Não pode escolher mais do que 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.
 
 
 
 
 
 

1374 linhas
38 KiB

  1. // Copyright 2010 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. // TLS low level connection and record layer
  5. package main
  6. import (
  7. "bytes"
  8. "crypto/cipher"
  9. "crypto/ecdsa"
  10. "crypto/subtle"
  11. "crypto/x509"
  12. "encoding/binary"
  13. "errors"
  14. "fmt"
  15. "io"
  16. "net"
  17. "sync"
  18. "time"
  19. )
  20. // A Conn represents a secured connection.
  21. // It implements the net.Conn interface.
  22. type Conn struct {
  23. // constant
  24. conn net.Conn
  25. isDTLS bool
  26. isClient bool
  27. // constant after handshake; protected by handshakeMutex
  28. handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
  29. handshakeErr error // error resulting from handshake
  30. vers uint16 // TLS version
  31. haveVers bool // version has been negotiated
  32. config *Config // configuration passed to constructor
  33. handshakeComplete bool
  34. didResume bool // whether this connection was a session resumption
  35. extendedMasterSecret bool // whether this session used an extended master secret
  36. cipherSuite *cipherSuite
  37. ocspResponse []byte // stapled OCSP response
  38. peerCertificates []*x509.Certificate
  39. // verifiedChains contains the certificate chains that we built, as
  40. // opposed to the ones presented by the server.
  41. verifiedChains [][]*x509.Certificate
  42. // serverName contains the server name indicated by the client, if any.
  43. serverName string
  44. // firstFinished contains the first Finished hash sent during the
  45. // handshake. This is the "tls-unique" channel binding value.
  46. firstFinished [12]byte
  47. clientRandom, serverRandom [32]byte
  48. masterSecret [48]byte
  49. clientProtocol string
  50. clientProtocolFallback bool
  51. usedALPN bool
  52. // verify_data values for the renegotiation extension.
  53. clientVerify []byte
  54. serverVerify []byte
  55. channelID *ecdsa.PublicKey
  56. srtpProtectionProfile uint16
  57. clientVersion uint16
  58. // input/output
  59. in, out halfConn // in.Mutex < out.Mutex
  60. rawInput *block // raw input, right off the wire
  61. input *block // application record waiting to be read
  62. hand bytes.Buffer // handshake record waiting to be read
  63. // DTLS state
  64. sendHandshakeSeq uint16
  65. recvHandshakeSeq uint16
  66. handMsg []byte // pending assembled handshake message
  67. handMsgLen int // handshake message length, not including the header
  68. pendingFragments [][]byte // pending outgoing handshake fragments.
  69. tmp [16]byte
  70. }
  71. func (c *Conn) init() {
  72. c.in.isDTLS = c.isDTLS
  73. c.out.isDTLS = c.isDTLS
  74. c.in.config = c.config
  75. c.out.config = c.config
  76. c.out.updateOutSeq()
  77. }
  78. // Access to net.Conn methods.
  79. // Cannot just embed net.Conn because that would
  80. // export the struct field too.
  81. // LocalAddr returns the local network address.
  82. func (c *Conn) LocalAddr() net.Addr {
  83. return c.conn.LocalAddr()
  84. }
  85. // RemoteAddr returns the remote network address.
  86. func (c *Conn) RemoteAddr() net.Addr {
  87. return c.conn.RemoteAddr()
  88. }
  89. // SetDeadline sets the read and write deadlines associated with the connection.
  90. // A zero value for t means Read and Write will not time out.
  91. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
  92. func (c *Conn) SetDeadline(t time.Time) error {
  93. return c.conn.SetDeadline(t)
  94. }
  95. // SetReadDeadline sets the read deadline on the underlying connection.
  96. // A zero value for t means Read will not time out.
  97. func (c *Conn) SetReadDeadline(t time.Time) error {
  98. return c.conn.SetReadDeadline(t)
  99. }
  100. // SetWriteDeadline sets the write deadline on the underlying conneciton.
  101. // A zero value for t means Write will not time out.
  102. // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
  103. func (c *Conn) SetWriteDeadline(t time.Time) error {
  104. return c.conn.SetWriteDeadline(t)
  105. }
  106. // A halfConn represents one direction of the record layer
  107. // connection, either sending or receiving.
  108. type halfConn struct {
  109. sync.Mutex
  110. err error // first permanent error
  111. version uint16 // protocol version
  112. isDTLS bool
  113. cipher interface{} // cipher algorithm
  114. mac macFunction
  115. seq [8]byte // 64-bit sequence number
  116. outSeq [8]byte // Mapped sequence number
  117. bfree *block // list of free blocks
  118. nextCipher interface{} // next encryption state
  119. nextMac macFunction // next MAC algorithm
  120. nextSeq [6]byte // next epoch's starting sequence number in DTLS
  121. // used to save allocating a new buffer for each MAC.
  122. inDigestBuf, outDigestBuf []byte
  123. config *Config
  124. }
  125. func (hc *halfConn) setErrorLocked(err error) error {
  126. hc.err = err
  127. return err
  128. }
  129. func (hc *halfConn) error() error {
  130. // This should be locked, but I've removed it for the renegotiation
  131. // tests since we don't concurrently read and write the same tls.Conn
  132. // in any case during testing.
  133. err := hc.err
  134. return err
  135. }
  136. // prepareCipherSpec sets the encryption and MAC states
  137. // that a subsequent changeCipherSpec will use.
  138. func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
  139. hc.version = version
  140. hc.nextCipher = cipher
  141. hc.nextMac = mac
  142. }
  143. // changeCipherSpec changes the encryption and MAC states
  144. // to the ones previously passed to prepareCipherSpec.
  145. func (hc *halfConn) changeCipherSpec(config *Config) error {
  146. if hc.nextCipher == nil {
  147. return alertInternalError
  148. }
  149. hc.cipher = hc.nextCipher
  150. hc.mac = hc.nextMac
  151. hc.nextCipher = nil
  152. hc.nextMac = nil
  153. hc.config = config
  154. hc.incEpoch()
  155. return nil
  156. }
  157. // incSeq increments the sequence number.
  158. func (hc *halfConn) incSeq(isOutgoing bool) {
  159. limit := 0
  160. increment := uint64(1)
  161. if hc.isDTLS {
  162. // Increment up to the epoch in DTLS.
  163. limit = 2
  164. }
  165. for i := 7; i >= limit; i-- {
  166. increment += uint64(hc.seq[i])
  167. hc.seq[i] = byte(increment)
  168. increment >>= 8
  169. }
  170. // Not allowed to let sequence number wrap.
  171. // Instead, must renegotiate before it does.
  172. // Not likely enough to bother.
  173. if increment != 0 {
  174. panic("TLS: sequence number wraparound")
  175. }
  176. hc.updateOutSeq()
  177. }
  178. // incNextSeq increments the starting sequence number for the next epoch.
  179. func (hc *halfConn) incNextSeq() {
  180. for i := len(hc.nextSeq) - 1; i >= 0; i-- {
  181. hc.nextSeq[i]++
  182. if hc.nextSeq[i] != 0 {
  183. return
  184. }
  185. }
  186. panic("TLS: sequence number wraparound")
  187. }
  188. // incEpoch resets the sequence number. In DTLS, it also increments the epoch
  189. // half of the sequence number.
  190. func (hc *halfConn) incEpoch() {
  191. if hc.isDTLS {
  192. for i := 1; i >= 0; i-- {
  193. hc.seq[i]++
  194. if hc.seq[i] != 0 {
  195. break
  196. }
  197. if i == 0 {
  198. panic("TLS: epoch number wraparound")
  199. }
  200. }
  201. copy(hc.seq[2:], hc.nextSeq[:])
  202. for i := range hc.nextSeq {
  203. hc.nextSeq[i] = 0
  204. }
  205. } else {
  206. for i := range hc.seq {
  207. hc.seq[i] = 0
  208. }
  209. }
  210. hc.updateOutSeq()
  211. }
  212. func (hc *halfConn) updateOutSeq() {
  213. if hc.config.Bugs.SequenceNumberMapping != nil {
  214. seqU64 := binary.BigEndian.Uint64(hc.seq[:])
  215. seqU64 = hc.config.Bugs.SequenceNumberMapping(seqU64)
  216. binary.BigEndian.PutUint64(hc.outSeq[:], seqU64)
  217. // The DTLS epoch cannot be changed.
  218. copy(hc.outSeq[:2], hc.seq[:2])
  219. return
  220. }
  221. copy(hc.outSeq[:], hc.seq[:])
  222. }
  223. func (hc *halfConn) recordHeaderLen() int {
  224. if hc.isDTLS {
  225. return dtlsRecordHeaderLen
  226. }
  227. return tlsRecordHeaderLen
  228. }
  229. // removePadding returns an unpadded slice, in constant time, which is a prefix
  230. // of the input. It also returns a byte which is equal to 255 if the padding
  231. // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
  232. func removePadding(payload []byte) ([]byte, byte) {
  233. if len(payload) < 1 {
  234. return payload, 0
  235. }
  236. paddingLen := payload[len(payload)-1]
  237. t := uint(len(payload)-1) - uint(paddingLen)
  238. // if len(payload) >= (paddingLen - 1) then the MSB of t is zero
  239. good := byte(int32(^t) >> 31)
  240. toCheck := 255 // the maximum possible padding length
  241. // The length of the padded data is public, so we can use an if here
  242. if toCheck+1 > len(payload) {
  243. toCheck = len(payload) - 1
  244. }
  245. for i := 0; i < toCheck; i++ {
  246. t := uint(paddingLen) - uint(i)
  247. // if i <= paddingLen then the MSB of t is zero
  248. mask := byte(int32(^t) >> 31)
  249. b := payload[len(payload)-1-i]
  250. good &^= mask&paddingLen ^ mask&b
  251. }
  252. // We AND together the bits of good and replicate the result across
  253. // all the bits.
  254. good &= good << 4
  255. good &= good << 2
  256. good &= good << 1
  257. good = uint8(int8(good) >> 7)
  258. toRemove := good&paddingLen + 1
  259. return payload[:len(payload)-int(toRemove)], good
  260. }
  261. // removePaddingSSL30 is a replacement for removePadding in the case that the
  262. // protocol version is SSLv3. In this version, the contents of the padding
  263. // are random and cannot be checked.
  264. func removePaddingSSL30(payload []byte) ([]byte, byte) {
  265. if len(payload) < 1 {
  266. return payload, 0
  267. }
  268. paddingLen := int(payload[len(payload)-1]) + 1
  269. if paddingLen > len(payload) {
  270. return payload, 0
  271. }
  272. return payload[:len(payload)-paddingLen], 255
  273. }
  274. func roundUp(a, b int) int {
  275. return a + (b-a%b)%b
  276. }
  277. // cbcMode is an interface for block ciphers using cipher block chaining.
  278. type cbcMode interface {
  279. cipher.BlockMode
  280. SetIV([]byte)
  281. }
  282. // decrypt checks and strips the mac and decrypts the data in b. Returns a
  283. // success boolean, the number of bytes to skip from the start of the record in
  284. // order to get the application payload, and an optional alert value.
  285. func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
  286. recordHeaderLen := hc.recordHeaderLen()
  287. // pull out payload
  288. payload := b.data[recordHeaderLen:]
  289. macSize := 0
  290. if hc.mac != nil {
  291. macSize = hc.mac.Size()
  292. }
  293. paddingGood := byte(255)
  294. explicitIVLen := 0
  295. seq := hc.seq[:]
  296. if hc.isDTLS {
  297. // DTLS sequence numbers are explicit.
  298. seq = b.data[3:11]
  299. }
  300. // decrypt
  301. if hc.cipher != nil {
  302. switch c := hc.cipher.(type) {
  303. case cipher.Stream:
  304. c.XORKeyStream(payload, payload)
  305. case *tlsAead:
  306. nonce := seq
  307. if c.explicitNonce {
  308. explicitIVLen = 8
  309. if len(payload) < explicitIVLen {
  310. return false, 0, alertBadRecordMAC
  311. }
  312. nonce = payload[:8]
  313. payload = payload[8:]
  314. }
  315. var additionalData [13]byte
  316. copy(additionalData[:], seq)
  317. copy(additionalData[8:], b.data[:3])
  318. n := len(payload) - c.Overhead()
  319. additionalData[11] = byte(n >> 8)
  320. additionalData[12] = byte(n)
  321. var err error
  322. payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
  323. if err != nil {
  324. return false, 0, alertBadRecordMAC
  325. }
  326. b.resize(recordHeaderLen + explicitIVLen + len(payload))
  327. case cbcMode:
  328. blockSize := c.BlockSize()
  329. if hc.version >= VersionTLS11 || hc.isDTLS {
  330. explicitIVLen = blockSize
  331. }
  332. if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
  333. return false, 0, alertBadRecordMAC
  334. }
  335. if explicitIVLen > 0 {
  336. c.SetIV(payload[:explicitIVLen])
  337. payload = payload[explicitIVLen:]
  338. }
  339. c.CryptBlocks(payload, payload)
  340. if hc.version == VersionSSL30 {
  341. payload, paddingGood = removePaddingSSL30(payload)
  342. } else {
  343. payload, paddingGood = removePadding(payload)
  344. }
  345. b.resize(recordHeaderLen + explicitIVLen + len(payload))
  346. // note that we still have a timing side-channel in the
  347. // MAC check, below. An attacker can align the record
  348. // so that a correct padding will cause one less hash
  349. // block to be calculated. Then they can iteratively
  350. // decrypt a record by breaking each byte. See
  351. // "Password Interception in a SSL/TLS Channel", Brice
  352. // Canvel et al.
  353. //
  354. // However, our behavior matches OpenSSL, so we leak
  355. // only as much as they do.
  356. default:
  357. panic("unknown cipher type")
  358. }
  359. }
  360. // check, strip mac
  361. if hc.mac != nil {
  362. if len(payload) < macSize {
  363. return false, 0, alertBadRecordMAC
  364. }
  365. // strip mac off payload, b.data
  366. n := len(payload) - macSize
  367. b.data[recordHeaderLen-2] = byte(n >> 8)
  368. b.data[recordHeaderLen-1] = byte(n)
  369. b.resize(recordHeaderLen + explicitIVLen + n)
  370. remoteMAC := payload[n:]
  371. localMAC := hc.mac.MAC(hc.inDigestBuf, seq, b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], payload[:n])
  372. if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
  373. return false, 0, alertBadRecordMAC
  374. }
  375. hc.inDigestBuf = localMAC
  376. }
  377. hc.incSeq(false)
  378. return true, recordHeaderLen + explicitIVLen, 0
  379. }
  380. // padToBlockSize calculates the needed padding block, if any, for a payload.
  381. // On exit, prefix aliases payload and extends to the end of the last full
  382. // block of payload. finalBlock is a fresh slice which contains the contents of
  383. // any suffix of payload as well as the needed padding to make finalBlock a
  384. // full block.
  385. func padToBlockSize(payload []byte, blockSize int, config *Config) (prefix, finalBlock []byte) {
  386. overrun := len(payload) % blockSize
  387. prefix = payload[:len(payload)-overrun]
  388. paddingLen := blockSize - overrun
  389. finalSize := blockSize
  390. if config.Bugs.MaxPadding {
  391. for paddingLen+blockSize <= 256 {
  392. paddingLen += blockSize
  393. }
  394. finalSize = 256
  395. }
  396. finalBlock = make([]byte, finalSize)
  397. for i := range finalBlock {
  398. finalBlock[i] = byte(paddingLen - 1)
  399. }
  400. if config.Bugs.PaddingFirstByteBad || config.Bugs.PaddingFirstByteBadIf255 && paddingLen == 256 {
  401. finalBlock[overrun] ^= 0xff
  402. }
  403. copy(finalBlock, payload[len(payload)-overrun:])
  404. return
  405. }
  406. // encrypt encrypts and macs the data in b.
  407. func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
  408. recordHeaderLen := hc.recordHeaderLen()
  409. // mac
  410. if hc.mac != nil {
  411. mac := hc.mac.MAC(hc.outDigestBuf, hc.outSeq[0:], b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
  412. n := len(b.data)
  413. b.resize(n + len(mac))
  414. copy(b.data[n:], mac)
  415. hc.outDigestBuf = mac
  416. }
  417. payload := b.data[recordHeaderLen:]
  418. // encrypt
  419. if hc.cipher != nil {
  420. switch c := hc.cipher.(type) {
  421. case cipher.Stream:
  422. c.XORKeyStream(payload, payload)
  423. case *tlsAead:
  424. payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
  425. b.resize(len(b.data) + c.Overhead())
  426. nonce := hc.outSeq[:]
  427. if c.explicitNonce {
  428. nonce = b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
  429. }
  430. payload := b.data[recordHeaderLen+explicitIVLen:]
  431. payload = payload[:payloadLen]
  432. var additionalData [13]byte
  433. copy(additionalData[:], hc.outSeq[:])
  434. copy(additionalData[8:], b.data[:3])
  435. additionalData[11] = byte(payloadLen >> 8)
  436. additionalData[12] = byte(payloadLen)
  437. c.Seal(payload[:0], nonce, payload, additionalData[:])
  438. case cbcMode:
  439. blockSize := c.BlockSize()
  440. if explicitIVLen > 0 {
  441. c.SetIV(payload[:explicitIVLen])
  442. payload = payload[explicitIVLen:]
  443. }
  444. prefix, finalBlock := padToBlockSize(payload, blockSize, hc.config)
  445. b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
  446. c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
  447. c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
  448. default:
  449. panic("unknown cipher type")
  450. }
  451. }
  452. // update length to include MAC and any block padding needed.
  453. n := len(b.data) - recordHeaderLen
  454. b.data[recordHeaderLen-2] = byte(n >> 8)
  455. b.data[recordHeaderLen-1] = byte(n)
  456. hc.incSeq(true)
  457. return true, 0
  458. }
  459. // A block is a simple data buffer.
  460. type block struct {
  461. data []byte
  462. off int // index for Read
  463. link *block
  464. }
  465. // resize resizes block to be n bytes, growing if necessary.
  466. func (b *block) resize(n int) {
  467. if n > cap(b.data) {
  468. b.reserve(n)
  469. }
  470. b.data = b.data[0:n]
  471. }
  472. // reserve makes sure that block contains a capacity of at least n bytes.
  473. func (b *block) reserve(n int) {
  474. if cap(b.data) >= n {
  475. return
  476. }
  477. m := cap(b.data)
  478. if m == 0 {
  479. m = 1024
  480. }
  481. for m < n {
  482. m *= 2
  483. }
  484. data := make([]byte, len(b.data), m)
  485. copy(data, b.data)
  486. b.data = data
  487. }
  488. // readFromUntil reads from r into b until b contains at least n bytes
  489. // or else returns an error.
  490. func (b *block) readFromUntil(r io.Reader, n int) error {
  491. // quick case
  492. if len(b.data) >= n {
  493. return nil
  494. }
  495. // read until have enough.
  496. b.reserve(n)
  497. for {
  498. m, err := r.Read(b.data[len(b.data):cap(b.data)])
  499. b.data = b.data[0 : len(b.data)+m]
  500. if len(b.data) >= n {
  501. // TODO(bradfitz,agl): slightly suspicious
  502. // that we're throwing away r.Read's err here.
  503. break
  504. }
  505. if err != nil {
  506. return err
  507. }
  508. }
  509. return nil
  510. }
  511. func (b *block) Read(p []byte) (n int, err error) {
  512. n = copy(p, b.data[b.off:])
  513. b.off += n
  514. return
  515. }
  516. // newBlock allocates a new block, from hc's free list if possible.
  517. func (hc *halfConn) newBlock() *block {
  518. b := hc.bfree
  519. if b == nil {
  520. return new(block)
  521. }
  522. hc.bfree = b.link
  523. b.link = nil
  524. b.resize(0)
  525. return b
  526. }
  527. // freeBlock returns a block to hc's free list.
  528. // The protocol is such that each side only has a block or two on
  529. // its free list at a time, so there's no need to worry about
  530. // trimming the list, etc.
  531. func (hc *halfConn) freeBlock(b *block) {
  532. b.link = hc.bfree
  533. hc.bfree = b
  534. }
  535. // splitBlock splits a block after the first n bytes,
  536. // returning a block with those n bytes and a
  537. // block with the remainder. the latter may be nil.
  538. func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
  539. if len(b.data) <= n {
  540. return b, nil
  541. }
  542. bb := hc.newBlock()
  543. bb.resize(len(b.data) - n)
  544. copy(bb.data, b.data[n:])
  545. b.data = b.data[0:n]
  546. return b, bb
  547. }
  548. func (c *Conn) doReadRecord(want recordType) (recordType, *block, error) {
  549. if c.isDTLS {
  550. return c.dtlsDoReadRecord(want)
  551. }
  552. recordHeaderLen := tlsRecordHeaderLen
  553. if c.rawInput == nil {
  554. c.rawInput = c.in.newBlock()
  555. }
  556. b := c.rawInput
  557. // Read header, payload.
  558. if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
  559. // RFC suggests that EOF without an alertCloseNotify is
  560. // an error, but popular web sites seem to do this,
  561. // so we can't make it an error.
  562. // if err == io.EOF {
  563. // err = io.ErrUnexpectedEOF
  564. // }
  565. if e, ok := err.(net.Error); !ok || !e.Temporary() {
  566. c.in.setErrorLocked(err)
  567. }
  568. return 0, nil, err
  569. }
  570. typ := recordType(b.data[0])
  571. // No valid TLS record has a type of 0x80, however SSLv2 handshakes
  572. // start with a uint16 length where the MSB is set and the first record
  573. // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
  574. // an SSLv2 client.
  575. if want == recordTypeHandshake && typ == 0x80 {
  576. c.sendAlert(alertProtocolVersion)
  577. return 0, nil, c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
  578. }
  579. vers := uint16(b.data[1])<<8 | uint16(b.data[2])
  580. n := int(b.data[3])<<8 | int(b.data[4])
  581. if c.haveVers {
  582. if vers != c.vers {
  583. c.sendAlert(alertProtocolVersion)
  584. return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers))
  585. }
  586. } else {
  587. if expect := c.config.Bugs.ExpectInitialRecordVersion; expect != 0 && vers != expect {
  588. c.sendAlert(alertProtocolVersion)
  589. return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, expect))
  590. }
  591. }
  592. if n > maxCiphertext {
  593. c.sendAlert(alertRecordOverflow)
  594. return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
  595. }
  596. if !c.haveVers {
  597. // First message, be extra suspicious:
  598. // this might not be a TLS client.
  599. // Bail out before reading a full 'body', if possible.
  600. // The current max version is 3.1.
  601. // If the version is >= 16.0, it's probably not real.
  602. // Similarly, a clientHello message encodes in
  603. // well under a kilobyte. If the length is >= 12 kB,
  604. // it's probably not real.
  605. if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 {
  606. c.sendAlert(alertUnexpectedMessage)
  607. return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
  608. }
  609. }
  610. if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
  611. if err == io.EOF {
  612. err = io.ErrUnexpectedEOF
  613. }
  614. if e, ok := err.(net.Error); !ok || !e.Temporary() {
  615. c.in.setErrorLocked(err)
  616. }
  617. return 0, nil, err
  618. }
  619. // Process message.
  620. b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
  621. ok, off, err := c.in.decrypt(b)
  622. if !ok {
  623. c.in.setErrorLocked(c.sendAlert(err))
  624. }
  625. b.off = off
  626. return typ, b, nil
  627. }
  628. // readRecord reads the next TLS record from the connection
  629. // and updates the record layer state.
  630. // c.in.Mutex <= L; c.input == nil.
  631. func (c *Conn) readRecord(want recordType) error {
  632. // Caller must be in sync with connection:
  633. // handshake data if handshake not yet completed,
  634. // else application data.
  635. switch want {
  636. default:
  637. c.sendAlert(alertInternalError)
  638. return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
  639. case recordTypeHandshake, recordTypeChangeCipherSpec:
  640. if c.handshakeComplete {
  641. c.sendAlert(alertInternalError)
  642. return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
  643. }
  644. case recordTypeApplicationData:
  645. if !c.handshakeComplete && !c.config.Bugs.ExpectFalseStart {
  646. c.sendAlert(alertInternalError)
  647. return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
  648. }
  649. }
  650. Again:
  651. typ, b, err := c.doReadRecord(want)
  652. if err != nil {
  653. return err
  654. }
  655. data := b.data[b.off:]
  656. if len(data) > maxPlaintext {
  657. err := c.sendAlert(alertRecordOverflow)
  658. c.in.freeBlock(b)
  659. return c.in.setErrorLocked(err)
  660. }
  661. switch typ {
  662. default:
  663. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  664. case recordTypeAlert:
  665. if len(data) != 2 {
  666. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  667. break
  668. }
  669. if alert(data[1]) == alertCloseNotify {
  670. c.in.setErrorLocked(io.EOF)
  671. break
  672. }
  673. switch data[0] {
  674. case alertLevelWarning:
  675. // drop on the floor
  676. c.in.freeBlock(b)
  677. goto Again
  678. case alertLevelError:
  679. c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
  680. default:
  681. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  682. }
  683. case recordTypeChangeCipherSpec:
  684. if typ != want || len(data) != 1 || data[0] != 1 {
  685. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  686. break
  687. }
  688. err := c.in.changeCipherSpec(c.config)
  689. if err != nil {
  690. c.in.setErrorLocked(c.sendAlert(err.(alert)))
  691. }
  692. case recordTypeApplicationData:
  693. if typ != want {
  694. c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  695. break
  696. }
  697. c.input = b
  698. b = nil
  699. case recordTypeHandshake:
  700. // TODO(rsc): Should at least pick off connection close.
  701. if typ != want {
  702. // A client might need to process a HelloRequest from
  703. // the server, thus receiving a handshake message when
  704. // application data is expected is ok.
  705. if !c.isClient {
  706. return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
  707. }
  708. }
  709. c.hand.Write(data)
  710. }
  711. if b != nil {
  712. c.in.freeBlock(b)
  713. }
  714. return c.in.err
  715. }
  716. // sendAlert sends a TLS alert message.
  717. // c.out.Mutex <= L.
  718. func (c *Conn) sendAlertLocked(level byte, err alert) error {
  719. c.tmp[0] = level
  720. c.tmp[1] = byte(err)
  721. if c.config.Bugs.FragmentAlert {
  722. c.writeRecord(recordTypeAlert, c.tmp[0:1])
  723. c.writeRecord(recordTypeAlert, c.tmp[1:2])
  724. } else {
  725. c.writeRecord(recordTypeAlert, c.tmp[0:2])
  726. }
  727. // Error alerts are fatal to the connection.
  728. if level == alertLevelError {
  729. return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
  730. }
  731. return nil
  732. }
  733. // sendAlert sends a TLS alert message.
  734. // L < c.out.Mutex.
  735. func (c *Conn) sendAlert(err alert) error {
  736. level := byte(alertLevelError)
  737. if err == alertNoRenegotiation || err == alertCloseNotify {
  738. level = alertLevelWarning
  739. }
  740. return c.SendAlert(level, err)
  741. }
  742. func (c *Conn) SendAlert(level byte, err alert) error {
  743. c.out.Lock()
  744. defer c.out.Unlock()
  745. return c.sendAlertLocked(level, err)
  746. }
  747. // writeV2Record writes a record for a V2ClientHello.
  748. func (c *Conn) writeV2Record(data []byte) (n int, err error) {
  749. record := make([]byte, 2+len(data))
  750. record[0] = uint8(len(data)>>8) | 0x80
  751. record[1] = uint8(len(data))
  752. copy(record[2:], data)
  753. return c.conn.Write(record)
  754. }
  755. // writeRecord writes a TLS record with the given type and payload
  756. // to the connection and updates the record layer state.
  757. // c.out.Mutex <= L.
  758. func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
  759. if c.isDTLS {
  760. return c.dtlsWriteRecord(typ, data)
  761. }
  762. recordHeaderLen := tlsRecordHeaderLen
  763. b := c.out.newBlock()
  764. first := true
  765. isClientHello := typ == recordTypeHandshake && len(data) > 0 && data[0] == typeClientHello
  766. for len(data) > 0 || first {
  767. m := len(data)
  768. if m > maxPlaintext {
  769. m = maxPlaintext
  770. }
  771. if typ == recordTypeHandshake && c.config.Bugs.MaxHandshakeRecordLength > 0 && m > c.config.Bugs.MaxHandshakeRecordLength {
  772. m = c.config.Bugs.MaxHandshakeRecordLength
  773. // By default, do not fragment the client_version or
  774. // server_version, which are located in the first 6
  775. // bytes.
  776. if first && isClientHello && !c.config.Bugs.FragmentClientVersion && m < 6 {
  777. m = 6
  778. }
  779. }
  780. explicitIVLen := 0
  781. explicitIVIsSeq := false
  782. first = false
  783. var cbc cbcMode
  784. if c.out.version >= VersionTLS11 {
  785. var ok bool
  786. if cbc, ok = c.out.cipher.(cbcMode); ok {
  787. explicitIVLen = cbc.BlockSize()
  788. }
  789. }
  790. if explicitIVLen == 0 {
  791. if aead, ok := c.out.cipher.(*tlsAead); ok && aead.explicitNonce {
  792. explicitIVLen = 8
  793. // The AES-GCM construction in TLS has an
  794. // explicit nonce so that the nonce can be
  795. // random. However, the nonce is only 8 bytes
  796. // which is too small for a secure, random
  797. // nonce. Therefore we use the sequence number
  798. // as the nonce.
  799. explicitIVIsSeq = true
  800. }
  801. }
  802. b.resize(recordHeaderLen + explicitIVLen + m)
  803. b.data[0] = byte(typ)
  804. vers := c.vers
  805. if vers == 0 {
  806. // Some TLS servers fail if the record version is
  807. // greater than TLS 1.0 for the initial ClientHello.
  808. vers = VersionTLS10
  809. }
  810. b.data[1] = byte(vers >> 8)
  811. b.data[2] = byte(vers)
  812. b.data[3] = byte(m >> 8)
  813. b.data[4] = byte(m)
  814. if explicitIVLen > 0 {
  815. explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
  816. if explicitIVIsSeq {
  817. copy(explicitIV, c.out.seq[:])
  818. } else {
  819. if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
  820. break
  821. }
  822. }
  823. }
  824. copy(b.data[recordHeaderLen+explicitIVLen:], data)
  825. c.out.encrypt(b, explicitIVLen)
  826. _, err = c.conn.Write(b.data)
  827. if err != nil {
  828. break
  829. }
  830. n += m
  831. data = data[m:]
  832. }
  833. c.out.freeBlock(b)
  834. if typ == recordTypeChangeCipherSpec {
  835. err = c.out.changeCipherSpec(c.config)
  836. if err != nil {
  837. // Cannot call sendAlert directly,
  838. // because we already hold c.out.Mutex.
  839. c.tmp[0] = alertLevelError
  840. c.tmp[1] = byte(err.(alert))
  841. c.writeRecord(recordTypeAlert, c.tmp[0:2])
  842. return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
  843. }
  844. }
  845. return
  846. }
  847. func (c *Conn) doReadHandshake() ([]byte, error) {
  848. if c.isDTLS {
  849. return c.dtlsDoReadHandshake()
  850. }
  851. for c.hand.Len() < 4 {
  852. if err := c.in.err; err != nil {
  853. return nil, err
  854. }
  855. if err := c.readRecord(recordTypeHandshake); err != nil {
  856. return nil, err
  857. }
  858. }
  859. data := c.hand.Bytes()
  860. n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
  861. if n > maxHandshake {
  862. return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
  863. }
  864. for c.hand.Len() < 4+n {
  865. if err := c.in.err; err != nil {
  866. return nil, err
  867. }
  868. if err := c.readRecord(recordTypeHandshake); err != nil {
  869. return nil, err
  870. }
  871. }
  872. return c.hand.Next(4 + n), nil
  873. }
  874. // readHandshake reads the next handshake message from
  875. // the record layer.
  876. // c.in.Mutex < L; c.out.Mutex < L.
  877. func (c *Conn) readHandshake() (interface{}, error) {
  878. data, err := c.doReadHandshake()
  879. if err != nil {
  880. return nil, err
  881. }
  882. var m handshakeMessage
  883. switch data[0] {
  884. case typeHelloRequest:
  885. m = new(helloRequestMsg)
  886. case typeClientHello:
  887. m = &clientHelloMsg{
  888. isDTLS: c.isDTLS,
  889. }
  890. case typeServerHello:
  891. m = &serverHelloMsg{
  892. isDTLS: c.isDTLS,
  893. }
  894. case typeNewSessionTicket:
  895. m = new(newSessionTicketMsg)
  896. case typeCertificate:
  897. m = new(certificateMsg)
  898. case typeCertificateRequest:
  899. m = &certificateRequestMsg{
  900. hasSignatureAndHash: c.vers >= VersionTLS12,
  901. }
  902. case typeCertificateStatus:
  903. m = new(certificateStatusMsg)
  904. case typeServerKeyExchange:
  905. m = new(serverKeyExchangeMsg)
  906. case typeServerHelloDone:
  907. m = new(serverHelloDoneMsg)
  908. case typeClientKeyExchange:
  909. m = new(clientKeyExchangeMsg)
  910. case typeCertificateVerify:
  911. m = &certificateVerifyMsg{
  912. hasSignatureAndHash: c.vers >= VersionTLS12,
  913. }
  914. case typeNextProtocol:
  915. m = new(nextProtoMsg)
  916. case typeFinished:
  917. m = new(finishedMsg)
  918. case typeHelloVerifyRequest:
  919. m = new(helloVerifyRequestMsg)
  920. case typeEncryptedExtensions:
  921. m = new(encryptedExtensionsMsg)
  922. default:
  923. return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  924. }
  925. // The handshake message unmarshallers
  926. // expect to be able to keep references to data,
  927. // so pass in a fresh copy that won't be overwritten.
  928. data = append([]byte(nil), data...)
  929. if !m.unmarshal(data) {
  930. return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  931. }
  932. return m, nil
  933. }
  934. // skipPacket processes all the DTLS records in packet. It updates
  935. // sequence number expectations but otherwise ignores them.
  936. func (c *Conn) skipPacket(packet []byte) error {
  937. for len(packet) > 0 {
  938. // Dropped packets are completely ignored save to update
  939. // expected sequence numbers for this and the next epoch. (We
  940. // don't assert on the contents of the packets both for
  941. // simplicity and because a previous test with one shorter
  942. // timeout schedule would have done so.)
  943. epoch := packet[3:5]
  944. seq := packet[5:11]
  945. length := uint16(packet[11])<<8 | uint16(packet[12])
  946. if bytes.Equal(c.in.seq[:2], epoch) {
  947. if !bytes.Equal(c.in.seq[2:], seq) {
  948. return errors.New("tls: sequence mismatch")
  949. }
  950. c.in.incSeq(false)
  951. } else {
  952. if !bytes.Equal(c.in.nextSeq[:], seq) {
  953. return errors.New("tls: sequence mismatch")
  954. }
  955. c.in.incNextSeq()
  956. }
  957. packet = packet[13+length:]
  958. }
  959. return nil
  960. }
  961. // simulatePacketLoss simulates the loss of a handshake leg from the
  962. // peer based on the schedule in c.config.Bugs. If resendFunc is
  963. // non-nil, it is called after each simulated timeout to retransmit
  964. // handshake messages from the local end. This is used in cases where
  965. // the peer retransmits on a stale Finished rather than a timeout.
  966. func (c *Conn) simulatePacketLoss(resendFunc func()) error {
  967. if len(c.config.Bugs.TimeoutSchedule) == 0 {
  968. return nil
  969. }
  970. if !c.isDTLS {
  971. return errors.New("tls: TimeoutSchedule may only be set in DTLS")
  972. }
  973. if c.config.Bugs.PacketAdaptor == nil {
  974. return errors.New("tls: TimeoutSchedule set without PacketAdapter")
  975. }
  976. for _, timeout := range c.config.Bugs.TimeoutSchedule {
  977. // Simulate a timeout.
  978. packets, err := c.config.Bugs.PacketAdaptor.SendReadTimeout(timeout)
  979. if err != nil {
  980. return err
  981. }
  982. for _, packet := range packets {
  983. if err := c.skipPacket(packet); err != nil {
  984. return err
  985. }
  986. }
  987. if resendFunc != nil {
  988. resendFunc()
  989. }
  990. }
  991. return nil
  992. }
  993. // Write writes data to the connection.
  994. func (c *Conn) Write(b []byte) (int, error) {
  995. if err := c.Handshake(); err != nil {
  996. return 0, err
  997. }
  998. c.out.Lock()
  999. defer c.out.Unlock()
  1000. if err := c.out.err; err != nil {
  1001. return 0, err
  1002. }
  1003. if !c.handshakeComplete {
  1004. return 0, alertInternalError
  1005. }
  1006. if c.config.Bugs.SendSpuriousAlert != 0 {
  1007. c.sendAlertLocked(alertLevelError, c.config.Bugs.SendSpuriousAlert)
  1008. }
  1009. // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
  1010. // attack when using block mode ciphers due to predictable IVs.
  1011. // This can be prevented by splitting each Application Data
  1012. // record into two records, effectively randomizing the IV.
  1013. //
  1014. // http://www.openssl.org/~bodo/tls-cbc.txt
  1015. // https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1016. // http://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1017. var m int
  1018. if len(b) > 1 && c.vers <= VersionTLS10 && !c.isDTLS {
  1019. if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1020. n, err := c.writeRecord(recordTypeApplicationData, b[:1])
  1021. if err != nil {
  1022. return n, c.out.setErrorLocked(err)
  1023. }
  1024. m, b = 1, b[1:]
  1025. }
  1026. }
  1027. n, err := c.writeRecord(recordTypeApplicationData, b)
  1028. return n + m, c.out.setErrorLocked(err)
  1029. }
  1030. func (c *Conn) handleRenegotiation() error {
  1031. c.handshakeComplete = false
  1032. if !c.isClient {
  1033. panic("renegotiation should only happen for a client")
  1034. }
  1035. msg, err := c.readHandshake()
  1036. if err != nil {
  1037. return err
  1038. }
  1039. _, ok := msg.(*helloRequestMsg)
  1040. if !ok {
  1041. c.sendAlert(alertUnexpectedMessage)
  1042. return alertUnexpectedMessage
  1043. }
  1044. return c.Handshake()
  1045. }
  1046. func (c *Conn) Renegotiate() error {
  1047. if !c.isClient {
  1048. helloReq := new(helloRequestMsg)
  1049. c.writeRecord(recordTypeHandshake, helloReq.marshal())
  1050. }
  1051. c.handshakeComplete = false
  1052. return c.Handshake()
  1053. }
  1054. // Read can be made to time out and return a net.Error with Timeout() == true
  1055. // after a fixed time limit; see SetDeadline and SetReadDeadline.
  1056. func (c *Conn) Read(b []byte) (n int, err error) {
  1057. if err = c.Handshake(); err != nil {
  1058. return
  1059. }
  1060. c.in.Lock()
  1061. defer c.in.Unlock()
  1062. // Some OpenSSL servers send empty records in order to randomize the
  1063. // CBC IV. So this loop ignores a limited number of empty records.
  1064. const maxConsecutiveEmptyRecords = 100
  1065. for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
  1066. for c.input == nil && c.in.err == nil {
  1067. if err := c.readRecord(recordTypeApplicationData); err != nil {
  1068. // Soft error, like EAGAIN
  1069. return 0, err
  1070. }
  1071. if c.hand.Len() > 0 {
  1072. // We received handshake bytes, indicating the
  1073. // start of a renegotiation.
  1074. if err := c.handleRenegotiation(); err != nil {
  1075. return 0, err
  1076. }
  1077. continue
  1078. }
  1079. }
  1080. if err := c.in.err; err != nil {
  1081. return 0, err
  1082. }
  1083. n, err = c.input.Read(b)
  1084. if c.input.off >= len(c.input.data) || c.isDTLS {
  1085. c.in.freeBlock(c.input)
  1086. c.input = nil
  1087. }
  1088. // If a close-notify alert is waiting, read it so that
  1089. // we can return (n, EOF) instead of (n, nil), to signal
  1090. // to the HTTP response reading goroutine that the
  1091. // connection is now closed. This eliminates a race
  1092. // where the HTTP response reading goroutine would
  1093. // otherwise not observe the EOF until its next read,
  1094. // by which time a client goroutine might have already
  1095. // tried to reuse the HTTP connection for a new
  1096. // request.
  1097. // See https://codereview.appspot.com/76400046
  1098. // and http://golang.org/issue/3514
  1099. if ri := c.rawInput; ri != nil &&
  1100. n != 0 && err == nil &&
  1101. c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
  1102. if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
  1103. err = recErr // will be io.EOF on closeNotify
  1104. }
  1105. }
  1106. if n != 0 || err != nil {
  1107. return n, err
  1108. }
  1109. }
  1110. return 0, io.ErrNoProgress
  1111. }
  1112. // Close closes the connection.
  1113. func (c *Conn) Close() error {
  1114. var alertErr error
  1115. c.handshakeMutex.Lock()
  1116. defer c.handshakeMutex.Unlock()
  1117. if c.handshakeComplete {
  1118. alertErr = c.sendAlert(alertCloseNotify)
  1119. }
  1120. if err := c.conn.Close(); err != nil {
  1121. return err
  1122. }
  1123. return alertErr
  1124. }
  1125. // Handshake runs the client or server handshake
  1126. // protocol if it has not yet been run.
  1127. // Most uses of this package need not call Handshake
  1128. // explicitly: the first Read or Write will call it automatically.
  1129. func (c *Conn) Handshake() error {
  1130. c.handshakeMutex.Lock()
  1131. defer c.handshakeMutex.Unlock()
  1132. if err := c.handshakeErr; err != nil {
  1133. return err
  1134. }
  1135. if c.handshakeComplete {
  1136. return nil
  1137. }
  1138. if c.isDTLS && c.config.Bugs.SendSplitAlert {
  1139. c.conn.Write([]byte{
  1140. byte(recordTypeAlert), // type
  1141. 0xfe, 0xff, // version
  1142. 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, // sequence
  1143. 0x0, 0x2, // length
  1144. })
  1145. c.conn.Write([]byte{alertLevelError, byte(alertInternalError)})
  1146. }
  1147. if c.isClient {
  1148. c.handshakeErr = c.clientHandshake()
  1149. } else {
  1150. c.handshakeErr = c.serverHandshake()
  1151. }
  1152. if c.handshakeErr == nil && c.config.Bugs.SendInvalidRecordType {
  1153. c.writeRecord(recordType(42), []byte("invalid record"))
  1154. }
  1155. return c.handshakeErr
  1156. }
  1157. // ConnectionState returns basic TLS details about the connection.
  1158. func (c *Conn) ConnectionState() ConnectionState {
  1159. c.handshakeMutex.Lock()
  1160. defer c.handshakeMutex.Unlock()
  1161. var state ConnectionState
  1162. state.HandshakeComplete = c.handshakeComplete
  1163. if c.handshakeComplete {
  1164. state.Version = c.vers
  1165. state.NegotiatedProtocol = c.clientProtocol
  1166. state.DidResume = c.didResume
  1167. state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1168. state.NegotiatedProtocolFromALPN = c.usedALPN
  1169. state.CipherSuite = c.cipherSuite.id
  1170. state.PeerCertificates = c.peerCertificates
  1171. state.VerifiedChains = c.verifiedChains
  1172. state.ServerName = c.serverName
  1173. state.ChannelID = c.channelID
  1174. state.SRTPProtectionProfile = c.srtpProtectionProfile
  1175. state.TLSUnique = c.firstFinished[:]
  1176. }
  1177. return state
  1178. }
  1179. // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1180. // any. (Only valid for client connections.)
  1181. func (c *Conn) OCSPResponse() []byte {
  1182. c.handshakeMutex.Lock()
  1183. defer c.handshakeMutex.Unlock()
  1184. return c.ocspResponse
  1185. }
  1186. // VerifyHostname checks that the peer certificate chain is valid for
  1187. // connecting to host. If so, it returns nil; if not, it returns an error
  1188. // describing the problem.
  1189. func (c *Conn) VerifyHostname(host string) error {
  1190. c.handshakeMutex.Lock()
  1191. defer c.handshakeMutex.Unlock()
  1192. if !c.isClient {
  1193. return errors.New("tls: VerifyHostname called on TLS server connection")
  1194. }
  1195. if !c.handshakeComplete {
  1196. return errors.New("tls: handshake has not yet been performed")
  1197. }
  1198. return c.peerCertificates[0].VerifyHostname(host)
  1199. }
  1200. // ExportKeyingMaterial exports keying material from the current connection
  1201. // state, as per RFC 5705.
  1202. func (c *Conn) ExportKeyingMaterial(length int, label, context []byte, useContext bool) ([]byte, error) {
  1203. c.handshakeMutex.Lock()
  1204. defer c.handshakeMutex.Unlock()
  1205. if !c.handshakeComplete {
  1206. return nil, errors.New("tls: handshake has not yet been performed")
  1207. }
  1208. seedLen := len(c.clientRandom) + len(c.serverRandom)
  1209. if useContext {
  1210. seedLen += 2 + len(context)
  1211. }
  1212. seed := make([]byte, 0, seedLen)
  1213. seed = append(seed, c.clientRandom[:]...)
  1214. seed = append(seed, c.serverRandom[:]...)
  1215. if useContext {
  1216. seed = append(seed, byte(len(context)>>8), byte(len(context)))
  1217. seed = append(seed, context...)
  1218. }
  1219. result := make([]byte, length)
  1220. prfForVersion(c.vers, c.cipherSuite)(result, c.masterSecret[:], label, seed)
  1221. return result, nil
  1222. }