boringssl/crypto/sha/asm/sha512-x86_64.pl
David Benjamin b9c26014de Get rid of all compiler version checks in perlasm files.
Since we pre-generate our perlasm, having the output of these files be
sensitive to the environment the run in is unhelpful. It would be bad to
suddenly change what features we do or don't compile in whenever workstations'
toolchains change.

Enable all compiler-version-gated features as they should all be runtime-gated
anyway. This should align with what upstream's files would have produced on
modern toolschains. We should assume our assemblers can take whatever we'd like
to throw at them. (If it turns out some can't, we'd rather find out and
probably switch the problematic instructions to explicit byte sequences.)

This actually results in a fairly significant change to the assembly we
generate. I'm guessing upstream's buildsystem sets the CC environment variable,
while ours doesn't and so the version checks were all coming out conservative.

diffstat of generated files:

 linux-x86/crypto/sha/sha1-586.S              | 1176 ++++++++++++
 linux-x86/crypto/sha/sha256-586.S            | 2248 ++++++++++++++++++++++++
 linux-x86_64/crypto/bn/rsaz-avx2.S           | 1644 +++++++++++++++++
 linux-x86_64/crypto/bn/rsaz-x86_64.S         |  638 ++++++
 linux-x86_64/crypto/bn/x86_64-mont.S         |  332 +++
 linux-x86_64/crypto/bn/x86_64-mont5.S        | 1130 ++++++++++++
 linux-x86_64/crypto/modes/aesni-gcm-x86_64.S |  754 ++++++++
 linux-x86_64/crypto/modes/ghash-x86_64.S     |  475 +++++
 linux-x86_64/crypto/sha/sha1-x86_64.S        | 1121 ++++++++++++
 linux-x86_64/crypto/sha/sha256-x86_64.S      | 1062 +++++++++++
 linux-x86_64/crypto/sha/sha512-x86_64.S      | 2241 ++++++++++++++++++++++++
 mac-x86/crypto/sha/sha1-586.S                | 1174 ++++++++++++
 mac-x86/crypto/sha/sha256-586.S              | 2248 ++++++++++++++++++++++++
 mac-x86_64/crypto/bn/rsaz-avx2.S             | 1637 +++++++++++++++++
 mac-x86_64/crypto/bn/rsaz-x86_64.S           |  638 ++++++
 mac-x86_64/crypto/bn/x86_64-mont.S           |  331 +++
 mac-x86_64/crypto/bn/x86_64-mont5.S          | 1130 ++++++++++++
 mac-x86_64/crypto/modes/aesni-gcm-x86_64.S   |  750 ++++++++
 mac-x86_64/crypto/modes/ghash-x86_64.S       |  475 +++++
 mac-x86_64/crypto/sha/sha1-x86_64.S          | 1121 ++++++++++++
 mac-x86_64/crypto/sha/sha256-x86_64.S        | 1062 +++++++++++
 mac-x86_64/crypto/sha/sha512-x86_64.S        | 2241 ++++++++++++++++++++++++
 win-x86/crypto/sha/sha1-586.asm              | 1173 ++++++++++++
 win-x86/crypto/sha/sha256-586.asm            | 2248 ++++++++++++++++++++++++
 win-x86_64/crypto/bn/rsaz-avx2.asm           | 1858 +++++++++++++++++++-
 win-x86_64/crypto/bn/rsaz-x86_64.asm         |  638 ++++++
 win-x86_64/crypto/bn/x86_64-mont.asm         |  352 +++
 win-x86_64/crypto/bn/x86_64-mont5.asm        | 1184 ++++++++++++
 win-x86_64/crypto/modes/aesni-gcm-x86_64.asm |  933 ++++++++++
 win-x86_64/crypto/modes/ghash-x86_64.asm     |  515 +++++
 win-x86_64/crypto/sha/sha1-x86_64.asm        | 1152 ++++++++++++
 win-x86_64/crypto/sha/sha256-x86_64.asm      | 1088 +++++++++++
 win-x86_64/crypto/sha/sha512-x86_64.asm      | 2499 ++++++

SHA* gets faster. RSA and AES-GCM seem to be more of a wash and even slower
sometimes!  This is a little concerning. Though when I repeated the latter two,
it's definitely noisy (RSA in particular), so we may wish to repeat in a more
controlled environment. We could also flip some of these toggles to something
other than the highest setting if it seems some of the variants aren't
desirable. We just shouldn't have them enabled or disabled on accident. This
aligns us closer to upstream though.

$ /tmp/bssl.old speed SHA-
Did 5028000 SHA-1 (16 bytes) operations in 1000048us (5027758.7 ops/sec): 80.4 MB/s
Did 1708000 SHA-1 (256 bytes) operations in 1000257us (1707561.2 ops/sec): 437.1 MB/s
Did 73000 SHA-1 (8192 bytes) operations in 1008406us (72391.5 ops/sec): 593.0 MB/s
Did 3041000 SHA-256 (16 bytes) operations in 1000311us (3040054.5 ops/sec): 48.6 MB/s
Did 779000 SHA-256 (256 bytes) operations in 1000820us (778361.7 ops/sec): 199.3 MB/s
Did 26000 SHA-256 (8192 bytes) operations in 1009875us (25745.8 ops/sec): 210.9 MB/s
Did 1837000 SHA-512 (16 bytes) operations in 1000251us (1836539.0 ops/sec): 29.4 MB/s
Did 803000 SHA-512 (256 bytes) operations in 1000969us (802222.6 ops/sec): 205.4 MB/s
Did 41000 SHA-512 (8192 bytes) operations in 1016768us (40323.8 ops/sec): 330.3 MB/s
$ /tmp/bssl.new speed SHA-
Did 5354000 SHA-1 (16 bytes) operations in 1000104us (5353443.2 ops/sec): 85.7 MB/s
Did 1779000 SHA-1 (256 bytes) operations in 1000121us (1778784.8 ops/sec): 455.4 MB/s
Did 87000 SHA-1 (8192 bytes) operations in 1012641us (85914.0 ops/sec): 703.8 MB/s
Did 3517000 SHA-256 (16 bytes) operations in 1000114us (3516599.1 ops/sec): 56.3 MB/s
Did 935000 SHA-256 (256 bytes) operations in 1000096us (934910.2 ops/sec): 239.3 MB/s
Did 38000 SHA-256 (8192 bytes) operations in 1004476us (37830.7 ops/sec): 309.9 MB/s
Did 2930000 SHA-512 (16 bytes) operations in 1000259us (2929241.3 ops/sec): 46.9 MB/s
Did 1008000 SHA-512 (256 bytes) operations in 1000509us (1007487.2 ops/sec): 257.9 MB/s
Did 45000 SHA-512 (8192 bytes) operations in 1000593us (44973.3 ops/sec): 368.4 MB/s

$ /tmp/bssl.old speed RSA
Did 820 RSA 2048 signing operations in 1017008us (806.3 ops/sec)
Did 27000 RSA 2048 verify operations in 1015400us (26590.5 ops/sec)
Did 1292 RSA 2048 (3 prime, e=3) signing operations in 1008185us (1281.5 ops/sec)
Did 65000 RSA 2048 (3 prime, e=3) verify operations in 1011388us (64268.1 ops/sec)
Did 120 RSA 4096 signing operations in 1061027us (113.1 ops/sec)
Did 8208 RSA 4096 verify operations in 1002717us (8185.8 ops/sec)
$ /tmp/bssl.new speed RSA
Did 760 RSA 2048 signing operations in 1003351us (757.5 ops/sec)
Did 25900 RSA 2048 verify operations in 1028931us (25171.8 ops/sec)
Did 1320 RSA 2048 (3 prime, e=3) signing operations in 1040806us (1268.2 ops/sec)
Did 63000 RSA 2048 (3 prime, e=3) verify operations in 1016042us (62005.3 ops/sec)
Did 104 RSA 4096 signing operations in 1008718us (103.1 ops/sec)
Did 6875 RSA 4096 verify operations in 1093441us (6287.5 ops/sec)

$ /tmp/bssl.old speed GCM
Did 5316000 AES-128-GCM (16 bytes) seal operations in 1000082us (5315564.1 ops/sec): 85.0 MB/s
Did 712000 AES-128-GCM (1350 bytes) seal operations in 1000252us (711820.6 ops/sec): 961.0 MB/s
Did 149000 AES-128-GCM (8192 bytes) seal operations in 1003182us (148527.4 ops/sec): 1216.7 MB/s
Did 5919750 AES-256-GCM (16 bytes) seal operations in 1000016us (5919655.3 ops/sec): 94.7 MB/s
Did 800000 AES-256-GCM (1350 bytes) seal operations in 1000951us (799239.9 ops/sec): 1079.0 MB/s
Did 152000 AES-256-GCM (8192 bytes) seal operations in 1000765us (151883.8 ops/sec): 1244.2 MB/s
$ /tmp/bssl.new speed GCM
Did 5315000 AES-128-GCM (16 bytes) seal operations in 1000125us (5314335.7 ops/sec): 85.0 MB/s
Did 755000 AES-128-GCM (1350 bytes) seal operations in 1000878us (754337.7 ops/sec): 1018.4 MB/s
Did 151000 AES-128-GCM (8192 bytes) seal operations in 1005655us (150150.9 ops/sec): 1230.0 MB/s
Did 5913500 AES-256-GCM (16 bytes) seal operations in 1000041us (5913257.6 ops/sec): 94.6 MB/s
Did 782000 AES-256-GCM (1350 bytes) seal operations in 1001484us (780841.2 ops/sec): 1054.1 MB/s
Did 121000 AES-256-GCM (8192 bytes) seal operations in 1006389us (120231.8 ops/sec): 984.9 MB/s

Change-Id: I0efb32f896c597abc7d7e55c31d038528a5c72a1
Reviewed-on: https://boringssl-review.googlesource.com/6260
Reviewed-by: Adam Langley <alangley@gmail.com>
2015-10-26 20:31:30 +00:00

2387 lines
59 KiB
Perl

#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. Rights for redistribution and usage in source and binary
# forms are granted according to the OpenSSL license.
# ====================================================================
#
# sha256/512_block procedure for x86_64.
#
# 40% improvement over compiler-generated code on Opteron. On EM64T
# sha256 was observed to run >80% faster and sha512 - >40%. No magical
# tricks, just straight implementation... I really wonder why gcc
# [being armed with inline assembler] fails to generate as fast code.
# The only thing which is cool about this module is that it's very
# same instruction sequence used for both SHA-256 and SHA-512. In
# former case the instructions operate on 32-bit operands, while in
# latter - on 64-bit ones. All I had to do is to get one flavor right,
# the other one passed the test right away:-)
#
# sha256_block runs in ~1005 cycles on Opteron, which gives you
# asymptotic performance of 64*1000/1005=63.7MBps times CPU clock
# frequency in GHz. sha512_block runs in ~1275 cycles, which results
# in 128*1000/1275=100MBps per GHz. Is there room for improvement?
# Well, if you compare it to IA-64 implementation, which maintains
# X[16] in register bank[!], tends to 4 instructions per CPU clock
# cycle and runs in 1003 cycles, 1275 is very good result for 3-way
# issue Opteron pipeline and X[16] maintained in memory. So that *if*
# there is a way to improve it, *then* the only way would be to try to
# offload X[16] updates to SSE unit, but that would require "deeper"
# loop unroll, which in turn would naturally cause size blow-up, not
# to mention increased complexity! And once again, only *if* it's
# actually possible to noticeably improve overall ILP, instruction
# level parallelism, on a given CPU implementation in this case.
#
# Special note on Intel EM64T. While Opteron CPU exhibits perfect
# perfromance ratio of 1.5 between 64- and 32-bit flavors [see above],
# [currently available] EM64T CPUs apparently are far from it. On the
# contrary, 64-bit version, sha512_block, is ~30% *slower* than 32-bit
# sha256_block:-( This is presumably because 64-bit shifts/rotates
# apparently are not atomic instructions, but implemented in microcode.
#
# May 2012.
#
# Optimization including one of Pavel Semjanov's ideas, alternative
# Maj, resulted in >=5% improvement on most CPUs, +20% SHA256 and
# unfortunately -2% SHA512 on P4 [which nobody should care about
# that much].
#
# June 2012.
#
# Add SIMD code paths, see below for improvement coefficients. SSSE3
# code path was not attempted for SHA512, because improvement is not
# estimated to be high enough, noticeably less than 9%, to justify
# the effort, not on pre-AVX processors. [Obviously with exclusion
# for VIA Nano, but it has SHA512 instruction that is faster and
# should be used instead.] For reference, corresponding estimated
# upper limit for improvement for SSSE3 SHA256 is 28%. The fact that
# higher coefficients are observed on VIA Nano and Bulldozer has more
# to do with specifics of their architecture [which is topic for
# separate discussion].
#
# November 2012.
#
# Add AVX2 code path. Two consecutive input blocks are loaded to
# 256-bit %ymm registers, with data from first block to least
# significant 128-bit halves and data from second to most significant.
# The data is then processed with same SIMD instruction sequence as
# for AVX, but with %ymm as operands. Side effect is increased stack
# frame, 448 additional bytes in SHA256 and 1152 in SHA512, and 1.2KB
# code size increase.
#
# March 2014.
#
# Add support for Intel SHA Extensions.
######################################################################
# Current performance in cycles per processed byte (less is better):
#
# SHA256 SSSE3 AVX/XOP(*) SHA512 AVX/XOP(*)
#
# AMD K8 14.9 - - 9.57 -
# P4 17.3 - - 30.8 -
# Core 2 15.6 13.8(+13%) - 9.97 -
# Westmere 14.8 12.3(+19%) - 9.58 -
# Sandy Bridge 17.4 14.2(+23%) 11.6(+50%(**)) 11.2 8.10(+38%(**))
# Ivy Bridge 12.6 10.5(+20%) 10.3(+22%) 8.17 7.22(+13%)
# Haswell 12.2 9.28(+31%) 7.80(+56%) 7.66 5.40(+42%)
# Bulldozer 21.1 13.6(+54%) 13.6(+54%(***)) 13.5 8.58(+57%)
# VIA Nano 23.0 16.5(+39%) - 14.7 -
# Atom 23.0 18.9(+22%) - 14.7 -
# Silvermont 27.4 20.6(+33%) - 17.5 -
#
# (*) whichever best applicable;
# (**) switch from ror to shrd stands for fair share of improvement;
# (***) execution time is fully determined by remaining integer-only
# part, body_00_15; reducing the amount of SIMD instructions
# below certain limit makes no difference/sense; to conserve
# space SHA256 XOP code path is therefore omitted;
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
# In upstream, this is controlled by shelling out to the compiler to check
# versions, but BoringSSL is intended to be used with pre-generated perlasm
# output, so this isn't useful anyway.
$avx = 2;
# TODO(davidben): Consider enabling the Intel SHA Extensions code once it's
# been tested.
$shaext=0; ### set to zero if compiling for 1.0.1
$avx=1 if (!$shaext && $avx);
open OUT,"| \"$^X\" $xlate $flavour";
*STDOUT=*OUT;
if ($output =~ /512/) {
$func="sha512_block_data_order";
$TABLE="K512";
$SZ=8;
@ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%rax","%rbx","%rcx","%rdx",
"%r8", "%r9", "%r10","%r11");
($T1,$a0,$a1,$a2,$a3)=("%r12","%r13","%r14","%r15","%rdi");
@Sigma0=(28,34,39);
@Sigma1=(14,18,41);
@sigma0=(1, 8, 7);
@sigma1=(19,61, 6);
$rounds=80;
} else {
$func="sha256_block_data_order";
$TABLE="K256";
$SZ=4;
@ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%eax","%ebx","%ecx","%edx",
"%r8d","%r9d","%r10d","%r11d");
($T1,$a0,$a1,$a2,$a3)=("%r12d","%r13d","%r14d","%r15d","%edi");
@Sigma0=( 2,13,22);
@Sigma1=( 6,11,25);
@sigma0=( 7,18, 3);
@sigma1=(17,19,10);
$rounds=64;
}
$ctx="%rdi"; # 1st arg, zapped by $a3
$inp="%rsi"; # 2nd arg
$Tbl="%rbp";
$_ctx="16*$SZ+0*8(%rsp)";
$_inp="16*$SZ+1*8(%rsp)";
$_end="16*$SZ+2*8(%rsp)";
$_rsp="16*$SZ+3*8(%rsp)";
$framesz="16*$SZ+4*8";
sub ROUND_00_15()
{ my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
my $STRIDE=$SZ;
$STRIDE += 16 if ($i%(16/$SZ)==(16/$SZ-1));
$code.=<<___;
ror \$`$Sigma1[2]-$Sigma1[1]`,$a0
mov $f,$a2
xor $e,$a0
ror \$`$Sigma0[2]-$Sigma0[1]`,$a1
xor $g,$a2 # f^g
mov $T1,`$SZ*($i&0xf)`(%rsp)
xor $a,$a1
and $e,$a2 # (f^g)&e
ror \$`$Sigma1[1]-$Sigma1[0]`,$a0
add $h,$T1 # T1+=h
xor $g,$a2 # Ch(e,f,g)=((f^g)&e)^g
ror \$`$Sigma0[1]-$Sigma0[0]`,$a1
xor $e,$a0
add $a2,$T1 # T1+=Ch(e,f,g)
mov $a,$a2
add ($Tbl),$T1 # T1+=K[round]
xor $a,$a1
xor $b,$a2 # a^b, b^c in next round
ror \$$Sigma1[0],$a0 # Sigma1(e)
mov $b,$h
and $a2,$a3
ror \$$Sigma0[0],$a1 # Sigma0(a)
add $a0,$T1 # T1+=Sigma1(e)
xor $a3,$h # h=Maj(a,b,c)=Ch(a^b,c,b)
add $T1,$d # d+=T1
add $T1,$h # h+=T1
lea $STRIDE($Tbl),$Tbl # round++
___
$code.=<<___ if ($i<15);
add $a1,$h # h+=Sigma0(a)
___
($a2,$a3) = ($a3,$a2);
}
sub ROUND_16_XX()
{ my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<___;
mov `$SZ*(($i+1)&0xf)`(%rsp),$a0
mov `$SZ*(($i+14)&0xf)`(%rsp),$a2
mov $a0,$T1
ror \$`$sigma0[1]-$sigma0[0]`,$a0
add $a1,$a # modulo-scheduled h+=Sigma0(a)
mov $a2,$a1
ror \$`$sigma1[1]-$sigma1[0]`,$a2
xor $T1,$a0
shr \$$sigma0[2],$T1
ror \$$sigma0[0],$a0
xor $a1,$a2
shr \$$sigma1[2],$a1
ror \$$sigma1[0],$a2
xor $a0,$T1 # sigma0(X[(i+1)&0xf])
xor $a1,$a2 # sigma1(X[(i+14)&0xf])
add `$SZ*(($i+9)&0xf)`(%rsp),$T1
add `$SZ*($i&0xf)`(%rsp),$T1
mov $e,$a0
add $a2,$T1
mov $a,$a1
___
&ROUND_00_15(@_);
}
$code=<<___;
.text
.extern OPENSSL_ia32cap_P
.globl $func
.type $func,\@function,3
.align 16
$func:
___
$code.=<<___ if ($SZ==4 || $avx);
lea OPENSSL_ia32cap_P(%rip),%r11
mov 0(%r11),%r9d
mov 4(%r11),%r10d
mov 8(%r11),%r11d
___
$code.=<<___ if ($SZ==4 && $shaext);
test \$`1<<29`,%r11d # check for SHA
jnz _shaext_shortcut
___
$code.=<<___ if ($avx && $SZ==8);
test \$`1<<11`,%r10d # check for XOP
jnz .Lxop_shortcut
___
$code.=<<___ if ($avx>1);
and \$`1<<8|1<<5|1<<3`,%r11d # check for BMI2+AVX2+BMI1
cmp \$`1<<8|1<<5|1<<3`,%r11d
je .Lavx2_shortcut
___
$code.=<<___ if ($avx);
and \$`1<<30`,%r9d # mask "Intel CPU" bit
and \$`1<<28|1<<9`,%r10d # mask AVX and SSSE3 bits
or %r9d,%r10d
cmp \$`1<<28|1<<9|1<<30`,%r10d
je .Lavx_shortcut
___
$code.=<<___ if ($SZ==4);
test \$`1<<9`,%r10d
jnz .Lssse3_shortcut
___
$code.=<<___;
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
mov %rsp,%r11 # copy %rsp
shl \$4,%rdx # num*16
sub \$$framesz,%rsp
lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
and \$-64,%rsp # align stack frame
mov $ctx,$_ctx # save ctx, 1st arg
mov $inp,$_inp # save inp, 2nd arh
mov %rdx,$_end # save end pointer, "3rd" arg
mov %r11,$_rsp # save copy of %rsp
.Lprologue:
mov $SZ*0($ctx),$A
mov $SZ*1($ctx),$B
mov $SZ*2($ctx),$C
mov $SZ*3($ctx),$D
mov $SZ*4($ctx),$E
mov $SZ*5($ctx),$F
mov $SZ*6($ctx),$G
mov $SZ*7($ctx),$H
jmp .Lloop
.align 16
.Lloop:
mov $B,$a3
lea $TABLE(%rip),$Tbl
xor $C,$a3 # magic
___
for($i=0;$i<16;$i++) {
$code.=" mov $SZ*$i($inp),$T1\n";
$code.=" mov @ROT[4],$a0\n";
$code.=" mov @ROT[0],$a1\n";
$code.=" bswap $T1\n";
&ROUND_00_15($i,@ROT);
unshift(@ROT,pop(@ROT));
}
$code.=<<___;
jmp .Lrounds_16_xx
.align 16
.Lrounds_16_xx:
___
for(;$i<32;$i++) {
&ROUND_16_XX($i,@ROT);
unshift(@ROT,pop(@ROT));
}
$code.=<<___;
cmpb \$0,`$SZ-1`($Tbl)
jnz .Lrounds_16_xx
mov $_ctx,$ctx
add $a1,$A # modulo-scheduled h+=Sigma0(a)
lea 16*$SZ($inp),$inp
add $SZ*0($ctx),$A
add $SZ*1($ctx),$B
add $SZ*2($ctx),$C
add $SZ*3($ctx),$D
add $SZ*4($ctx),$E
add $SZ*5($ctx),$F
add $SZ*6($ctx),$G
add $SZ*7($ctx),$H
cmp $_end,$inp
mov $A,$SZ*0($ctx)
mov $B,$SZ*1($ctx)
mov $C,$SZ*2($ctx)
mov $D,$SZ*3($ctx)
mov $E,$SZ*4($ctx)
mov $F,$SZ*5($ctx)
mov $G,$SZ*6($ctx)
mov $H,$SZ*7($ctx)
jb .Lloop
mov $_rsp,%rsi
mov (%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbp
mov 40(%rsi),%rbx
lea 48(%rsi),%rsp
.Lepilogue:
ret
.size $func,.-$func
___
if ($SZ==4) {
$code.=<<___;
.align 64
.type $TABLE,\@object
$TABLE:
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
.long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f
.long 0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f
.long 0x03020100,0x0b0a0908,0xffffffff,0xffffffff
.long 0x03020100,0x0b0a0908,0xffffffff,0xffffffff
.long 0xffffffff,0xffffffff,0x03020100,0x0b0a0908
.long 0xffffffff,0xffffffff,0x03020100,0x0b0a0908
.asciz "SHA256 block transform for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
___
} else {
$code.=<<___;
.align 64
.type $TABLE,\@object
$TABLE:
.quad 0x428a2f98d728ae22,0x7137449123ef65cd
.quad 0x428a2f98d728ae22,0x7137449123ef65cd
.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
.quad 0x3956c25bf348b538,0x59f111f1b605d019
.quad 0x3956c25bf348b538,0x59f111f1b605d019
.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
.quad 0xd807aa98a3030242,0x12835b0145706fbe
.quad 0xd807aa98a3030242,0x12835b0145706fbe
.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
.quad 0x9bdc06a725c71235,0xc19bf174cf692694
.quad 0x9bdc06a725c71235,0xc19bf174cf692694
.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
.quad 0x983e5152ee66dfab,0xa831c66d2db43210
.quad 0x983e5152ee66dfab,0xa831c66d2db43210
.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
.quad 0x06ca6351e003826f,0x142929670a0e6e70
.quad 0x06ca6351e003826f,0x142929670a0e6e70
.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
.quad 0x81c2c92e47edaee6,0x92722c851482353b
.quad 0x81c2c92e47edaee6,0x92722c851482353b
.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
.quad 0xd192e819d6ef5218,0xd69906245565a910
.quad 0xd192e819d6ef5218,0xd69906245565a910
.quad 0xf40e35855771202a,0x106aa07032bbd1b8
.quad 0xf40e35855771202a,0x106aa07032bbd1b8
.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
.quad 0x90befffa23631e28,0xa4506cebde82bde9
.quad 0x90befffa23631e28,0xa4506cebde82bde9
.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
.quad 0xca273eceea26619c,0xd186b8c721c0c207
.quad 0xca273eceea26619c,0xd186b8c721c0c207
.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
.quad 0x113f9804bef90dae,0x1b710b35131c471b
.quad 0x113f9804bef90dae,0x1b710b35131c471b
.quad 0x28db77f523047d84,0x32caab7b40c72493
.quad 0x28db77f523047d84,0x32caab7b40c72493
.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
.quad 0x0001020304050607,0x08090a0b0c0d0e0f
.quad 0x0001020304050607,0x08090a0b0c0d0e0f
.asciz "SHA512 block transform for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
___
}
######################################################################
# SIMD code paths
#
if ($SZ==4 && $shaext) {{{
######################################################################
# Intel SHA Extensions implementation of SHA256 update function.
#
my ($ctx,$inp,$num,$Tbl)=("%rdi","%rsi","%rdx","%rcx");
my ($Wi,$ABEF,$CDGH,$TMP,$BSWAP,$ABEF_SAVE,$CDGH_SAVE)=map("%xmm$_",(0..2,7..10));
my @MSG=map("%xmm$_",(3..6));
$code.=<<___;
.type sha256_block_data_order_shaext,\@function,3
.align 64
sha256_block_data_order_shaext:
_shaext_shortcut:
___
$code.=<<___ if ($win64);
lea `-8-5*16`(%rsp),%rsp
movaps %xmm6,-8-5*16(%rax)
movaps %xmm7,-8-4*16(%rax)
movaps %xmm8,-8-3*16(%rax)
movaps %xmm9,-8-2*16(%rax)
movaps %xmm10,-8-1*16(%rax)
.Lprologue_shaext:
___
$code.=<<___;
lea K256+0x80(%rip),$Tbl
movdqu ($ctx),$ABEF # DCBA
movdqu 16($ctx),$CDGH # HGFE
movdqa 0x200-0x80($Tbl),$TMP # byte swap mask
pshufd \$0x1b,$ABEF,$Wi # ABCD
pshufd \$0xb1,$ABEF,$ABEF # CDAB
pshufd \$0x1b,$CDGH,$CDGH # EFGH
movdqa $TMP,$BSWAP # offload
palignr \$8,$CDGH,$ABEF # ABEF
punpcklqdq $Wi,$CDGH # CDGH
jmp .Loop_shaext
.align 16
.Loop_shaext:
movdqu ($inp),@MSG[0]
movdqu 0x10($inp),@MSG[1]
movdqu 0x20($inp),@MSG[2]
pshufb $TMP,@MSG[0]
movdqu 0x30($inp),@MSG[3]
movdqa 0*32-0x80($Tbl),$Wi
paddd @MSG[0],$Wi
pshufb $TMP,@MSG[1]
movdqa $CDGH,$CDGH_SAVE # offload
sha256rnds2 $ABEF,$CDGH # 0-3
pshufd \$0x0e,$Wi,$Wi
nop
movdqa $ABEF,$ABEF_SAVE # offload
sha256rnds2 $CDGH,$ABEF
movdqa 1*32-0x80($Tbl),$Wi
paddd @MSG[1],$Wi
pshufb $TMP,@MSG[2]
sha256rnds2 $ABEF,$CDGH # 4-7
pshufd \$0x0e,$Wi,$Wi
lea 0x40($inp),$inp
sha256msg1 @MSG[1],@MSG[0]
sha256rnds2 $CDGH,$ABEF
movdqa 2*32-0x80($Tbl),$Wi
paddd @MSG[2],$Wi
pshufb $TMP,@MSG[3]
sha256rnds2 $ABEF,$CDGH # 8-11
pshufd \$0x0e,$Wi,$Wi
movdqa @MSG[3],$TMP
palignr \$4,@MSG[2],$TMP
nop
paddd $TMP,@MSG[0]
sha256msg1 @MSG[2],@MSG[1]
sha256rnds2 $CDGH,$ABEF
movdqa 3*32-0x80($Tbl),$Wi
paddd @MSG[3],$Wi
sha256msg2 @MSG[3],@MSG[0]
sha256rnds2 $ABEF,$CDGH # 12-15
pshufd \$0x0e,$Wi,$Wi
movdqa @MSG[0],$TMP
palignr \$4,@MSG[3],$TMP
nop
paddd $TMP,@MSG[1]
sha256msg1 @MSG[3],@MSG[2]
sha256rnds2 $CDGH,$ABEF
___
for($i=4;$i<16-3;$i++) {
$code.=<<___;
movdqa $i*32-0x80($Tbl),$Wi
paddd @MSG[0],$Wi
sha256msg2 @MSG[0],@MSG[1]
sha256rnds2 $ABEF,$CDGH # 16-19...
pshufd \$0x0e,$Wi,$Wi
movdqa @MSG[1],$TMP
palignr \$4,@MSG[0],$TMP
nop
paddd $TMP,@MSG[2]
sha256msg1 @MSG[0],@MSG[3]
sha256rnds2 $CDGH,$ABEF
___
push(@MSG,shift(@MSG));
}
$code.=<<___;
movdqa 13*32-0x80($Tbl),$Wi
paddd @MSG[0],$Wi
sha256msg2 @MSG[0],@MSG[1]
sha256rnds2 $ABEF,$CDGH # 52-55
pshufd \$0x0e,$Wi,$Wi
movdqa @MSG[1],$TMP
palignr \$4,@MSG[0],$TMP
sha256rnds2 $CDGH,$ABEF
paddd $TMP,@MSG[2]
movdqa 14*32-0x80($Tbl),$Wi
paddd @MSG[1],$Wi
sha256rnds2 $ABEF,$CDGH # 56-59
pshufd \$0x0e,$Wi,$Wi
sha256msg2 @MSG[1],@MSG[2]
movdqa $BSWAP,$TMP
sha256rnds2 $CDGH,$ABEF
movdqa 15*32-0x80($Tbl),$Wi
paddd @MSG[2],$Wi
nop
sha256rnds2 $ABEF,$CDGH # 60-63
pshufd \$0x0e,$Wi,$Wi
dec $num
nop
sha256rnds2 $CDGH,$ABEF
paddd $CDGH_SAVE,$CDGH
paddd $ABEF_SAVE,$ABEF
jnz .Loop_shaext
pshufd \$0xb1,$CDGH,$CDGH # DCHG
pshufd \$0x1b,$ABEF,$TMP # FEBA
pshufd \$0xb1,$ABEF,$ABEF # BAFE
punpckhqdq $CDGH,$ABEF # DCBA
palignr \$8,$TMP,$CDGH # HGFE
movdqu $ABEF,($ctx)
movdqu $CDGH,16($ctx)
___
$code.=<<___ if ($win64);
movaps -8-5*16(%rax),%xmm6
movaps -8-4*16(%rax),%xmm7
movaps -8-3*16(%rax),%xmm8
movaps -8-2*16(%rax),%xmm9
movaps -8-1*16(%rax),%xmm10
mov %rax,%rsp
.Lepilogue_shaext:
___
$code.=<<___;
ret
.size sha256_block_data_order_shaext,.-sha256_block_data_order_shaext
___
}}}
{{{
my $a4=$T1;
my ($a,$b,$c,$d,$e,$f,$g,$h);
sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
my $arg = pop;
$arg = "\$$arg" if ($arg*1 eq $arg);
$code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
}
sub body_00_15 () {
(
'($a,$b,$c,$d,$e,$f,$g,$h)=@ROT;'.
'&ror ($a0,$Sigma1[2]-$Sigma1[1])',
'&mov ($a,$a1)',
'&mov ($a4,$f)',
'&ror ($a1,$Sigma0[2]-$Sigma0[1])',
'&xor ($a0,$e)',
'&xor ($a4,$g)', # f^g
'&ror ($a0,$Sigma1[1]-$Sigma1[0])',
'&xor ($a1,$a)',
'&and ($a4,$e)', # (f^g)&e
'&xor ($a0,$e)',
'&add ($h,$SZ*($i&15)."(%rsp)")', # h+=X[i]+K[i]
'&mov ($a2,$a)',
'&xor ($a4,$g)', # Ch(e,f,g)=((f^g)&e)^g
'&ror ($a1,$Sigma0[1]-$Sigma0[0])',
'&xor ($a2,$b)', # a^b, b^c in next round
'&add ($h,$a4)', # h+=Ch(e,f,g)
'&ror ($a0,$Sigma1[0])', # Sigma1(e)
'&and ($a3,$a2)', # (b^c)&(a^b)
'&xor ($a1,$a)',
'&add ($h,$a0)', # h+=Sigma1(e)
'&xor ($a3,$b)', # Maj(a,b,c)=Ch(a^b,c,b)
'&ror ($a1,$Sigma0[0])', # Sigma0(a)
'&add ($d,$h)', # d+=h
'&add ($h,$a3)', # h+=Maj(a,b,c)
'&mov ($a0,$d)',
'&add ($a1,$h);'. # h+=Sigma0(a)
'($a2,$a3) = ($a3,$a2); unshift(@ROT,pop(@ROT)); $i++;'
);
}
######################################################################
# SSSE3 code path
#
if ($SZ==4) { # SHA256 only
my @X = map("%xmm$_",(0..3));
my ($t0,$t1,$t2,$t3, $t4,$t5) = map("%xmm$_",(4..9));
$code.=<<___;
.type ${func}_ssse3,\@function,3
.align 64
${func}_ssse3:
.Lssse3_shortcut:
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
mov %rsp,%r11 # copy %rsp
shl \$4,%rdx # num*16
sub \$`$framesz+$win64*16*4`,%rsp
lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
and \$-64,%rsp # align stack frame
mov $ctx,$_ctx # save ctx, 1st arg
mov $inp,$_inp # save inp, 2nd arh
mov %rdx,$_end # save end pointer, "3rd" arg
mov %r11,$_rsp # save copy of %rsp
___
$code.=<<___ if ($win64);
movaps %xmm6,16*$SZ+32(%rsp)
movaps %xmm7,16*$SZ+48(%rsp)
movaps %xmm8,16*$SZ+64(%rsp)
movaps %xmm9,16*$SZ+80(%rsp)
___
$code.=<<___;
.Lprologue_ssse3:
mov $SZ*0($ctx),$A
mov $SZ*1($ctx),$B
mov $SZ*2($ctx),$C
mov $SZ*3($ctx),$D
mov $SZ*4($ctx),$E
mov $SZ*5($ctx),$F
mov $SZ*6($ctx),$G
mov $SZ*7($ctx),$H
___
$code.=<<___;
#movdqa $TABLE+`$SZ*2*$rounds`+32(%rip),$t4
#movdqa $TABLE+`$SZ*2*$rounds`+64(%rip),$t5
jmp .Lloop_ssse3
.align 16
.Lloop_ssse3:
movdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3
movdqu 0x00($inp),@X[0]
movdqu 0x10($inp),@X[1]
movdqu 0x20($inp),@X[2]
pshufb $t3,@X[0]
movdqu 0x30($inp),@X[3]
lea $TABLE(%rip),$Tbl
pshufb $t3,@X[1]
movdqa 0x00($Tbl),$t0
movdqa 0x20($Tbl),$t1
pshufb $t3,@X[2]
paddd @X[0],$t0
movdqa 0x40($Tbl),$t2
pshufb $t3,@X[3]
movdqa 0x60($Tbl),$t3
paddd @X[1],$t1
paddd @X[2],$t2
paddd @X[3],$t3
movdqa $t0,0x00(%rsp)
mov $A,$a1
movdqa $t1,0x10(%rsp)
mov $B,$a3
movdqa $t2,0x20(%rsp)
xor $C,$a3 # magic
movdqa $t3,0x30(%rsp)
mov $E,$a0
jmp .Lssse3_00_47
.align 16
.Lssse3_00_47:
sub \$`-16*2*$SZ`,$Tbl # size optimization
___
sub Xupdate_256_SSSE3 () {
(
'&movdqa ($t0,@X[1]);',
'&movdqa ($t3,@X[3])',
'&palignr ($t0,@X[0],$SZ)', # X[1..4]
'&palignr ($t3,@X[2],$SZ);', # X[9..12]
'&movdqa ($t1,$t0)',
'&movdqa ($t2,$t0);',
'&psrld ($t0,$sigma0[2])',
'&paddd (@X[0],$t3);', # X[0..3] += X[9..12]
'&psrld ($t2,$sigma0[0])',
'&pshufd ($t3,@X[3],0b11111010)',# X[14..15]
'&pslld ($t1,8*$SZ-$sigma0[1]);'.
'&pxor ($t0,$t2)',
'&psrld ($t2,$sigma0[1]-$sigma0[0]);'.
'&pxor ($t0,$t1)',
'&pslld ($t1,$sigma0[1]-$sigma0[0]);'.
'&pxor ($t0,$t2);',
'&movdqa ($t2,$t3)',
'&pxor ($t0,$t1);', # sigma0(X[1..4])
'&psrld ($t3,$sigma1[2])',
'&paddd (@X[0],$t0);', # X[0..3] += sigma0(X[1..4])
'&psrlq ($t2,$sigma1[0])',
'&pxor ($t3,$t2);',
'&psrlq ($t2,$sigma1[1]-$sigma1[0])',
'&pxor ($t3,$t2)',
'&pshufb ($t3,$t4)', # sigma1(X[14..15])
'&paddd (@X[0],$t3)', # X[0..1] += sigma1(X[14..15])
'&pshufd ($t3,@X[0],0b01010000)',# X[16..17]
'&movdqa ($t2,$t3);',
'&psrld ($t3,$sigma1[2])',
'&psrlq ($t2,$sigma1[0])',
'&pxor ($t3,$t2);',
'&psrlq ($t2,$sigma1[1]-$sigma1[0])',
'&pxor ($t3,$t2);',
'&movdqa ($t2,16*2*$j."($Tbl)")',
'&pshufb ($t3,$t5)',
'&paddd (@X[0],$t3)' # X[2..3] += sigma1(X[16..17])
);
}
sub SSSE3_256_00_47 () {
my $j = shift;
my $body = shift;
my @X = @_;
my @insns = (&$body,&$body,&$body,&$body); # 104 instructions
if (0) {
foreach (Xupdate_256_SSSE3()) { # 36 instructions
eval;
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
}
} else { # squeeze extra 4% on Westmere and 19% on Atom
eval(shift(@insns)); #@
&movdqa ($t0,@X[1]);
eval(shift(@insns));
eval(shift(@insns));
&movdqa ($t3,@X[3]);
eval(shift(@insns)); #@
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); #@
eval(shift(@insns));
&palignr ($t0,@X[0],$SZ); # X[1..4]
eval(shift(@insns));
eval(shift(@insns));
&palignr ($t3,@X[2],$SZ); # X[9..12]
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); #@
&movdqa ($t1,$t0);
eval(shift(@insns));
eval(shift(@insns));
&movdqa ($t2,$t0);
eval(shift(@insns)); #@
eval(shift(@insns));
&psrld ($t0,$sigma0[2]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&paddd (@X[0],$t3); # X[0..3] += X[9..12]
eval(shift(@insns)); #@
eval(shift(@insns));
&psrld ($t2,$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&pshufd ($t3,@X[3],0b11111010); # X[4..15]
eval(shift(@insns));
eval(shift(@insns)); #@
&pslld ($t1,8*$SZ-$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&pxor ($t0,$t2);
eval(shift(@insns)); #@
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); #@
&psrld ($t2,$sigma0[1]-$sigma0[0]);
eval(shift(@insns));
&pxor ($t0,$t1);
eval(shift(@insns));
eval(shift(@insns));
&pslld ($t1,$sigma0[1]-$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&pxor ($t0,$t2);
eval(shift(@insns));
eval(shift(@insns)); #@
&movdqa ($t2,$t3);
eval(shift(@insns));
eval(shift(@insns));
&pxor ($t0,$t1); # sigma0(X[1..4])
eval(shift(@insns)); #@
eval(shift(@insns));
eval(shift(@insns));
&psrld ($t3,$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&paddd (@X[0],$t0); # X[0..3] += sigma0(X[1..4])
eval(shift(@insns)); #@
eval(shift(@insns));
&psrlq ($t2,$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pxor ($t3,$t2);
eval(shift(@insns)); #@
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); #@
&psrlq ($t2,$sigma1[1]-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&pxor ($t3,$t2);
eval(shift(@insns)); #@
eval(shift(@insns));
eval(shift(@insns));
#&pshufb ($t3,$t4); # sigma1(X[14..15])
&pshufd ($t3,$t3,0b10000000);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&psrldq ($t3,8);
eval(shift(@insns));
eval(shift(@insns)); #@
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); #@
&paddd (@X[0],$t3); # X[0..1] += sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pshufd ($t3,@X[0],0b01010000); # X[16..17]
eval(shift(@insns));
eval(shift(@insns)); #@
eval(shift(@insns));
&movdqa ($t2,$t3);
eval(shift(@insns));
eval(shift(@insns));
&psrld ($t3,$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns)); #@
&psrlq ($t2,$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&pxor ($t3,$t2);
eval(shift(@insns)); #@
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); #@
eval(shift(@insns));
&psrlq ($t2,$sigma1[1]-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&pxor ($t3,$t2);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns)); #@
#&pshufb ($t3,$t5);
&pshufd ($t3,$t3,0b00001000);
eval(shift(@insns));
eval(shift(@insns));
&movdqa ($t2,16*2*$j."($Tbl)");
eval(shift(@insns)); #@
eval(shift(@insns));
&pslldq ($t3,8);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&paddd (@X[0],$t3); # X[2..3] += sigma1(X[16..17])
eval(shift(@insns)); #@
eval(shift(@insns));
eval(shift(@insns));
}
&paddd ($t2,@X[0]);
foreach (@insns) { eval; } # remaining instructions
&movdqa (16*$j."(%rsp)",$t2);
}
for ($i=0,$j=0; $j<4; $j++) {
&SSSE3_256_00_47($j,\&body_00_15,@X);
push(@X,shift(@X)); # rotate(@X)
}
&cmpb ($SZ-1+16*2*$SZ."($Tbl)",0);
&jne (".Lssse3_00_47");
for ($i=0; $i<16; ) {
foreach(body_00_15()) { eval; }
}
$code.=<<___;
mov $_ctx,$ctx
mov $a1,$A
add $SZ*0($ctx),$A
lea 16*$SZ($inp),$inp
add $SZ*1($ctx),$B
add $SZ*2($ctx),$C
add $SZ*3($ctx),$D
add $SZ*4($ctx),$E
add $SZ*5($ctx),$F
add $SZ*6($ctx),$G
add $SZ*7($ctx),$H
cmp $_end,$inp
mov $A,$SZ*0($ctx)
mov $B,$SZ*1($ctx)
mov $C,$SZ*2($ctx)
mov $D,$SZ*3($ctx)
mov $E,$SZ*4($ctx)
mov $F,$SZ*5($ctx)
mov $G,$SZ*6($ctx)
mov $H,$SZ*7($ctx)
jb .Lloop_ssse3
mov $_rsp,%rsi
___
$code.=<<___ if ($win64);
movaps 16*$SZ+32(%rsp),%xmm6
movaps 16*$SZ+48(%rsp),%xmm7
movaps 16*$SZ+64(%rsp),%xmm8
movaps 16*$SZ+80(%rsp),%xmm9
___
$code.=<<___;
mov (%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbp
mov 40(%rsi),%rbx
lea 48(%rsi),%rsp
.Lepilogue_ssse3:
ret
.size ${func}_ssse3,.-${func}_ssse3
___
}
if ($avx) {{
######################################################################
# XOP code path
#
if ($SZ==8) { # SHA512 only
$code.=<<___;
.type ${func}_xop,\@function,3
.align 64
${func}_xop:
.Lxop_shortcut:
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
mov %rsp,%r11 # copy %rsp
shl \$4,%rdx # num*16
sub \$`$framesz+$win64*16*($SZ==4?4:6)`,%rsp
lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
and \$-64,%rsp # align stack frame
mov $ctx,$_ctx # save ctx, 1st arg
mov $inp,$_inp # save inp, 2nd arh
mov %rdx,$_end # save end pointer, "3rd" arg
mov %r11,$_rsp # save copy of %rsp
___
$code.=<<___ if ($win64);
movaps %xmm6,16*$SZ+32(%rsp)
movaps %xmm7,16*$SZ+48(%rsp)
movaps %xmm8,16*$SZ+64(%rsp)
movaps %xmm9,16*$SZ+80(%rsp)
___
$code.=<<___ if ($win64 && $SZ>4);
movaps %xmm10,16*$SZ+96(%rsp)
movaps %xmm11,16*$SZ+112(%rsp)
___
$code.=<<___;
.Lprologue_xop:
vzeroupper
mov $SZ*0($ctx),$A
mov $SZ*1($ctx),$B
mov $SZ*2($ctx),$C
mov $SZ*3($ctx),$D
mov $SZ*4($ctx),$E
mov $SZ*5($ctx),$F
mov $SZ*6($ctx),$G
mov $SZ*7($ctx),$H
jmp .Lloop_xop
___
if ($SZ==4) { # SHA256
my @X = map("%xmm$_",(0..3));
my ($t0,$t1,$t2,$t3) = map("%xmm$_",(4..7));
$code.=<<___;
.align 16
.Lloop_xop:
vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3
vmovdqu 0x00($inp),@X[0]
vmovdqu 0x10($inp),@X[1]
vmovdqu 0x20($inp),@X[2]
vmovdqu 0x30($inp),@X[3]
vpshufb $t3,@X[0],@X[0]
lea $TABLE(%rip),$Tbl
vpshufb $t3,@X[1],@X[1]
vpshufb $t3,@X[2],@X[2]
vpaddd 0x00($Tbl),@X[0],$t0
vpshufb $t3,@X[3],@X[3]
vpaddd 0x20($Tbl),@X[1],$t1
vpaddd 0x40($Tbl),@X[2],$t2
vpaddd 0x60($Tbl),@X[3],$t3
vmovdqa $t0,0x00(%rsp)
mov $A,$a1
vmovdqa $t1,0x10(%rsp)
mov $B,$a3
vmovdqa $t2,0x20(%rsp)
xor $C,$a3 # magic
vmovdqa $t3,0x30(%rsp)
mov $E,$a0
jmp .Lxop_00_47
.align 16
.Lxop_00_47:
sub \$`-16*2*$SZ`,$Tbl # size optimization
___
sub XOP_256_00_47 () {
my $j = shift;
my $body = shift;
my @X = @_;
my @insns = (&$body,&$body,&$body,&$body); # 104 instructions
&vpalignr ($t0,@X[1],@X[0],$SZ); # X[1..4]
eval(shift(@insns));
eval(shift(@insns));
&vpalignr ($t3,@X[3],@X[2],$SZ); # X[9..12]
eval(shift(@insns));
eval(shift(@insns));
&vprotd ($t1,$t0,8*$SZ-$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&vpsrld ($t0,$t0,$sigma0[2]);
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@X[0],@X[0],$t3); # X[0..3] += X[9..12]
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vprotd ($t2,$t1,$sigma0[1]-$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&vpxor ($t0,$t0,$t1);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vprotd ($t3,@X[3],8*$SZ-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&vpxor ($t0,$t0,$t2); # sigma0(X[1..4])
eval(shift(@insns));
eval(shift(@insns));
&vpsrld ($t2,@X[3],$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@X[0],@X[0],$t0); # X[0..3] += sigma0(X[1..4])
eval(shift(@insns));
eval(shift(@insns));
&vprotd ($t1,$t3,$sigma1[1]-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vpxor ($t3,$t3,$t2);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpxor ($t3,$t3,$t1); # sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpsrldq ($t3,$t3,8);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@X[0],@X[0],$t3); # X[0..1] += sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vprotd ($t3,@X[0],8*$SZ-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&vpsrld ($t2,@X[0],$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&vprotd ($t1,$t3,$sigma1[1]-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vpxor ($t3,$t3,$t2);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpxor ($t3,$t3,$t1); # sigma1(X[16..17])
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpslldq ($t3,$t3,8); # 22 instructions
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpaddd (@X[0],@X[0],$t3); # X[2..3] += sigma1(X[16..17])
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpaddd ($t2,@X[0],16*2*$j."($Tbl)");
foreach (@insns) { eval; } # remaining instructions
&vmovdqa (16*$j."(%rsp)",$t2);
}
for ($i=0,$j=0; $j<4; $j++) {
&XOP_256_00_47($j,\&body_00_15,@X);
push(@X,shift(@X)); # rotate(@X)
}
&cmpb ($SZ-1+16*2*$SZ."($Tbl)",0);
&jne (".Lxop_00_47");
for ($i=0; $i<16; ) {
foreach(body_00_15()) { eval; }
}
} else { # SHA512
my @X = map("%xmm$_",(0..7));
my ($t0,$t1,$t2,$t3) = map("%xmm$_",(8..11));
$code.=<<___;
.align 16
.Lloop_xop:
vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3
vmovdqu 0x00($inp),@X[0]
lea $TABLE+0x80(%rip),$Tbl # size optimization
vmovdqu 0x10($inp),@X[1]
vmovdqu 0x20($inp),@X[2]
vpshufb $t3,@X[0],@X[0]
vmovdqu 0x30($inp),@X[3]
vpshufb $t3,@X[1],@X[1]
vmovdqu 0x40($inp),@X[4]
vpshufb $t3,@X[2],@X[2]
vmovdqu 0x50($inp),@X[5]
vpshufb $t3,@X[3],@X[3]
vmovdqu 0x60($inp),@X[6]
vpshufb $t3,@X[4],@X[4]
vmovdqu 0x70($inp),@X[7]
vpshufb $t3,@X[5],@X[5]
vpaddq -0x80($Tbl),@X[0],$t0
vpshufb $t3,@X[6],@X[6]
vpaddq -0x60($Tbl),@X[1],$t1
vpshufb $t3,@X[7],@X[7]
vpaddq -0x40($Tbl),@X[2],$t2
vpaddq -0x20($Tbl),@X[3],$t3
vmovdqa $t0,0x00(%rsp)
vpaddq 0x00($Tbl),@X[4],$t0
vmovdqa $t1,0x10(%rsp)
vpaddq 0x20($Tbl),@X[5],$t1
vmovdqa $t2,0x20(%rsp)
vpaddq 0x40($Tbl),@X[6],$t2
vmovdqa $t3,0x30(%rsp)
vpaddq 0x60($Tbl),@X[7],$t3
vmovdqa $t0,0x40(%rsp)
mov $A,$a1
vmovdqa $t1,0x50(%rsp)
mov $B,$a3
vmovdqa $t2,0x60(%rsp)
xor $C,$a3 # magic
vmovdqa $t3,0x70(%rsp)
mov $E,$a0
jmp .Lxop_00_47
.align 16
.Lxop_00_47:
add \$`16*2*$SZ`,$Tbl
___
sub XOP_512_00_47 () {
my $j = shift;
my $body = shift;
my @X = @_;
my @insns = (&$body,&$body); # 52 instructions
&vpalignr ($t0,@X[1],@X[0],$SZ); # X[1..2]
eval(shift(@insns));
eval(shift(@insns));
&vpalignr ($t3,@X[5],@X[4],$SZ); # X[9..10]
eval(shift(@insns));
eval(shift(@insns));
&vprotq ($t1,$t0,8*$SZ-$sigma0[1]);
eval(shift(@insns));
eval(shift(@insns));
&vpsrlq ($t0,$t0,$sigma0[2]);
eval(shift(@insns));
eval(shift(@insns));
&vpaddq (@X[0],@X[0],$t3); # X[0..1] += X[9..10]
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vprotq ($t2,$t1,$sigma0[1]-$sigma0[0]);
eval(shift(@insns));
eval(shift(@insns));
&vpxor ($t0,$t0,$t1);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vprotq ($t3,@X[7],8*$SZ-$sigma1[1]);
eval(shift(@insns));
eval(shift(@insns));
&vpxor ($t0,$t0,$t2); # sigma0(X[1..2])
eval(shift(@insns));
eval(shift(@insns));
&vpsrlq ($t2,@X[7],$sigma1[2]);
eval(shift(@insns));
eval(shift(@insns));
&vpaddq (@X[0],@X[0],$t0); # X[0..1] += sigma0(X[1..2])
eval(shift(@insns));
eval(shift(@insns));
&vprotq ($t1,$t3,$sigma1[1]-$sigma1[0]);
eval(shift(@insns));
eval(shift(@insns));
&vpxor ($t3,$t3,$t2);
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpxor ($t3,$t3,$t1); # sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpaddq (@X[0],@X[0],$t3); # X[0..1] += sigma1(X[14..15])
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
&vpaddq ($t2,@X[0],16*2*$j-0x80."($Tbl)");
foreach (@insns) { eval; } # remaining instructions
&vmovdqa (16*$j."(%rsp)",$t2);
}
for ($i=0,$j=0; $j<8; $j++) {
&XOP_512_00_47($j,\&body_00_15,@X);
push(@X,shift(@X)); # rotate(@X)
}
&cmpb ($SZ-1+16*2*$SZ-0x80."($Tbl)",0);
&jne (".Lxop_00_47");
for ($i=0; $i<16; ) {
foreach(body_00_15()) { eval; }
}
}
$code.=<<___;
mov $_ctx,$ctx
mov $a1,$A
add $SZ*0($ctx),$A
lea 16*$SZ($inp),$inp
add $SZ*1($ctx),$B
add $SZ*2($ctx),$C
add $SZ*3($ctx),$D
add $SZ*4($ctx),$E
add $SZ*5($ctx),$F
add $SZ*6($ctx),$G
add $SZ*7($ctx),$H
cmp $_end,$inp
mov $A,$SZ*0($ctx)
mov $B,$SZ*1($ctx)
mov $C,$SZ*2($ctx)
mov $D,$SZ*3($ctx)
mov $E,$SZ*4($ctx)
mov $F,$SZ*5($ctx)
mov $G,$SZ*6($ctx)
mov $H,$SZ*7($ctx)
jb .Lloop_xop
mov $_rsp,%rsi
vzeroupper
___
$code.=<<___ if ($win64);
movaps 16*$SZ+32(%rsp),%xmm6
movaps 16*$SZ+48(%rsp),%xmm7
movaps 16*$SZ+64(%rsp),%xmm8
movaps 16*$SZ+80(%rsp),%xmm9
___
$code.=<<___ if ($win64 && $SZ>4);
movaps 16*$SZ+96(%rsp),%xmm10
movaps 16*$SZ+112(%rsp),%xmm11
___
$code.=<<___;
mov (%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbp
mov 40(%rsi),%rbx
lea 48(%rsi),%rsp
.Lepilogue_xop:
ret
.size ${func}_xop,.-${func}_xop
___
}
######################################################################
# AVX+shrd code path
#
local *ror = sub { &shrd(@_[0],@_) };
$code.=<<___;
.type ${func}_avx,\@function,3
.align 64
${func}_avx:
.Lavx_shortcut:
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
mov %rsp,%r11 # copy %rsp
shl \$4,%rdx # num*16
sub \$`$framesz+$win64*16*($SZ==4?4:6)`,%rsp
lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
and \$-64,%rsp # align stack frame
mov $ctx,$_ctx # save ctx, 1st arg
mov $inp,$_inp # save inp, 2nd arh
mov %rdx,$_end # save end pointer, "3rd" arg
mov %r11,$_rsp # save copy of %rsp
___
$code.=<<___ if ($win64);
movaps %xmm6,16*$SZ+32(%rsp)
movaps %xmm7,16*$SZ+48(%rsp)
movaps %xmm8,16*$SZ+64(%rsp)
movaps %xmm9,16*$SZ+80(%rsp)
___
$code.=<<___ if ($win64 && $SZ>4);
movaps %xmm10,16*$SZ+96(%rsp)
movaps %xmm11,16*$SZ+112(%rsp)
___
$code.=<<___;
.Lprologue_avx:
vzeroupper
mov $SZ*0($ctx),$A
mov $SZ*1($ctx),$B
mov $SZ*2($ctx),$C
mov $SZ*3($ctx),$D
mov $SZ*4($ctx),$E
mov $SZ*5($ctx),$F
mov $SZ*6($ctx),$G
mov $SZ*7($ctx),$H
___
if ($SZ==4) { # SHA256
my @X = map("%xmm$_",(0..3));
my ($t0,$t1,$t2,$t3, $t4,$t5) = map("%xmm$_",(4..9));
$code.=<<___;
vmovdqa $TABLE+`$SZ*2*$rounds`+32(%rip),$t4
vmovdqa $TABLE+`$SZ*2*$rounds`+64(%rip),$t5
jmp .Lloop_avx
.align 16
.Lloop_avx:
vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3
vmovdqu 0x00($inp),@X[0]
vmovdqu 0x10($inp),@X[1]
vmovdqu 0x20($inp),@X[2]
vmovdqu 0x30($inp),@X[3]
vpshufb $t3,@X[0],@X[0]
lea $TABLE(%rip),$Tbl
vpshufb $t3,@X[1],@X[1]
vpshufb $t3,@X[2],@X[2]
vpaddd 0x00($Tbl),@X[0],$t0
vpshufb $t3,@X[3],@X[3]
vpaddd 0x20($Tbl),@X[1],$t1
vpaddd 0x40($Tbl),@X[2],$t2
vpaddd 0x60($Tbl),@X[3],$t3
vmovdqa $t0,0x00(%rsp)
mov $A,$a1
vmovdqa $t1,0x10(%rsp)
mov $B,$a3
vmovdqa $t2,0x20(%rsp)
xor $C,$a3 # magic
vmovdqa $t3,0x30(%rsp)
mov $E,$a0
jmp .Lavx_00_47
.align 16
.Lavx_00_47:
sub \$`-16*2*$SZ`,$Tbl # size optimization
___
sub Xupdate_256_AVX () {
(
'&vpalignr ($t0,@X[1],@X[0],$SZ)', # X[1..4]
'&vpalignr ($t3,@X[3],@X[2],$SZ)', # X[9..12]
'&vpsrld ($t2,$t0,$sigma0[0]);',
'&vpaddd (@X[0],@X[0],$t3)', # X[0..3] += X[9..12]
'&vpsrld ($t3,$t0,$sigma0[2])',
'&vpslld ($t1,$t0,8*$SZ-$sigma0[1]);',
'&vpxor ($t0,$t3,$t2)',
'&vpshufd ($t3,@X[3],0b11111010)',# X[14..15]
'&vpsrld ($t2,$t2,$sigma0[1]-$sigma0[0]);',
'&vpxor ($t0,$t0,$t1)',
'&vpslld ($t1,$t1,$sigma0[1]-$sigma0[0]);',
'&vpxor ($t0,$t0,$t2)',
'&vpsrld ($t2,$t3,$sigma1[2]);',
'&vpxor ($t0,$t0,$t1)', # sigma0(X[1..4])
'&vpsrlq ($t3,$t3,$sigma1[0]);',
'&vpaddd (@X[0],@X[0],$t0)', # X[0..3] += sigma0(X[1..4])
'&vpxor ($t2,$t2,$t3);',
'&vpsrlq ($t3,$t3,$sigma1[1]-$sigma1[0])',
'&vpxor ($t2,$t2,$t3)',
'&vpshufb ($t2,$t2,$t4)', # sigma1(X[14..15])
'&vpaddd (@X[0],@X[0],$t2)', # X[0..1] += sigma1(X[14..15])
'&vpshufd ($t3,@X[0],0b01010000)',# X[16..17]
'&vpsrld ($t2,$t3,$sigma1[2])',
'&vpsrlq ($t3,$t3,$sigma1[0])',
'&vpxor ($t2,$t2,$t3);',
'&vpsrlq ($t3,$t3,$sigma1[1]-$sigma1[0])',
'&vpxor ($t2,$t2,$t3)',
'&vpshufb ($t2,$t2,$t5)',
'&vpaddd (@X[0],@X[0],$t2)' # X[2..3] += sigma1(X[16..17])
);
}
sub AVX_256_00_47 () {
my $j = shift;
my $body = shift;
my @X = @_;
my @insns = (&$body,&$body,&$body,&$body); # 104 instructions
foreach (Xupdate_256_AVX()) { # 29 instructions
eval;
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
}
&vpaddd ($t2,@X[0],16*2*$j."($Tbl)");
foreach (@insns) { eval; } # remaining instructions
&vmovdqa (16*$j."(%rsp)",$t2);
}
for ($i=0,$j=0; $j<4; $j++) {
&AVX_256_00_47($j,\&body_00_15,@X);
push(@X,shift(@X)); # rotate(@X)
}
&cmpb ($SZ-1+16*2*$SZ."($Tbl)",0);
&jne (".Lavx_00_47");
for ($i=0; $i<16; ) {
foreach(body_00_15()) { eval; }
}
} else { # SHA512
my @X = map("%xmm$_",(0..7));
my ($t0,$t1,$t2,$t3) = map("%xmm$_",(8..11));
$code.=<<___;
jmp .Lloop_avx
.align 16
.Lloop_avx:
vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3
vmovdqu 0x00($inp),@X[0]
lea $TABLE+0x80(%rip),$Tbl # size optimization
vmovdqu 0x10($inp),@X[1]
vmovdqu 0x20($inp),@X[2]
vpshufb $t3,@X[0],@X[0]
vmovdqu 0x30($inp),@X[3]
vpshufb $t3,@X[1],@X[1]
vmovdqu 0x40($inp),@X[4]
vpshufb $t3,@X[2],@X[2]
vmovdqu 0x50($inp),@X[5]
vpshufb $t3,@X[3],@X[3]
vmovdqu 0x60($inp),@X[6]
vpshufb $t3,@X[4],@X[4]
vmovdqu 0x70($inp),@X[7]
vpshufb $t3,@X[5],@X[5]
vpaddq -0x80($Tbl),@X[0],$t0
vpshufb $t3,@X[6],@X[6]
vpaddq -0x60($Tbl),@X[1],$t1
vpshufb $t3,@X[7],@X[7]
vpaddq -0x40($Tbl),@X[2],$t2
vpaddq -0x20($Tbl),@X[3],$t3
vmovdqa $t0,0x00(%rsp)
vpaddq 0x00($Tbl),@X[4],$t0
vmovdqa $t1,0x10(%rsp)
vpaddq 0x20($Tbl),@X[5],$t1
vmovdqa $t2,0x20(%rsp)
vpaddq 0x40($Tbl),@X[6],$t2
vmovdqa $t3,0x30(%rsp)
vpaddq 0x60($Tbl),@X[7],$t3
vmovdqa $t0,0x40(%rsp)
mov $A,$a1
vmovdqa $t1,0x50(%rsp)
mov $B,$a3
vmovdqa $t2,0x60(%rsp)
xor $C,$a3 # magic
vmovdqa $t3,0x70(%rsp)
mov $E,$a0
jmp .Lavx_00_47
.align 16
.Lavx_00_47:
add \$`16*2*$SZ`,$Tbl
___
sub Xupdate_512_AVX () {
(
'&vpalignr ($t0,@X[1],@X[0],$SZ)', # X[1..2]
'&vpalignr ($t3,@X[5],@X[4],$SZ)', # X[9..10]
'&vpsrlq ($t2,$t0,$sigma0[0])',
'&vpaddq (@X[0],@X[0],$t3);', # X[0..1] += X[9..10]
'&vpsrlq ($t3,$t0,$sigma0[2])',
'&vpsllq ($t1,$t0,8*$SZ-$sigma0[1]);',
'&vpxor ($t0,$t3,$t2)',
'&vpsrlq ($t2,$t2,$sigma0[1]-$sigma0[0]);',
'&vpxor ($t0,$t0,$t1)',
'&vpsllq ($t1,$t1,$sigma0[1]-$sigma0[0]);',
'&vpxor ($t0,$t0,$t2)',
'&vpsrlq ($t3,@X[7],$sigma1[2]);',
'&vpxor ($t0,$t0,$t1)', # sigma0(X[1..2])
'&vpsllq ($t2,@X[7],8*$SZ-$sigma1[1]);',
'&vpaddq (@X[0],@X[0],$t0)', # X[0..1] += sigma0(X[1..2])
'&vpsrlq ($t1,@X[7],$sigma1[0]);',
'&vpxor ($t3,$t3,$t2)',
'&vpsllq ($t2,$t2,$sigma1[1]-$sigma1[0]);',
'&vpxor ($t3,$t3,$t1)',
'&vpsrlq ($t1,$t1,$sigma1[1]-$sigma1[0]);',
'&vpxor ($t3,$t3,$t2)',
'&vpxor ($t3,$t3,$t1)', # sigma1(X[14..15])
'&vpaddq (@X[0],@X[0],$t3)', # X[0..1] += sigma1(X[14..15])
);
}
sub AVX_512_00_47 () {
my $j = shift;
my $body = shift;
my @X = @_;
my @insns = (&$body,&$body); # 52 instructions
foreach (Xupdate_512_AVX()) { # 23 instructions
eval;
eval(shift(@insns));
eval(shift(@insns));
}
&vpaddq ($t2,@X[0],16*2*$j-0x80."($Tbl)");
foreach (@insns) { eval; } # remaining instructions
&vmovdqa (16*$j."(%rsp)",$t2);
}
for ($i=0,$j=0; $j<8; $j++) {
&AVX_512_00_47($j,\&body_00_15,@X);
push(@X,shift(@X)); # rotate(@X)
}
&cmpb ($SZ-1+16*2*$SZ-0x80."($Tbl)",0);
&jne (".Lavx_00_47");
for ($i=0; $i<16; ) {
foreach(body_00_15()) { eval; }
}
}
$code.=<<___;
mov $_ctx,$ctx
mov $a1,$A
add $SZ*0($ctx),$A
lea 16*$SZ($inp),$inp
add $SZ*1($ctx),$B
add $SZ*2($ctx),$C
add $SZ*3($ctx),$D
add $SZ*4($ctx),$E
add $SZ*5($ctx),$F
add $SZ*6($ctx),$G
add $SZ*7($ctx),$H
cmp $_end,$inp
mov $A,$SZ*0($ctx)
mov $B,$SZ*1($ctx)
mov $C,$SZ*2($ctx)
mov $D,$SZ*3($ctx)
mov $E,$SZ*4($ctx)
mov $F,$SZ*5($ctx)
mov $G,$SZ*6($ctx)
mov $H,$SZ*7($ctx)
jb .Lloop_avx
mov $_rsp,%rsi
vzeroupper
___
$code.=<<___ if ($win64);
movaps 16*$SZ+32(%rsp),%xmm6
movaps 16*$SZ+48(%rsp),%xmm7
movaps 16*$SZ+64(%rsp),%xmm8
movaps 16*$SZ+80(%rsp),%xmm9
___
$code.=<<___ if ($win64 && $SZ>4);
movaps 16*$SZ+96(%rsp),%xmm10
movaps 16*$SZ+112(%rsp),%xmm11
___
$code.=<<___;
mov (%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbp
mov 40(%rsi),%rbx
lea 48(%rsi),%rsp
.Lepilogue_avx:
ret
.size ${func}_avx,.-${func}_avx
___
if ($avx>1) {{
######################################################################
# AVX2+BMI code path
#
my $a5=$SZ==4?"%esi":"%rsi"; # zap $inp
my $PUSH8=8*2*$SZ;
use integer;
sub bodyx_00_15 () {
# at start $a1 should be zero, $a3 - $b^$c and $a4 copy of $f
(
'($a,$b,$c,$d,$e,$f,$g,$h)=@ROT;'.
'&add ($h,(32*($i/(16/$SZ))+$SZ*($i%(16/$SZ)))%$PUSH8.$base)', # h+=X[i]+K[i]
'&and ($a4,$e)', # f&e
'&rorx ($a0,$e,$Sigma1[2])',
'&rorx ($a2,$e,$Sigma1[1])',
'&lea ($a,"($a,$a1)")', # h+=Sigma0(a) from the past
'&lea ($h,"($h,$a4)")',
'&andn ($a4,$e,$g)', # ~e&g
'&xor ($a0,$a2)',
'&rorx ($a1,$e,$Sigma1[0])',
'&lea ($h,"($h,$a4)")', # h+=Ch(e,f,g)=(e&f)+(~e&g)
'&xor ($a0,$a1)', # Sigma1(e)
'&mov ($a2,$a)',
'&rorx ($a4,$a,$Sigma0[2])',
'&lea ($h,"($h,$a0)")', # h+=Sigma1(e)
'&xor ($a2,$b)', # a^b, b^c in next round
'&rorx ($a1,$a,$Sigma0[1])',
'&rorx ($a0,$a,$Sigma0[0])',
'&lea ($d,"($d,$h)")', # d+=h
'&and ($a3,$a2)', # (b^c)&(a^b)
'&xor ($a1,$a4)',
'&xor ($a3,$b)', # Maj(a,b,c)=Ch(a^b,c,b)
'&xor ($a1,$a0)', # Sigma0(a)
'&lea ($h,"($h,$a3)");'. # h+=Maj(a,b,c)
'&mov ($a4,$e)', # copy of f in future
'($a2,$a3) = ($a3,$a2); unshift(@ROT,pop(@ROT)); $i++;'
);
# and at the finish one has to $a+=$a1
}
$code.=<<___;
.type ${func}_avx2,\@function,3
.align 64
${func}_avx2:
.Lavx2_shortcut:
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
mov %rsp,%r11 # copy %rsp
sub \$`2*$SZ*$rounds+4*8+$win64*16*($SZ==4?4:6)`,%rsp
shl \$4,%rdx # num*16
and \$-256*$SZ,%rsp # align stack frame
lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
add \$`2*$SZ*($rounds-8)`,%rsp
mov $ctx,$_ctx # save ctx, 1st arg
mov $inp,$_inp # save inp, 2nd arh
mov %rdx,$_end # save end pointer, "3rd" arg
mov %r11,$_rsp # save copy of %rsp
___
$code.=<<___ if ($win64);
movaps %xmm6,16*$SZ+32(%rsp)
movaps %xmm7,16*$SZ+48(%rsp)
movaps %xmm8,16*$SZ+64(%rsp)
movaps %xmm9,16*$SZ+80(%rsp)
___
$code.=<<___ if ($win64 && $SZ>4);
movaps %xmm10,16*$SZ+96(%rsp)
movaps %xmm11,16*$SZ+112(%rsp)
___
$code.=<<___;
.Lprologue_avx2:
vzeroupper
sub \$-16*$SZ,$inp # inp++, size optimization
mov $SZ*0($ctx),$A
mov $inp,%r12 # borrow $T1
mov $SZ*1($ctx),$B
cmp %rdx,$inp # $_end
mov $SZ*2($ctx),$C
cmove %rsp,%r12 # next block or random data
mov $SZ*3($ctx),$D
mov $SZ*4($ctx),$E
mov $SZ*5($ctx),$F
mov $SZ*6($ctx),$G
mov $SZ*7($ctx),$H
___
if ($SZ==4) { # SHA256
my @X = map("%ymm$_",(0..3));
my ($t0,$t1,$t2,$t3, $t4,$t5) = map("%ymm$_",(4..9));
$code.=<<___;
vmovdqa $TABLE+`$SZ*2*$rounds`+32(%rip),$t4
vmovdqa $TABLE+`$SZ*2*$rounds`+64(%rip),$t5
jmp .Loop_avx2
.align 16
.Loop_avx2:
vmovdqa $TABLE+`$SZ*2*$rounds`(%rip),$t3
vmovdqu -16*$SZ+0($inp),%xmm0
vmovdqu -16*$SZ+16($inp),%xmm1
vmovdqu -16*$SZ+32($inp),%xmm2
vmovdqu -16*$SZ+48($inp),%xmm3
#mov $inp,$_inp # offload $inp
vinserti128 \$1,(%r12),@X[0],@X[0]
vinserti128 \$1,16(%r12),@X[1],@X[1]
vpshufb $t3,@X[0],@X[0]
vinserti128 \$1,32(%r12),@X[2],@X[2]
vpshufb $t3,@X[1],@X[1]
vinserti128 \$1,48(%r12),@X[3],@X[3]
lea $TABLE(%rip),$Tbl
vpshufb $t3,@X[2],@X[2]
vpaddd 0x00($Tbl),@X[0],$t0
vpshufb $t3,@X[3],@X[3]
vpaddd 0x20($Tbl),@X[1],$t1
vpaddd 0x40($Tbl),@X[2],$t2
vpaddd 0x60($Tbl),@X[3],$t3
vmovdqa $t0,0x00(%rsp)
xor $a1,$a1
vmovdqa $t1,0x20(%rsp)
lea -$PUSH8(%rsp),%rsp
mov $B,$a3
vmovdqa $t2,0x00(%rsp)
xor $C,$a3 # magic
vmovdqa $t3,0x20(%rsp)
mov $F,$a4
sub \$-16*2*$SZ,$Tbl # size optimization
jmp .Lavx2_00_47
.align 16
.Lavx2_00_47:
___
sub AVX2_256_00_47 () {
my $j = shift;
my $body = shift;
my @X = @_;
my @insns = (&$body,&$body,&$body,&$body); # 96 instructions
my $base = "+2*$PUSH8(%rsp)";
&lea ("%rsp","-$PUSH8(%rsp)") if (($j%2)==0);
foreach (Xupdate_256_AVX()) { # 29 instructions
eval;
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
}
&vpaddd ($t2,@X[0],16*2*$j."($Tbl)");
foreach (@insns) { eval; } # remaining instructions
&vmovdqa ((32*$j)%$PUSH8."(%rsp)",$t2);
}
for ($i=0,$j=0; $j<4; $j++) {
&AVX2_256_00_47($j,\&bodyx_00_15,@X);
push(@X,shift(@X)); # rotate(@X)
}
&lea ($Tbl,16*2*$SZ."($Tbl)");
&cmpb (($SZ-1)."($Tbl)",0);
&jne (".Lavx2_00_47");
for ($i=0; $i<16; ) {
my $base=$i<8?"+$PUSH8(%rsp)":"(%rsp)";
foreach(bodyx_00_15()) { eval; }
}
} else { # SHA512
my @X = map("%ymm$_",(0..7));
my ($t0,$t1,$t2,$t3) = map("%ymm$_",(8..11));
$code.=<<___;
jmp .Loop_avx2
.align 16
.Loop_avx2:
vmovdqu -16*$SZ($inp),%xmm0
vmovdqu -16*$SZ+16($inp),%xmm1
vmovdqu -16*$SZ+32($inp),%xmm2
lea $TABLE+0x80(%rip),$Tbl # size optimization
vmovdqu -16*$SZ+48($inp),%xmm3
vmovdqu -16*$SZ+64($inp),%xmm4
vmovdqu -16*$SZ+80($inp),%xmm5
vmovdqu -16*$SZ+96($inp),%xmm6
vmovdqu -16*$SZ+112($inp),%xmm7
#mov $inp,$_inp # offload $inp
vmovdqa `$SZ*2*$rounds-0x80`($Tbl),$t2
vinserti128 \$1,(%r12),@X[0],@X[0]
vinserti128 \$1,16(%r12),@X[1],@X[1]
vpshufb $t2,@X[0],@X[0]
vinserti128 \$1,32(%r12),@X[2],@X[2]
vpshufb $t2,@X[1],@X[1]
vinserti128 \$1,48(%r12),@X[3],@X[3]
vpshufb $t2,@X[2],@X[2]
vinserti128 \$1,64(%r12),@X[4],@X[4]
vpshufb $t2,@X[3],@X[3]
vinserti128 \$1,80(%r12),@X[5],@X[5]
vpshufb $t2,@X[4],@X[4]
vinserti128 \$1,96(%r12),@X[6],@X[6]
vpshufb $t2,@X[5],@X[5]
vinserti128 \$1,112(%r12),@X[7],@X[7]
vpaddq -0x80($Tbl),@X[0],$t0
vpshufb $t2,@X[6],@X[6]
vpaddq -0x60($Tbl),@X[1],$t1
vpshufb $t2,@X[7],@X[7]
vpaddq -0x40($Tbl),@X[2],$t2
vpaddq -0x20($Tbl),@X[3],$t3
vmovdqa $t0,0x00(%rsp)
vpaddq 0x00($Tbl),@X[4],$t0
vmovdqa $t1,0x20(%rsp)
vpaddq 0x20($Tbl),@X[5],$t1
vmovdqa $t2,0x40(%rsp)
vpaddq 0x40($Tbl),@X[6],$t2
vmovdqa $t3,0x60(%rsp)
lea -$PUSH8(%rsp),%rsp
vpaddq 0x60($Tbl),@X[7],$t3
vmovdqa $t0,0x00(%rsp)
xor $a1,$a1
vmovdqa $t1,0x20(%rsp)
mov $B,$a3
vmovdqa $t2,0x40(%rsp)
xor $C,$a3 # magic
vmovdqa $t3,0x60(%rsp)
mov $F,$a4
add \$16*2*$SZ,$Tbl
jmp .Lavx2_00_47
.align 16
.Lavx2_00_47:
___
sub AVX2_512_00_47 () {
my $j = shift;
my $body = shift;
my @X = @_;
my @insns = (&$body,&$body); # 48 instructions
my $base = "+2*$PUSH8(%rsp)";
&lea ("%rsp","-$PUSH8(%rsp)") if (($j%4)==0);
foreach (Xupdate_512_AVX()) { # 23 instructions
eval;
if ($_ !~ /\;$/) {
eval(shift(@insns));
eval(shift(@insns));
eval(shift(@insns));
}
}
&vpaddq ($t2,@X[0],16*2*$j-0x80."($Tbl)");
foreach (@insns) { eval; } # remaining instructions
&vmovdqa ((32*$j)%$PUSH8."(%rsp)",$t2);
}
for ($i=0,$j=0; $j<8; $j++) {
&AVX2_512_00_47($j,\&bodyx_00_15,@X);
push(@X,shift(@X)); # rotate(@X)
}
&lea ($Tbl,16*2*$SZ."($Tbl)");
&cmpb (($SZ-1-0x80)."($Tbl)",0);
&jne (".Lavx2_00_47");
for ($i=0; $i<16; ) {
my $base=$i<8?"+$PUSH8(%rsp)":"(%rsp)";
foreach(bodyx_00_15()) { eval; }
}
}
$code.=<<___;
mov `2*$SZ*$rounds`(%rsp),$ctx # $_ctx
add $a1,$A
#mov `2*$SZ*$rounds+8`(%rsp),$inp # $_inp
lea `2*$SZ*($rounds-8)`(%rsp),$Tbl
add $SZ*0($ctx),$A
add $SZ*1($ctx),$B
add $SZ*2($ctx),$C
add $SZ*3($ctx),$D
add $SZ*4($ctx),$E
add $SZ*5($ctx),$F
add $SZ*6($ctx),$G
add $SZ*7($ctx),$H
mov $A,$SZ*0($ctx)
mov $B,$SZ*1($ctx)
mov $C,$SZ*2($ctx)
mov $D,$SZ*3($ctx)
mov $E,$SZ*4($ctx)
mov $F,$SZ*5($ctx)
mov $G,$SZ*6($ctx)
mov $H,$SZ*7($ctx)
cmp `$PUSH8+2*8`($Tbl),$inp # $_end
je .Ldone_avx2
xor $a1,$a1
mov $B,$a3
xor $C,$a3 # magic
mov $F,$a4
jmp .Lower_avx2
.align 16
.Lower_avx2:
___
for ($i=0; $i<8; ) {
my $base="+16($Tbl)";
foreach(bodyx_00_15()) { eval; }
}
$code.=<<___;
lea -$PUSH8($Tbl),$Tbl
cmp %rsp,$Tbl
jae .Lower_avx2
mov `2*$SZ*$rounds`(%rsp),$ctx # $_ctx
add $a1,$A
#mov `2*$SZ*$rounds+8`(%rsp),$inp # $_inp
lea `2*$SZ*($rounds-8)`(%rsp),%rsp
add $SZ*0($ctx),$A
add $SZ*1($ctx),$B
add $SZ*2($ctx),$C
add $SZ*3($ctx),$D
add $SZ*4($ctx),$E
add $SZ*5($ctx),$F
lea `2*16*$SZ`($inp),$inp # inp+=2
add $SZ*6($ctx),$G
mov $inp,%r12
add $SZ*7($ctx),$H
cmp $_end,$inp
mov $A,$SZ*0($ctx)
cmove %rsp,%r12 # next block or stale data
mov $B,$SZ*1($ctx)
mov $C,$SZ*2($ctx)
mov $D,$SZ*3($ctx)
mov $E,$SZ*4($ctx)
mov $F,$SZ*5($ctx)
mov $G,$SZ*6($ctx)
mov $H,$SZ*7($ctx)
jbe .Loop_avx2
lea (%rsp),$Tbl
.Ldone_avx2:
lea ($Tbl),%rsp
mov $_rsp,%rsi
vzeroupper
___
$code.=<<___ if ($win64);
movaps 16*$SZ+32(%rsp),%xmm6
movaps 16*$SZ+48(%rsp),%xmm7
movaps 16*$SZ+64(%rsp),%xmm8
movaps 16*$SZ+80(%rsp),%xmm9
___
$code.=<<___ if ($win64 && $SZ>4);
movaps 16*$SZ+96(%rsp),%xmm10
movaps 16*$SZ+112(%rsp),%xmm11
___
$code.=<<___;
mov (%rsi),%r15
mov 8(%rsi),%r14
mov 16(%rsi),%r13
mov 24(%rsi),%r12
mov 32(%rsi),%rbp
mov 40(%rsi),%rbx
lea 48(%rsi),%rsp
.Lepilogue_avx2:
ret
.size ${func}_avx2,.-${func}_avx2
___
}}
}}}}}
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type se_handler,\@abi-omnipotent
.align 16
se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HanderlData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # prologue label
cmp %r10,%rbx # context->Rip<prologue label
jb .Lin_prologue
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lin_prologue
___
$code.=<<___ if ($avx>1);
lea .Lavx2_shortcut(%rip),%r10
cmp %r10,%rbx # context->Rip<avx2_shortcut
jb .Lnot_in_avx2
and \$-256*$SZ,%rax
add \$`2*$SZ*($rounds-8)`,%rax
.Lnot_in_avx2:
___
$code.=<<___;
mov %rax,%rsi # put aside Rsp
mov 16*$SZ+3*8(%rax),%rax # pull $_rsp
lea 48(%rax),%rax
mov -8(%rax),%rbx
mov -16(%rax),%rbp
mov -24(%rax),%r12
mov -32(%rax),%r13
mov -40(%rax),%r14
mov -48(%rax),%r15
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
mov %r15,240($context) # restore context->R15
lea .Lepilogue(%rip),%r10
cmp %r10,%rbx
jb .Lin_prologue # non-AVX code
lea 16*$SZ+4*8(%rsi),%rsi # Xmm6- save area
lea 512($context),%rdi # &context.Xmm6
mov \$`$SZ==4?8:12`,%ecx
.long 0xa548f3fc # cld; rep movsq
.Lin_prologue:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size se_handler,.-se_handler
___
$code.=<<___ if ($SZ==4 && $shaext);
.type shaext_handler,\@abi-omnipotent
.align 16
shaext_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
lea .Lprologue_shaext(%rip),%r10
cmp %r10,%rbx # context->Rip<.Lprologue
jb .Lin_prologue
lea .Lepilogue_shaext(%rip),%r10
cmp %r10,%rbx # context->Rip>=.Lepilogue
jae .Lin_prologue
lea -8-5*16(%rax),%rsi
lea 512($context),%rdi # &context.Xmm6
mov \$10,%ecx
.long 0xa548f3fc # cld; rep movsq
jmp .Lin_prologue
.size shaext_handler,.-shaext_handler
___
$code.=<<___;
.section .pdata
.align 4
.rva .LSEH_begin_$func
.rva .LSEH_end_$func
.rva .LSEH_info_$func
___
$code.=<<___ if ($SZ==4 && $shaext);
.rva .LSEH_begin_${func}_shaext
.rva .LSEH_end_${func}_shaext
.rva .LSEH_info_${func}_shaext
___
$code.=<<___ if ($SZ==4);
.rva .LSEH_begin_${func}_ssse3
.rva .LSEH_end_${func}_ssse3
.rva .LSEH_info_${func}_ssse3
___
$code.=<<___ if ($avx && $SZ==8);
.rva .LSEH_begin_${func}_xop
.rva .LSEH_end_${func}_xop
.rva .LSEH_info_${func}_xop
___
$code.=<<___ if ($avx);
.rva .LSEH_begin_${func}_avx
.rva .LSEH_end_${func}_avx
.rva .LSEH_info_${func}_avx
___
$code.=<<___ if ($avx>1);
.rva .LSEH_begin_${func}_avx2
.rva .LSEH_end_${func}_avx2
.rva .LSEH_info_${func}_avx2
___
$code.=<<___;
.section .xdata
.align 8
.LSEH_info_$func:
.byte 9,0,0,0
.rva se_handler
.rva .Lprologue,.Lepilogue # HandlerData[]
___
$code.=<<___ if ($SZ==4 && $shaext);
.LSEH_info_${func}_shaext:
.byte 9,0,0,0
.rva shaext_handler
___
$code.=<<___ if ($SZ==4);
.LSEH_info_${func}_ssse3:
.byte 9,0,0,0
.rva se_handler
.rva .Lprologue_ssse3,.Lepilogue_ssse3 # HandlerData[]
___
$code.=<<___ if ($avx && $SZ==8);
.LSEH_info_${func}_xop:
.byte 9,0,0,0
.rva se_handler
.rva .Lprologue_xop,.Lepilogue_xop # HandlerData[]
___
$code.=<<___ if ($avx);
.LSEH_info_${func}_avx:
.byte 9,0,0,0
.rva se_handler
.rva .Lprologue_avx,.Lepilogue_avx # HandlerData[]
___
$code.=<<___ if ($avx>1);
.LSEH_info_${func}_avx2:
.byte 9,0,0,0
.rva se_handler
.rva .Lprologue_avx2,.Lepilogue_avx2 # HandlerData[]
___
}
sub sha256op38 {
my $instr = shift;
my %opcodelet = (
"sha256rnds2" => 0xcb,
"sha256msg1" => 0xcc,
"sha256msg2" => 0xcd );
if (defined($opcodelet{$instr}) && @_[0] =~ /%xmm([0-7]),\s*%xmm([0-7])/) {
my @opcode=(0x0f,0x38);
push @opcode,$opcodelet{$instr};
push @opcode,0xc0|($1&7)|(($2&7)<<3); # ModR/M
return ".byte\t".join(',',@opcode);
} else {
return $instr."\t".@_[0];
}
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/geo;
s/\b(sha256[^\s]*)\s+(.*)/sha256op38($1,$2)/geo;
print $_,"\n";
}
close STDOUT;