boringssl/crypto/digest/digest_test.cc
David Benjamin 0375127606 Promise more accurate bounds than EVP_MD_MAX_SIZE.
A caller using EVP_Digest* which a priori knows tighter bounds on the
hash function used (perhaps because it is always a particular hash) can
assume the function will not write more bytes than the size of the hash.

The letter of the rules before vaguely[*] allowed for more than
EVP_MD_MAX_SIZE bytes written which made for some unreasonable code in
Chromium. Officially clarify this and add tests which, when paired with
valgrind and ASan prove it.

BUG=59

[*] Not really. I think it already promised the output length will be
both the number of bytes written and the size of the hash and the size
of the hash is given by what the function promises to compute. Meh.

Change-Id: I736d526e81cca30475c90897bca896293ff30278
Reviewed-on: https://boringssl-review.googlesource.com/9066
Reviewed-by: Eric Roman <ericroman@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2016-08-01 23:24:04 +00:00

263 lines
8.9 KiB
C++

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/md4.h>
#include <openssl/md5.h>
#include <openssl/sha.h>
#include "../test/scoped_types.h"
struct MD {
// name is the name of the digest.
const char* name;
// md_func is the digest to test.
const EVP_MD *(*func)(void);
// one_shot_func is the convenience one-shot version of the
// digest.
uint8_t *(*one_shot_func)(const uint8_t *, size_t, uint8_t *);
};
static const MD md4 = { "MD4", &EVP_md4, nullptr };
static const MD md5 = { "MD5", &EVP_md5, &MD5 };
static const MD sha1 = { "SHA1", &EVP_sha1, &SHA1 };
static const MD sha224 = { "SHA224", &EVP_sha224, &SHA224 };
static const MD sha256 = { "SHA256", &EVP_sha256, &SHA256 };
static const MD sha384 = { "SHA384", &EVP_sha384, &SHA384 };
static const MD sha512 = { "SHA512", &EVP_sha512, &SHA512 };
static const MD md5_sha1 = { "MD5-SHA1", &EVP_md5_sha1, nullptr };
struct TestVector {
// md is the digest to test.
const MD &md;
// input is a NUL-terminated string to hash.
const char *input;
// repeat is the number of times to repeat input.
size_t repeat;
// expected_hex is the expected digest in hexadecimal.
const char *expected_hex;
};
static const TestVector kTestVectors[] = {
// MD4 tests, from RFC 1320. (crypto/md4 does not provide a
// one-shot MD4 function.)
{ md4, "", 1, "31d6cfe0d16ae931b73c59d7e0c089c0" },
{ md4, "a", 1, "bde52cb31de33e46245e05fbdbd6fb24" },
{ md4, "abc", 1, "a448017aaf21d8525fc10ae87aa6729d" },
{ md4, "message digest", 1, "d9130a8164549fe818874806e1c7014b" },
{ md4, "abcdefghijklmnopqrstuvwxyz", 1,
"d79e1c308aa5bbcdeea8ed63df412da9" },
{ md4,
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", 1,
"043f8582f241db351ce627e153e7f0e4" },
{ md4, "1234567890", 8, "e33b4ddc9c38f2199c3e7b164fcc0536" },
// MD5 tests, from RFC 1321.
{ md5, "", 1, "d41d8cd98f00b204e9800998ecf8427e" },
{ md5, "a", 1, "0cc175b9c0f1b6a831c399e269772661" },
{ md5, "abc", 1, "900150983cd24fb0d6963f7d28e17f72" },
{ md5, "message digest", 1, "f96b697d7cb7938d525a2f31aaf161d0" },
{ md5, "abcdefghijklmnopqrstuvwxyz", 1,
"c3fcd3d76192e4007dfb496cca67e13b" },
{ md5,
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", 1,
"d174ab98d277d9f5a5611c2c9f419d9f" },
{ md5, "1234567890", 8, "57edf4a22be3c955ac49da2e2107b67a" },
// SHA-1 tests, from RFC 3174.
{ sha1, "abc", 1, "a9993e364706816aba3e25717850c26c9cd0d89d" },
{ sha1,
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 1,
"84983e441c3bd26ebaae4aa1f95129e5e54670f1" },
{ sha1, "a", 1000000, "34aa973cd4c4daa4f61eeb2bdbad27316534016f" },
{ sha1,
"0123456701234567012345670123456701234567012345670123456701234567", 10,
"dea356a2cddd90c7a7ecedc5ebb563934f460452" },
// SHA-224 tests, from RFC 3874.
{ sha224, "abc", 1,
"23097d223405d8228642a477bda255b32aadbce4bda0b3f7e36c9da7" },
{ sha224,
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 1,
"75388b16512776cc5dba5da1fd890150b0c6455cb4f58b1952522525" },
{ sha224,
"a", 1000000,
"20794655980c91d8bbb4c1ea97618a4bf03f42581948b2ee4ee7ad67" },
// SHA-256 tests, from NIST.
{ sha256, "abc", 1,
"ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad" },
{ sha256,
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 1,
"248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1" },
// SHA-384 tests, from NIST.
{ sha384, "abc", 1,
"cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed"
"8086072ba1e7cc2358baeca134c825a7" },
{ sha384,
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", 1,
"09330c33f71147e83d192fc782cd1b4753111b173b3b05d22fa08086e3b0f712"
"fcc7c71a557e2db966c3e9fa91746039" },
// SHA-512 tests, from NIST.
{ sha512, "abc", 1,
"ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a"
"2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f" },
{ sha512,
"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
"hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", 1,
"8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018"
"501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909" },
// MD5-SHA1 tests.
{ md5_sha1, "abc", 1,
"900150983cd24fb0d6963f7d28e17f72a9993e364706816aba3e25717850c26c9cd0d89d" },
};
static bool CompareDigest(const TestVector *test,
const uint8_t *digest,
size_t digest_len) {
static const char kHexTable[] = "0123456789abcdef";
size_t i;
char digest_hex[2*EVP_MAX_MD_SIZE + 1];
for (i = 0; i < digest_len; i++) {
digest_hex[2*i] = kHexTable[digest[i] >> 4];
digest_hex[2*i + 1] = kHexTable[digest[i] & 0xf];
}
digest_hex[2*digest_len] = '\0';
if (strcmp(digest_hex, test->expected_hex) != 0) {
fprintf(stderr, "%s(\"%s\" * %d) = %s; want %s\n",
test->md.name, test->input, (int)test->repeat,
digest_hex, test->expected_hex);
return false;
}
return true;
}
static int TestDigest(const TestVector *test) {
ScopedEVP_MD_CTX ctx;
// Test the input provided.
if (!EVP_DigestInit_ex(ctx.get(), test->md.func(), NULL)) {
fprintf(stderr, "EVP_DigestInit_ex failed\n");
return false;
}
for (size_t i = 0; i < test->repeat; i++) {
if (!EVP_DigestUpdate(ctx.get(), test->input, strlen(test->input))) {
fprintf(stderr, "EVP_DigestUpdate failed\n");
return false;
}
}
std::unique_ptr<uint8_t[]> digest(new uint8_t[EVP_MD_size(test->md.func())]);
unsigned digest_len;
if (!EVP_DigestFinal_ex(ctx.get(), digest.get(), &digest_len)) {
fprintf(stderr, "EVP_DigestFinal_ex failed\n");
return false;
}
if (!CompareDigest(test, digest.get(), digest_len)) {
return false;
}
// Test the input one character at a time.
if (!EVP_DigestInit_ex(ctx.get(), test->md.func(), NULL)) {
fprintf(stderr, "EVP_DigestInit_ex failed\n");
return false;
}
if (!EVP_DigestUpdate(ctx.get(), NULL, 0)) {
fprintf(stderr, "EVP_DigestUpdate failed\n");
return false;
}
for (size_t i = 0; i < test->repeat; i++) {
for (const char *p = test->input; *p; p++) {
if (!EVP_DigestUpdate(ctx.get(), p, 1)) {
fprintf(stderr, "EVP_DigestUpdate failed\n");
return false;
}
}
}
if (!EVP_DigestFinal_ex(ctx.get(), digest.get(), &digest_len)) {
fprintf(stderr, "EVP_DigestFinal_ex failed\n");
return false;
}
if (digest_len != EVP_MD_size(test->md.func())) {
fprintf(stderr, "EVP_MD_size output incorrect\n");
return false;
}
if (!CompareDigest(test, digest.get(), digest_len)) {
return false;
}
// Test the one-shot function.
if (test->md.one_shot_func && test->repeat == 1) {
uint8_t *out = test->md.one_shot_func((const uint8_t *)test->input,
strlen(test->input), digest.get());
if (out != digest.get()) {
fprintf(stderr, "one_shot_func gave incorrect return\n");
return false;
}
if (!CompareDigest(test, digest.get(), EVP_MD_size(test->md.func()))) {
return false;
}
// Test the deprecated static buffer variant, until it's removed.
out = test->md.one_shot_func((const uint8_t *)test->input,
strlen(test->input), NULL);
if (!CompareDigest(test, out, EVP_MD_size(test->md.func()))) {
return false;
}
}
return true;
}
static int TestGetters() {
if (EVP_get_digestbyname("RSA-SHA512") == NULL ||
EVP_get_digestbyname("sha512WithRSAEncryption") == NULL ||
EVP_get_digestbyname("nonsense") != NULL) {
return false;
}
return true;
}
int main(void) {
CRYPTO_library_init();
for (size_t i = 0; i < sizeof(kTestVectors) / sizeof(kTestVectors[0]); i++) {
if (!TestDigest(&kTestVectors[i])) {
fprintf(stderr, "Test %d failed\n", (int)i);
return 1;
}
}
if (!TestGetters()) {
return 1;
}
printf("PASS\n");
return 0;
}