0) {
  970. /* data is still being written out. */
  971. return s->method->ssl_dispatch_alert(s);
  972. }
  973. /* else data is still being written out, we will get written some time in the
  974. * future */
  975. return -1;
  976. }
  977. int ssl3_dispatch_alert(SSL *s) {
  978. int i, j;
  979. void (*cb)(const SSL *ssl, int type, int val) = NULL;
  980. s->s3->alert_dispatch = 0;
  981. i = do_ssl3_write(s, SSL3_RT_ALERT, &s->s3->send_alert[0], 2, 0);
  982. if (i <= 0) {
  983. s->s3->alert_dispatch = 1;
  984. } else {
  985. /* Alert sent to BIO. If it is important, flush it now. If the message
  986. * does not get sent due to non-blocking IO, we will not worry too much. */
  987. if (s->s3->send_alert[0] == SSL3_AL_FATAL) {
  988. BIO_flush(s->wbio);
  989. }
  990. if (s->msg_callback) {
  991. s->msg_callback(1, s->version, SSL3_RT_ALERT, s->s3->send_alert, 2, s,
  992. s->msg_callback_arg);
  993. }
  994. if (s->info_callback != NULL) {
  995. cb = s->info_callback;
  996. } else if (s->ctx->info_callback != NULL) {
  997. cb = s->ctx->info_callback;
  998. }
  999. if (cb != NULL) {
  1000. j = (s->s3->send_alert[0] << 8) | s->s3->send_alert[1];
  1001. cb(s, SSL_CB_WRITE_ALERT, j);
  1002. }
  1003. }
  1004. return i;
  1005. }