boringssl/crypto/bytestring/cbb.c
David Benjamin 98e882ead1 Clean up s23_srvr.c.
ssl23_get_client_hello has lots of remnants of SSLv2 support and remnants of an
even older SSL_OP_NON_EXPORT_FIRST option (see upstream's
d92f0bb6e9ed94ac0c3aa0c939f2565f2ed95935) which complicates the logic.

Split it into three states and move V2ClientHello parsing into its own
function. Port it to CBS and CBB to give bounds checks on the V2ClientHello
parse.

This fixes a minor bug where, if the SSL_accept call in ssl23_get_client_hello
failed, cb would not be NULL'd and SSL_CB_ACCEPT_LOOP would get reported an
extra time.

It also unbreaks the invariant between s->packet, s->packet_length,
s->s3->rbuf.buf, and s->s3->rbuf.offset at the point the switch, although this
was of no consequence because the first ssl3_read_n call passes extend = 0
which resets s->packet and s->packet_length.

It also makes us tolerant to major version bumps in the ClientHello. Add tests
for TLS tolerance of both minor and major version bumps as well as the HTTP
request error codes.

Change-Id: I948337f4dc483f4ebe1742d3eba53b045b260257
Reviewed-on: https://boringssl-review.googlesource.com/1455
Reviewed-by: Adam Langley <agl@google.com>
2014-08-12 21:10:56 +00:00

339 lines
7.4 KiB
C

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/bytestring.h>
#include <assert.h>
#include <openssl/mem.h>
static int cbb_init(CBB *cbb, uint8_t *buf, size_t cap) {
struct cbb_buffer_st *base;
base = OPENSSL_malloc(sizeof(struct cbb_buffer_st));
if (base == NULL) {
OPENSSL_free(buf);
return 0;
}
base->buf = buf;
base->len = 0;
base->cap = cap;
base->can_resize = 1;
memset(cbb, 0, sizeof(CBB));
cbb->base = base;
cbb->is_top_level = 1;
return 1;
}
int CBB_init(CBB *cbb, size_t initial_capacity) {
uint8_t *buf;
buf = OPENSSL_malloc(initial_capacity);
if (initial_capacity > 0 && buf == NULL) {
return 0;
}
return cbb_init(cbb, buf, initial_capacity);
}
int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) {
if (!cbb_init(cbb, buf, len)) {
return 0;
}
cbb->base->can_resize = 0;
return 1;
}
void CBB_cleanup(CBB *cbb) {
if (cbb->base) {
if (cbb->base->buf && cbb->base->can_resize) {
OPENSSL_free(cbb->base->buf);
}
OPENSSL_free(cbb->base);
}
cbb->base = NULL;
}
static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out,
size_t len) {
size_t newlen;
if (base == NULL) {
return 0;
}
newlen = base->len + len;
if (newlen < base->len) {
/* Overflow */
return 0;
}
if (newlen > base->cap) {
size_t newcap = base->cap * 2;
uint8_t *newbuf;
if (!base->can_resize) {
return 0;
}
if (newcap < base->cap || newcap < newlen) {
newcap = newlen;
}
newbuf = OPENSSL_realloc(base->buf, newcap);
if (newbuf == NULL) {
return 0;
}
base->buf = newbuf;
base->cap = newcap;
}
if (out) {
*out = base->buf + base->len;
}
base->len = newlen;
return 1;
}
static int cbb_buffer_add_u(struct cbb_buffer_st *base, uint32_t v,
size_t len_len) {
uint8_t *buf;
size_t i;
if (len_len == 0) {
return 1;
}
if (!cbb_buffer_add(base, &buf, len_len)) {
return 0;
}
for (i = len_len - 1; i < len_len; i--) {
buf[i] = v;
v >>= 8;
}
return 1;
}
int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) {
if (!cbb->is_top_level) {
return 0;
}
if (!CBB_flush(cbb)) {
return 0;
}
if (cbb->base->can_resize && (out_data == NULL || out_len == NULL)) {
/* |out_data| and |out_len| can only be NULL if the CBB is fixed. */
return 0;
}
if (out_data != NULL) {
*out_data = cbb->base->buf;
}
if (out_len != NULL) {
*out_len = cbb->base->len;
}
cbb->base->buf = NULL;
CBB_cleanup(cbb);
return 1;
}
/* CBB_flush recurses and then writes out any pending length prefix. The
* current length of the underlying base is taken to be the length of the
* length-prefixed data. */
int CBB_flush(CBB *cbb) {
size_t child_start, i, len;
if (cbb->base == NULL) {
return 0;
}
if (cbb->child == NULL || cbb->pending_len_len == 0) {
return 1;
}
child_start = cbb->offset + cbb->pending_len_len;
if (!CBB_flush(cbb->child) ||
child_start < cbb->offset ||
cbb->base->len < child_start) {
return 0;
}
len = cbb->base->len - child_start;
if (cbb->pending_is_asn1) {
/* For ASN.1 we assume that we'll only need a single byte for the length.
* If that turned out to be incorrect, we have to move the contents along
* in order to make space. */
size_t len_len;
uint8_t initial_length_byte;
assert (cbb->pending_len_len == 1);
if (len > 0xfffffffe) {
/* Too large. */
return 0;
} else if (len > 0xffffff) {
len_len = 5;
initial_length_byte = 0x80 | 4;
} else if (len > 0xffff) {
len_len = 4;
initial_length_byte = 0x80 | 3;
} else if (len > 0xff) {
len_len = 3;
initial_length_byte = 0x80 | 2;
} else if (len > 0x7f) {
len_len = 2;
initial_length_byte = 0x80 | 1;
} else {
len_len = 1;
initial_length_byte = len;
len = 0;
}
if (len_len != 1) {
/* We need to move the contents along in order to make space. */
size_t extra_bytes = len_len - 1;
if (!cbb_buffer_add(cbb->base, NULL, extra_bytes)) {
return 0;
}
memmove(cbb->base->buf + child_start + extra_bytes,
cbb->base->buf + child_start, len);
}
cbb->base->buf[cbb->offset++] = initial_length_byte;
cbb->pending_len_len = len_len - 1;
}
for (i = cbb->pending_len_len - 1; i < cbb->pending_len_len; i--) {
cbb->base->buf[cbb->offset + i] = len;
len >>= 8;
}
if (len != 0) {
return 0;
}
cbb->child->base = NULL;
cbb->child = NULL;
cbb->pending_len_len = 0;
cbb->pending_is_asn1 = 0;
cbb->offset = 0;
return 1;
}
static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents,
size_t len_len) {
uint8_t *prefix_bytes;
if (!CBB_flush(cbb)) {
return 0;
}
cbb->offset = cbb->base->len;
if (!cbb_buffer_add(cbb->base, &prefix_bytes, len_len)) {
return 0;
}
memset(prefix_bytes, 0, len_len);
memset(out_contents, 0, sizeof(CBB));
out_contents->base = cbb->base;
cbb->child = out_contents;
cbb->pending_len_len = len_len;
cbb->pending_is_asn1 = 0;
return 1;
}
int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) {
return cbb_add_length_prefixed(cbb, out_contents, 1);
}
int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) {
return cbb_add_length_prefixed(cbb, out_contents, 2);
}
int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) {
return cbb_add_length_prefixed(cbb, out_contents, 3);
}
int CBB_add_asn1(CBB *cbb, CBB *out_contents, uint8_t tag) {
if (!CBB_flush(cbb) ||
!CBB_add_u8(cbb, tag)) {
return 0;
}
cbb->offset = cbb->base->len;
if (!CBB_add_u8(cbb, 0)) {
return 0;
}
memset(out_contents, 0, sizeof(CBB));
out_contents->base = cbb->base;
cbb->child = out_contents;
cbb->pending_len_len = 1;
cbb->pending_is_asn1 = 1;
return 1;
}
int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) {
uint8_t *dest;
if (!CBB_flush(cbb) ||
!cbb_buffer_add(cbb->base, &dest, len)) {
return 0;
}
memcpy(dest, data, len);
return 1;
}
int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) {
if (!CBB_flush(cbb) ||
!cbb_buffer_add(cbb->base, out_data, len)) {
return 0;
}
return 1;
}
int CBB_add_u8(CBB *cbb, uint8_t value) {
if (!CBB_flush(cbb)) {
return 0;
}
return cbb_buffer_add_u(cbb->base, value, 1);
}
int CBB_add_u16(CBB *cbb, uint16_t value) {
if (!CBB_flush(cbb)) {
return 0;
}
return cbb_buffer_add_u(cbb->base, value, 2);
}
int CBB_add_u24(CBB *cbb, uint32_t value) {
if (!CBB_flush(cbb)) {
return 0;
}
return cbb_buffer_add_u(cbb->base, value, 3);
}